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Abstract

We propose a method, named DualMesh-UDF, to extract
a surface from unsigned distance functions (UDFs), en-
coded by neural networks, or neural UDFs. Neural UDFs
are becoming increasingly popular for surface represen-
tation because of their versatility in presenting surfaces
with arbitrary topologies, as opposed to the signed dis-
tance function that is limited to representing a closed sur-
face. However, the applications of neural UDFs are hin-
dered by the notorious difficulty in extracting the target sur-
faces they represent. Recent methods for surface extraction
from a neural UDF suffer from significant geometric errors
or topological artifacts due to two main difficulties: (1) A
UDF does not exhibit sign changes; and (2) A neural UDF
typically has substantial approximation errors.

DualMesh-UDF addresses these two difficulties. Specif-
ically, given a neural UDF encoding a target surface S̄ to
be recovered, we first estimate the tangent planes of S̄ at
a set of sample points close to S̄. Next, we organize these
sample points into local clusters, and for each local clus-
ter, solve a linear least squares problem to determine a final
surface point. These surface points are then connected to
create the output mesh surface, which approximates the tar-
get surface. The robust estimation of the tangent planes of
the target surface and the subsequent minimization problem
constitute our core strategy, which contributes to the favor-
able performance of DualMesh-UDF over other competing
methods. To efficiently implement this strategy, we employ
an adaptive Octree. Within this framework, we estimate the
location of a surface point in each of the octree cells iden-
tified as containing part of the target surface. Extensive ex-
periments show that our method outperforms existing meth-
ods in terms of surface reconstruction quality while main-
taining comparable computational efficiency.

*Equal contribution
†Corresponding author

1. Introduction

Implicit surfaces are widely used for surface representa-
tion in computer vision and computer graphics. An implicit
surface is usually defined as a level set of a function, such as
the zero-level set of a signed distance function (SDF). Ex-
tracting a mesh representation of an implicit surface from
its defining equation is therefore a critical task for surface
visualization and processing. Recent advances in machine
learning have given rise to a new kind of implicit surface,
called a neural implicit surface. A neural implicit surface
is a level-set of a function encoded by an MLP (multilayer
perceptron) and has the advantage of compactness and in-
herent smoothness thanks to its MLP representation. SDFs
or occupancy fields are widely used in these implicit repre-
sentations [17, 15, 16, 4, 18, 20, 6, 1, 8, 14, 19].

However, neural implicit surfaces based on the SDF or
occupancy fields require inside/outside labeling and thus
can only represent orientable and closed surfaces. Hence,
as an extension, unsigned distance functions (UDFs) have
been used to represent surfaces of arbitrary topologies, in-
cluding open surfaces with boundaries or non-orientable
surfaces (e.g. the Möbius strip). Despite its versatility,
applications of a UDF-based surface representation are
severely hindered by the difficulty in extracting the target
surface it represents, as shown in [5] and [7].

Problem formulation: Suppose that a surface S̄, called
the target surface, is defined as the zero-level set of its un-
signed distance function (UDF) F̄ (p). Then suppose that
this UDF F̄ (p) is approximated by a neural network with
the resulting network-encoded UDF being referred to as the
neural UDF, denoted by F (p). Given a neural UDF F (p),
the surface extraction problem is to robustly extract a sur-
face S from F (p) such that S well approximates the target
surface S̄.

Challenges: The difficulty in surface extraction from a
neural UDF arises from two aspects: (1) A UDF does not
have zero-crossings (or sign changes) across the surface it
represents. As a result, traditional mesh extraction methods
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that rely on zero-crossings (e.g. Marching Cubes [13, 11],
Dual Contouring [10], and their variants) are not applica-
ble to UDFs. (2) The MLP representation of a neural UDF
tends to have significant approximation errors around the
target surface (see detailed error characteristics of neural
UDFs in Sec. 3). This makes it even more challenging to
extract a high-quality approximation of the target surface.

Several methods, MeshUDF [7], CAP-UDF [21] and
Neural Dual Contouring (NDC) [3], have recently been pro-
posed for extracting a mesh surface from a UDF. MeshUDF
and CAP-UDF attempt to infer the gradients of a UDF on
the grids and determine the sign changes of the estimated
gradients, invoking the Marching Cubes method for mesh
extraction. When applied to a neural UDF, the sign-change
inference step of this method suffers from instability due
to the non-negligible error introduced by the approximate
MLP representation near the surface where the gradients
of the ideal UDF are undefined. As a result, the extracted
meshes are less accurate and often have topological errors
(e.g. holes). The NDC method proposes a data-driven Dual
Contouring approach to predict the position of mesh ver-
tices and dual faces directly from the UDF data. When ap-
plied to a neural UDF, this method often produces meshes
with considerable artifacts such as holes, zig-zags, etc.

We develop a new strategy, consisting of novel sampling
and efficient optimization techniques to address the difficul-
ties in surface extraction from the neural UDF. Suppose the
input is a neural UDF F (p) encoding the target surface S̄ to
be recovered. Our strategy has two key steps: (1) comput-
ing approximate tangent planes of the target surface; and
(2) local minimization for generating final surface points.

In Step (1), we first generate sample points pi around,
but not too close to, the target surface S̄, because the UDF
values and gