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Abstract

Learning 3D shape representation with dense correspon-
dence for deformable objects is a fundamental problem
in computer vision. Existing approaches often need addi-
tional annotations of specific semantic domain, e.g., skele-
ton poses for human bodies or animals, which require extra
annotation effort and suffer from error accumulation, and
they are limited to specific domain. In this paper, we pro-
pose a novel self-supervised approach to learn neural im-
plicit shape representation for deformable objects, which
can represent shapes with a template shape and dense cor-
respondence in 3D. Our method does not require the pri-
ors of skeleton and skinning weight, and only requires a
collection of shapes represented in signed distance fields.
To handle the large deformation, we constrain the learned
template shape in the same latent space with the train-
ing shapes, design a new formulation of local rigid con-
straint that enforces rigid transformation in local region
and addresses local reflection issue, and present a new hi-
erarchical rigid constraint to reduce the ambiguity due to
the joint learning of template shape and correspondences.
Extensive experiments show that our model can represent
shapes with large deformations. We also show that our
shape representation can support two typical applications,
such as texture transfer and shape editing, with competi-
tive performance. The code and models are available at
https://iscas3dv.github.io/deformshape.

1. Introduction

Shape representation with dense correspondence is a
fundamental problem in computer vision. It plays a key role
in many applications such as shape reconstruction [28, 34,

], texture mapping [32, 10], and shape editing [10, 9, 36].
Early works often need additional semantic prior or anno-
tations to learn such representation, e.g., SMPL [22] and

*indicates corresponding author

Figure 1: We present a self-supervised method to learn neu-
ral implicit representation for deformable objects with a col-
lection of shapes. Our method can generate shapes by de-
forming a learned template and get dense correspondence.

SMAL [42] use registered meshes in certain semantic cate-
gories and LEAP [27] and NASA [9] require annotations of
skeletons and skinning weights, which limits the use cases
and scalability of these representations. On the other hand,
with the emerging implicit representation, more 3D assets
are encoded in implicit sign distance function (SDF), and a
shape representation for deformable objects in SDF is still
largely missing in the community.

In this paper, we aim to design a neural representation for
deformable objects (Figure 1). Given a target deformable
object represented as a set of sign distance field under var-
ious deformations, our method learns an implicit represen-
tation that is able to reconstruct the 3D shapes, interpolate
between the given examples, and provide dense correspon-
dence across shapes, in a fully self-supervised manner with-
out any additional annotation or semantic prior. Following
the common idea [10, 31], we formulate the deformable
shape as a static shape in a canonical (or template) space,
plus the mappings from any target deformation space to the
template space for arbitrary locations in the 3D space. How-
ever, in the existence of large deformation, such as humans
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and animals, we empirically found the above-mentioned ap-
proaches tend to be unstable and can easily get stuck in local
optima if learned self-supervised due to unique challenges:

Highly Under-constrained Optimization. The free-form
template shape and deformation need optimizing jointly but
highly under-constrained. Under the case with large defor-
mation across training examples, the per-location mapping
is error-prone, which in return affects the template shape,
and there lacks a good constraint to push both back to the
correct case. To mitigate the issue, we learn a generative
model for the training shapes, where each shape is repre-
sented as a code in a latent space. We then enforce a valid
shape for the template shape by sampling from this latent
space. We found this helps constrain the template shape
and benefits the learning of dense correspondence.

Incomplete Local Rigid Constraint. As-rigid-as-possible
(ARAP) constraint [, 36] has been extensively used for dis-
cretized surface such as meshes to penalize irregular surface
deformation in many previous work [, 36, 15]. However,
defining ARAP equivalent constraint on continuous SDF
is non-trivial. Existing works conduct a few attempts but
all have their drawbacks. For example, Deng et al. [10]
use smooth constraints to avoid predicted deformation be-
ing large. However, this work cannot model the shapes with
large deformation. Park et al. [31] propose a local rigid
constraint however does not penalize flip mapping in a lo-
cal region, and as a result a point on the left hand might
be incorrectly mapped to the right hand. In contrast, we
propose a novel formulation of local rigid constraint that
enforces rigid transformation in local region and addresses
local flip mapping issue, as illustrated in reflection issue of
Figure 3(a). We give theoretical analysis and show that our
local rigid constraint is, to the best of our knowledge, the
first ARAP equivalent constraint define with implicit repre-
sentation in infinitesimal scopes.

Insufficient Large-scale Deformation Prior. We found
the learned shape representations with only local rigid con-
straint at each point [31, 10] still suffer from local optima.
This is because shapes with large deformation often have
rigid deformation in large scope, such as small neighbor-
hood rigid regions (Figure 3(b)) and large rigid regions such
as the limb on human body (Figure 3(c)), and the local
rigid constraint does not have enough spatial context to take
effect. Several rigid constraints on meshes [41] or point
clouds [19] have been designed and proved to be effec-
tive for shape representation by utilizing connections be-
tween surface points. However, it is not straight-forward to
extend these rigid constraints to implicit shape representa-
tion due to the lack of explicit connections between points.
Therefore, previous implicit representation methods neglect
large-scale deformation prior. To this end, we design hierar-
chical rigid constraints for implicit representation to utilize

spatial context of shapes at rigid part level and neighbor-
hood level to reduce the ambiguity to learn shape and cor-
respondence, which effectively constrains rigid motion in
large scale and stabilizes the learning of the representation.

We perform extensive experiments to verify that our
neural representation, learned with three above mentioned
contributions, has superior capability in shape reconstruc-
tion, deformation interpolation, and building dense corre-
spondence. We also show that high quality results can be
achieved in various applications, including texture transfer
and shape editing, using our learned representation.

2. Related Work

Neural Implicit Representation for Rigid Object. Im-
plicit function is widely used in 3D shape representation.
Park et al. [30] propose an efficient model named DeepSDF
to learn SDF to represent shapes. Mescheder et al. [26] and
Chen et al. [ 7] achieve neural implicit representation assign-
ment by means of a binary classifier. Chibane et al. [8] use
unsigned distance field to achieve high resolution output of
arbitrary shape. Deng et al. [10] propose DIF, which learns
a template to deform to a class of objects. This method
works well for rigid objects, but fails when large deforma-
tion occurs, such as moving human body.

Neural Shape Representation with Shape Priors. Several
methods present neural shape representation for dynamic
shapes using shape priors such as skeleton and skinning for
human body. Prior art works on neural representation of
human body [9, 27, 6] impose bone transformation to con-
strain the deformation space. Jiang et al. [16] use pose-
shape pairs in training data to learn a model to represent
moving body. Ma et al. [25] project human body on a pre-
defined UV map and represent body shape as point cloud.
These methods require the pre-defined topology space, and
the known or easy-to-learn diffeomorphism to realize hu-
man body shape representation. However, none of them
can optimize template and correspondence simultaneously.
Skeleton provides much prior of deformation, so methods
using skeleton are advantageous when ground truth pose are
available. In this paper, we focus on deformable shapes
without pre-defined skeleton and propose a skeleton-free
shape representation with dense correspondence.

Neural Implicit Representation with Dense Correspon-
dence. Training a neural implicit model with dense cor-
respondence is a longstanding task [10]. Oflow [29] can
model motion sequence of a deformed shape. This method
can model shapes with large deformation, but it requires
continuous shape sequence as input. DIF [10] can represent
shapes of the same category and generate dense correspon-
dences among shapes. However, DIF cannot model shapes
with large deformation, such as human body.

Neural Dense Correspondence. Finding accurate dense
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Figure 2: Tllustration of our shape representation network.

correspondence among shapes is a fundamental problem in
computer vision. Several methods have explored this prob-
lem in supervised manner [21, 13, 38] or self-supervised
manner [13, 14,4, 12, 11]. In supervised methods, the cor-
responding points between the input shapes are required to
know. In self-supervised case, some works [13, 14, 12, 11]
use topology information to constrain the point location on
the surface. However, these self-supervised methods re-
quire mesh as input, which is harder to access than point
cloud in real world capture. Several works in human mesh
registration [4, 39] also predict dense correspondences be-
tween shapes. Bharat et al. [4] use the shape model SMPL
[22] as a prior for training, yet it cannot be generalized
to other shape categories without a pre-built shape model.
Giovanni et al. [39] present a learning approach to regis-
ter non-rigid 3D point clouds. However, this work requires
ground truth correspondences for training. In this paper,
we focus on learning dense correspondence with neural im-
plicit representation using self-supervised method.

3. Method

Our method learns a neural representation for a de-
formable object exhibited in a collection of shapes repre-
sented as signed distance fields (SDF). Inspired by DIF [10],
we formulate the deformable object as a template shape en-
coded in an implicit neural network ®, and dense correspon-
dence fields D;_,¢mp predicted by a network (R?® — R3)
from arbitrary deformation .S; (i.e., target space) to the tem-
plate space tmpl. Therefore, to reconstruct the target shape
S;, signed distance values for arbitrary 3D location p are
queried from the template space via the dense correspon-
dence as

SDFy(p) = ®(Di st (P)). )

With the SDF of a target shape, the 3D mesh can be
extracted using surface reconstruction algorithms such as
Marching Cubes [23]. Though the overall representation is
straightforward, our method focuses on shapes with large
deformation, such as moving humans and animals, while
DIF [10] can only deal with static categories, such as cars
and chairs, we show later in this section effective learning
in observations of large deformation is non-trivial.

3.1. Embedded Shapes and Template

In this section, we investigate how to learn a reasonable
template field. The previous template field network [10] did
not enforce the template shape to be a valid shape of any
subject. In practice, this method often generates template
with many floating artifacts when dealing with shapes with
large deformation (Figure 9). The floating artifacts can mis-
lead the network to find wrong correspondences on template
field. However, an ideal template field should have common
shape pattern of the target shapes to provide key clues for
correspondence.

In order to learn a reasonable template field, we propose
to constrain the template shape in the same latent space with
the training shape examples. To this end, we extend the neu-
ral implicit SDF function ® to condition on a latent code
«, where each training shape and the template shape are
mapped to an unique latent code. In this way, the training
shape collection naturally forms a strong regularization to
ensure a reasonable template shape and effectively prevent
flyers. The latent space also serves naturally for the dense
deformation fields between target shape and the template
shape. As illustrated in Figure 2, we use the latent codes
from the target shape «; and the template shape oy to
drive an encoder and a decoder respectively for dense cor-
respondence prediction. The encoder-decoder network is
denoted as D. Inspired the key finding by Simeonov er al.
[35], that the distance from surface is a key clue to learn 3D
correspondence, we add the SDF together with the point lo-
cation as input of encoder to provide geometry clues. There-
fore, the target shape can be reconstructed as

SDFz(p) = (D(D(p, (b(p|ai)|ai7atmpl>|atmpl)~ (2)

For simplicity, we use D;_mp(p) for D(p, ®(p|a)|
@, Qympr) in the following sections.

3.2. Local Rigid Constraint

During the training, ®, D, and latent code space {«} are
optimized jointly by minimizing the reconstruction loss on
the training shape collection. However, even with the regu-
larization on the template shape, this is still a highly under-
constrained optimization problem, and additional regular-
ization is needed. A common option is to assume rigid mo-
tion in local infinitesimal scopes, and ARAP [I, 36] is a
widely adopted solution on 3D surfaces. In this section, we
propose, for the first time, a novel ARAP equivalent con-
straint defined in implicit representation.

Inspired by Nerfies [31], local deformation can be reg-
ularized by constraining the singular values from the Jaco-
bian matrix of the deformation field. In their work, all three
singular values are encouraged to be close to 1. However,
this does not rule out the reflection as part of the rotation [2],
as illustrated in Figure 3 (a), which will deform the shape
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Figure 3: Illustration of hierarchical rigid constraints.

inside out or erroneously map the symmetry geometry, e.g.,
left hand in one shape maps to the right hand in another.
While rarely observed in Nerfies [3 1] since the deformation
in their data is relatively small, this drawback becomes vital
when deformations are large.

Our ARAP equivalent constraint is also achieved by con-
straining the singular values of the Jacobian matrix of the
deformation field. The analysis on ARAP equivalence can
be found in the supplementary material. In theory, pref-
erence over local rigid deformation is equivalent as en-
couraging the Jacobian matrix J(D;_mpi) to be a rota-
tion matrix [31]. According to Umeyama [40], the closest
orthogonal matrix of J(D;_,¢mpi) in the Froebenius norm
is R = USVT with S = diag(1,1,det(UVT)), where
U, V are obtained via singular value decomposition (SVD),
i.e. J(Di—tmpt) = UEVT (See more detail in the supple-
mentary material). Therefore, denoting o1, 02, 03 to be
singular values of Jacobian in point p, i.e. J(D;_ytmpi) (P),
we define the ARAP loss in local region as

Larap =smoothL1(oq,1) + smoothL1(o2,1)

T 3)
+ smoothL1(os,det(UV™)).

innerjouter outer ginner

Note that the reflection happens when det(UVT) < 0,
which is penalized in our ARAP loss since o3 is always
positive. To further penalize reflection, we also directly pe-
nalize negative det(J(D;_tmpi)). The overall local rigid
loss is defined as

Llr - Z Z Larap(p)+relu<_det(J(Di~>tmpl)(p))>7
i peS;us?

“)
where S, is the points from shape interior, i.e., SDF(p) <
0, and S? is the points from shape surface, i.e., SDF (p) =
0. We obtain the Jacobian matrix via auto gradient mecha-
nism, and use a smooth L1 loss for stable training.

3.3. Hierarchical Rigid Constraint

Existing implicit learning methods [31, 10] only super-
vise local rigidity of deformation at each point. However,
these methods do not leverage spatial context (i.e., seman-
tic parts, neighborhood distribution) of shapes effectively.
To mitigate the correspondence ambiguity with spatial con-
text, we propose a new implicit-based hierarchical rigid
constraint that consists of three terms at different levels, i.e.,
the local rigid constraint in infinitesimal scopes (Sec. 3.2),
a neighborhood rigid constraint for nearby region, and a
piece-wise rigid constraint for large part.

Neighborhood Rigid Constraint. This constraint is ap-
plied on small regions but in larger scale than L;,., con-
straining the implicit field in each region to remain consis-
tent after transformation. As shown in Figure 3(b), if points
in a small neighborhood undergo the rigid transformation,
the SDF of each point near the subject’s surface will remain
unchanged during deformation.

To this end, we add constraints respecting the above-
mentioned property between the template space and each
target deformation space. For each point p on the surface
SY of target deformation, we sample points around it us-
ing a Gaussian distribution with o (set to 0.05 in the ex-
periment). We then estimate the local rotation R around p
from J(D;—ympi) similar to Sec. 3.2. Each point sampling
p + 1 (n € R3) in the neighborhood is then mapped to the
template space at pﬁmp - D;_stmpi(p) + Rn. We propose
a neighborhood rigid loss that penalizes inconsistent SDF
values sampled from the target and template space as

Lor =Y Y Epen0,0) |90 [ttmpt) — B (p+17]cti) |13,
i pesy
&)

where E is the expectation over Gaussian sampling, which
is implemented by averaging the deviation of SDF values of
sampled points. Taking numerical stability into account, we
follow Levinson et al. [ 18] to calculate gradient of R.

Piece-wise Rigid Constraint. In fact, rigid motion can
happen not only locally but also in a much larger seman-
tic scope [41, 19], such as the limb on human body (Figure
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3 (¢)). These large but rigid structures are often the source
of large deformation in 3D space. We thus add a loss term,
named piece-wise rigid loss, to favor rigid motion in large
scale to help detect the existence of large rigid parts if any.

Our piece-wise rigid loss is enabled via part classifica-
tion networks that predicts for each 3D point, inside or
on the surface of the 3D shape, the probability belonging
to each of Np parts. With the predicted part association,
the least square solution of rigid transformation (Ry,,ty)
for each part h can be obtained. The piece-wise rigid loss
then penalizes the sum of minimal rigid transformation er-
ror over points of all parts as

Z ml? Z P, (p)|[[(Ryp + tr)
T hellNp] Ry, th pesIUST
- Di%tmpl(P)”z»
(6)

where Py, is the predicted probability belonging to part h.
In general, the points from shape interior have strong cor-
relation with surface points. Therefore, we not only con-
strain surface points, but also inner points. In practice, the
part classification network is learned in self-supervised way,
jointly with D;_,y,,,;, which needs only a pre-defined total
number of parts Np. Because the calculation of per-part
rigid transformation (R, t;,) could be slow, we therefore
leverage a closed-form analytical solution to get the mini-
mal rigid transformation error following Sorkine-Hornung
et al. [37] for efficient and differentiable implementation of
Eq. 6. Figure 4 shows that our method can effectively learn
part classification in self-supervised manner.
Overall, our hierarchical rigid constraint is defined as

Lm’gid = Wi Liy 4+ Whpr Lppr + wp'err @)
where w;;., Wy and wy,. are loss weights.

3.4. Implementation Details

We train our model in an end-to-end manner, and the
latent code and parameters of all networks are optimized

together during training.

Besides the hierarchical rigid constraint, we also add a
loss term to incorporate directly supervision from the train-
ing shapes on the SDF as

Lggr =
> (we D 1@(lai) = 5 +wa Y (1= Su(Ve(plag), )
i PES;: pes?
+wgik Y IIVO(plai)lla =1 +w, Y p(@(p)|aw)),
PES; peSi\S?

(®)
where S, is cosine similarity, § is ground truth SDF value,
and n is ground truth normal. The first term directly su-
pervises the SDF value, the second term supervises the sur-
face normal, and the third term regularizes the amplitude of
SDF gradient to satisfy Eikonal equation. The fourth term
refrains from the off-surface points with SDF values close
to 0, where p(s) = exp(—d - |s|), s > 1. We use the sim-
ilar method to supervise queried SDF values (Eq. 2), more
details can be found in supplementary material.

We also supervise the surface normal consistency
jointly with the deformation field. Specifically, we ro-
tate the ground truth n from the target space to the tem-
plate space using predicted rotation J(D;_ympi)(P), 1.,
J(D;—mpi) (p)0[17], and then compare it with the normal
directly estimated with SDFs of correspondence in the tem-
plate space,i.e., Vp,_, .. P(Di s tmpi(P)|Ctmpr). The nor-
mal loss L, sy, is defined as

pfn Z Z 1—- S VD,_,,mp; ( z%tmpl(p)'atmpl%
i peS?)
J(Divstmpt) (P)1))

©)
We also use regularization terms on latent codes L,q, =
>; llvi|| and enforce the latent code of template to be close

to its nearest latent code of shape in the training set.
Inspired by 3D-CODED [13] that pre-trains the network
to enforce the predicted correspondence of a point in input
shape to close to the input point, we use a loss term L..¢con
to enforce the self-correspondence D;_,;(p) of the target
shape to close to p using Lo loss, which enables good initial
correspondence. The hyper-parameters such as loss weights

are fixed over all the experiments.

4. Experiment
4.1. Dataset

We use the human dataset D-FAUST [5] and animal
dataset DeformingThings4D [20] for evaluation. D-FAUST
contains 5 males and 5 females. Each person performs vari-
ous movements, such as punching and waving arms. We use
the same data split as Atzmon et al. [3]. Shapes from several
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Table 2: Capacity evaluation
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Figure 5: Comparison of model representation capability
from our method with DIF and 3D-CODED. Our method
outperforms DIF and 3D-CODED by a large margin on the
representation capability.

A
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Figure 6: Results on datasets with synthesized noise. We
can observe that our method can generate reasonable results
with synthesized noise.

sequences are randomly split. Although pose is available
in the dataset, it is not used in our experiments. Deform-
ingThings4D contains various animals. In our experiment,
we select 5 animals with very different shapes and skeleton
structures, including bear, bunny, whale, elephant and deer.

4.2. Representation Capability

We evaluate the representation capability of our method
by comparing reconstructed shapes in the training set with
SOTA shape representation methods, DIF [10] and 3D-
CODED [13]. To get the results with DIF, we only use the

AN

D-FAUST[5] -
bear rabbit elephant whale deer average
CDJ IoUT | corr] CDJ TIoUT | corr] CD| TIoUT | corr] CDJ TIoUT | corr] CDJ TIoUT | corr] CDJ IoUT | corr] CDJ IoUT | corrl
DIF 11.936 | 0.647 | 0.0901 | 16.579 | 0.636 | 0.2062 | 14.005 | 0.566 | 0.1515 | 187.662 | 0.431 | 0.0612 | 22.146 | 0.492 | 0.0812 | 24.772 | 0.489 | 0.1948 | 44.053 | 0.547 | 0.1303
3D-CODED | 3.450 | 0.592 | 0.1038 | 1.327 | 0.824 | 0.1654 | 1.303 | 0.797 | 0.1271 0.832 | 0.888 | 0.0377 | 2.689 | 0.692 | 0.0710 | 2.683 | 0.656 | 0.1440 | 1.658 | 0.784 | 0.0688
Our 1.594 | 0.881 | 0.0304 | 0.439 | 0.940 | 0.0700 | 1.731 | 0.897 | 0.0925 | 0.587 | 0.910 | 0.0198 | 1.754 | 0.908 | 0.0175 | 2.121 | 0.870 | 0.0786 | 1.165 | 0.912 | 0.0557
Table 1: Capacity evaluation on D-FAUST and DeformingThings4D.
MANOL ) ied SDF value f late field vi d
queried S value from template field via correspondence
CDJ| | IoUt | corrl K K A
DIF 8.137 | 0.824 | 0.0557 without per-point correction to reconstruct shapes, because
3D-CODED | 0.833 | 0.879 | 0.0241 shapes with correction term are not just a deformed tem-
Our 0.150 | 0.935 | 0.0024

plate, their geometry mainly depends on correction instead
of correspondence. Table 1 shows quantitative compari-
son on D-FAUST and DeformingThings4D, measured with
Chamfer distance (CDx1000) and Intersection over Union
(IoU). On D-FAUST, our method outperforms 3D-CODED
and DIF. On DeformingThing4D, our method also outper-
forms DIF and achieves better IoU than 3D-CODED with
comparable average performance on CD. We find that in
our task IoU is a more stable evaluation metric than CD,
because CD is sensitive to small floating components. In
the supplementary material, we show several failure cases
where floating components make CD increase. We also test
our method on synthesized MANO [33] dataset. As shown
in Table 2 and Figure 5, our model can deal with chal-
lenging hand shapes and outperforms 3D-CODED and DIF.
We futher demonstrate the robustness of our method against
noise. We follow DeepSDF [30] to apply synthesized noise
on the depth maps where o = 0.01, before calculating SDFs
from these depths. Although suffering from heavy noises,
our model still performs well. Figure 6 demonstrates the
qualitative experiment, and for the quantitative experiment:
Chamfer=0.936, IoU=0.830.

4.3. Shape Interpolation

In this section, we demonstrate that our model can also
represent shapes similar to the shapes in training set. We
evaluate shape representation capability through model fit-
ting from full observation or partial point cloud rendered
from D-FAUST and DeformingThings4D.

In experiments, we obtain each partial point cloud from
single depth image, while obtaining each full observation
from 20 depth images captured from multiple views. Dur-
ing evaluation, we use the shapes from training sequences
but not involved in training. With trained models, we con-
duct model fitting from partial point clouds or full observa-
tions by optimizing the latent code « and a global transfor-
mation with the following function

L= wsLsdf + wstbs + wanbn + wanfn + wregLr697
(10)
where Ly, and Ly, are constraints to supervise queried
SDF values from the template and normal of queried SDF
values. Details can be found in supplementary material.
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D-FAUST(5] .

bear rabbit elephant whale deer average
CDJ IoUT | corr] CDJ TIoUT | corr] CD| ToUT | corr] CDJ TIoUT | corr] CDJ TIoUT | corr] CDJ IoUT | corr] CDJ IoUT | corrl
DIF 11.790 | 0.636 | 0.0917 | 17.010 | 0.629 | 0.1959 | 15.057 | 0.548 | 0.1648 | 192.317 | 0.425 | 0.0617 | 22.247 | 0.486 | 0.0851 | 28.907 | 0.426 | 0.2360 | 45.672 | 0.531 | 0.1487
3D-CODED | 3.389 | 0.597 | 0.1068 | 1.276 | 0.826 | 0.1720 | 1.467 | 0.791 | 0.1326 0.807 0.889 | 0.0360 | 2.580 | 0.697 | 0.0799 | 2.823 | 0.657 | 0.1631 1.669 | 0.784 | 0.0742
Our 1.480 | 0.890 | 0.0307 | 0.609 | 0.940 | 0.0789 | 1.716 | 0.891 | 0.0831 | 0.720 | 0.909 | 0.0216 | 1.613 | 0.914 | 0.0241 | 2.917 [ 0.867 | 0.1003 | 1.321 | 0.911 | 0.0616

Table 3: Shape reconstruction from full observation.
DeformingThings4D[20]

D-FAUST[S] bear rabbit elephant whale deer average
CDJ ToUT | corr] CDJ ToUT | corrl] CD] | ToUT | corr) CDJ ToUT | corr] CDJ ToUT | corr] CDJ ToUT | corr] CD] | ToUT | corr)
DIF | 11.787 | 0.632 | 0.0924 | 17.177 | 0.621 | 0.2228 | 15.238 | 0.543 | 0.1963 | 190.240 | 0.428 | 0.0878 | 22.255 | 0.495 | 0.1001 | 27.268 | 0.467 | 0.2293 | 45.239 | 0.534 | 0.1673
Our | 1.689 | 0.881 | 0.0324 | 1.757 | 0.910 | 0.0922 | 2.407 | 0.868 | 0.0928 | 2.196 | 0.873 | 0.0359 | 1.685 | 0.885 | 0.0237 | 3.403 | 0.833 | 0.0960 | 2.156 | 0.882 | 0.0681

Table 4: Shape reconstruction from partial point clouds.

For full observation input, our method outperforms 3D-
CODED on 10 subjects of D-FAUST (Table 3). As shown
in Figure 7, the reconstructed shapes with 3D-CODED may
distort to reduce CD. For shape reconstruction from partial
observation, we compare our method with the SOTA method
DIF [10]. As shown in Figure 8 and Table 4, our method
outperforms DIF by a large margin for partial point clouds.
Since 3D-CODED fails to work well on partial observation,
we do not show its results in Table 4.

3D-CODED  DIF ous  9und 3p copED  DIF ours
truth

Figure 7: Comparison of shape reconstruction from full
point clouds with DIF and 3D-CODED. Our method out-
performs DIF and 3D-CODED by a large margin on the

reconstruction results.

ours ground
truth

pointcloud
input

pointcloud
input

DIF DIF

Figure 8: Comparison of shape reconstruction from partial
point clouds with DIF and our method. Our method outper-
forms DIF by a large margin on the reconstruction results.

4.4. Correspondence

We evaluate the accuracy of correspondence for train-
ing shapes (Table 1), which shows the capacity of our

method, and for shapes reconstructed from partial observa-
tion (Table 4) and full observation (Table 3) of unseen data.
We compare our method with unsupervised correspondence
learning methods: 3D-CODED [13] and DIF [10]. Our
method achieves better correspondence performance, i.e.,
corr, than DIF and 3D-CODED. The correspondence met-
ric corr is calculated in the following manner. Given the
reconstructed shapes Sy, and Sy,, we optimize Eq. 10 to
get deformation field, and then warp Sy, and Sy, to tem-
plate space. For each point py, on Sy, warped to template,
we find the nearest point warped from a point (e.g., py,) on
Sy, to template, then we set py, on Sy, as the correspon-
dence of py, on Sy, . We calculate the geodesic distance be-
tween ground truth corresponding point py, and predicted
corresponding point p, as error. For each subject, we ran-
domly select 100 shapes from the training set and the testing
set, and evaluate the geodesic distance error between each
pair. The correspondence metric corr is calculated by av-
eraging the geodesic distance error of each pair of shapes.
We also test model trained on noise depths (Figure. 6) and
corr=0.0233.

4.5. Template Visualization

Figure 9 visualizes the template fields generated by our
method and DIF. The template built by our method is in the
manifold of human shape, while the template by DIF does
not follow human shape, which shows that the same points
in differently posed shapes may have different correspon-
dences in template, such as points on arms. Therefore, our
method is effective to get reasonable template.

4.6. Ablation Study

We first investigate the effect of our contributed con-
straints on representation capability. We conduct compar-
isons by removing Liccons Lprs Lnprs Lpgn, Lirand Layap,
respectively, and we also compare the results if the L;,- only
has Lgyqp Conly Lg,qp,’) or the Ly, is replaced by the elas-
tic loss [31] (replace L;.’). As shown in Table 5, all our
constraints are useful in our method. Our local rigid con-
straint is more effective than the elastic loss [31], and our

14274



DIF

our method

Figure 9: Comparison of zero-level set of the learned tem-
plate field by our method and DIF [10].

local rigid constraint could resolve reflection issue of the
elastic loss. Figure 10 shows visual results of our rigid loss
terms. Different colors indicate correspondence. Without
L., the model suffers from heavy artifacts. The loss L,
is effective to reconstruct flexible regions such as front legs.
For "only Lgrqp°, we do not use the second term of L, to
further penalize the reflection issue on top of Lgrqp, and
we see inside-out flip at the bear’s right front paw. For *wo
Lyrap’, we penalize the second term of L;, (Eq. 4). Figure
11 shows that this term not only alleviates the floating ar-
tifacts, but also helps to find correct correspondences. So,
the term L,.qp can reduce irregular shapes, and the second
term of L;, helps eliminate floating artifacts.

34 bbbb
598 AT 1R 1

Lyr WO Lppr WO Lypey

Figure 10: Qualitative experiments of the rigid loss terms.

bt fence
nmnnenm

Larap full model

Figure 11: Qualitative experiments of wo L4, terms.

We also investigate the effect of our embedded template
space. We replace our embedded template module with a
separate network that has the same structure as ¢ to predict
template field. As shown in Figure 12, the separate template
representation learns unreasonable template, and further re-
duces the ability of our method to represent shapes.

WO Ly only Layq, replace L, fuII model ground truth

WO Lgrqp full model WO Lgyqp full model

To investigate the effect of different scope of rigid con-
straints, we change the number of parts in piece-wise rigid
constraint, and the standard deviation o of the random sam-
ple in Eq. 5 for the neighborhood rigid constraint, and show
the quantitative results in Table 6 and Table 7. In terms
of the physic scale, L;. works in infinitesimal scope. The
mean volume, proportional to cube of o, of convex hull
of sampled points in neighborhood constraint is roughly
5 x 10~* when o is 0.05, and the mean volume of parts is
0.0768, 0.0334, 0.02175 for part number 5, 10, 20 respec-
tively. We find that o = 0.05 corresponds to preferred scale
while smaller and lager sale lead to worse performance.
With relatively small scope, piece-wise rigid constraint is
flexibly applied on shapes and performs well.

(A
bn Yo 40 5

our generated shape separate generated shape
template via our template template via seperate template

Figure 12: Qualitative comparison of our embedded tem-
plate shape and separate template for shape representation.

4.7. Applications

Texture Transfer. We show a texture transfer application
of our method. Shapes Sy, and Sy, are represented by our
model. We apply texture to Sy, , sample points on Sy, and
Sy, and transfer these points to the template space. Points
on the surface of Sy, query color from the nearest point on
the surface of S¢, in template space. As shown in Figure 13,
the textures of the source shapes are well transferred to the
correct regions of the target shapes under various poses.

source

source target target source  target

Figure 13: Results of texture transfer. Textures on the
source shapes are transferred to the target shapes.

Shape Editing. We describe how to achieve shape editing
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WO Lyccon | WO Larap | WO Ly | WO Ly | WO Lypgp, | WO Ly | only Lgyqp | replace Ly, | full model
CD | 358.129 0.767 0.736 2.045 0.547 0.735 0.609 0.815 0.439
corr | 0.0867 0.0772 0.0858 | 0.0789 0.0772 | 0.0709 0.0761 0.0701 0.0700

Table 5: Ablation study on bear from DeformingThings4D [

Sparts | 10 parts | 20 parts
CD| | 2.169 2.645 0.687
IoUT | 0.876 0.865 0.885
corr) | 0.0448 | 0.0375 | 0.0141

]. We conduct the experiment on training data.

Table 6: Results of different number of parts in piece-wise
rigid constraint.

0=0.01 | 0=0.03 | 0=0.1 | 0=0.05
CD| | 1.109 1.421 1.803 0.687
IoUT | 0.877 0.872 | 0.852 | 0.885
corr] | 0.0139 | 0.0226 | 0.0520 | 0.0141

Table 7: Results of different standard deviations for the
neighborhood rigid constraint.

with our method. Given a set of surface points p; on tem-
plate space and corresponding target points ps, we follow
DIF [10] to optimize a latent code ay, so that the target
positions lie on the surface of the generated shape as

L= Z wl(‘q)(p2|aopt)’ + |¢)(Dopt—>tmpl(p2)|atmpl)})

P1,P2

+ w2||Dopt~>tmpl(p2) - P1H§ + w3Lpr + w4Haopt - atmpl||§~

y
The first term constrains the SDFs of target points in tar-
get shape and their correspondences in template, the second
term enforces correspondence consistency, the third term
encourages piece-wise rigid motion, and the fourth term
constrains the latent code ¢ close to . To calcu-
late L,,., we directly sample points in the bounding box of
the template shape and the target points ps. As shown in
Figure 14, the template shapes are well deformed to target
points. At the top right of the figure, raising the hands can
cause the left leg to move in an undesired manner, and the
resulting average shape after shape editing may become un-
reasonable. This issue is out of the scope of this paper and
we leave it as the future work.

5. Limitations and Future Works

Although our method can deal with shapes with large
deformation and achieve promising results, there are some
problems left for future works. First, our method can-
not represent out-of-distribution data. our method acquires
knowledge about shape deformation from training set and
does not use any prior of skeleton, so it cannot represent
shapes that are out of distribution of training set. This prob-

" “’l%

MW e

Figure 14: Shape editing results. Shapes on the left are
warped to shapes on the right. Red points are selected sur-
face points and green points are the target positions. Arrows
are used to illustrate the direction of deformations.

lem limits the generalization of shape reconstruction and
degrades shape editing (Sec. 4.7). Second, our method can-
not represent shape collections with topology changes be-
cause the key features (such as SDF values and normals)
used in our method cannot be correctly calculated under this
data setting. For example, if two body parts contact with
each other, we can not get accurate SDF values due to the in-
visible contact surface from any camera view. In fact, this is
a common issue for other methods using implicit represen-
tation. Third, the latent code space lacks smooth constraint.
Our method is capable of optimizing the latent code to get a
valid interpolation, but cannot guarantee valid shapes when
receiving random codes. In fact, most codes in the latent
space is invalid, which may be tackled by proper smooth
constraint in latent. In the future work, we plan to address
these challenges and propose effective shape representation
approaches for more general deformable shapes.

6. Conclusions

We present a model to represent shape with dense cor-
respondence in a self-supervised manner. Even for sub-
jects with large deformation, our method can learn good
shape and dense correspondences. We also show two typ-
ical applications of shape representation, and our method
can achieve competitive performance.
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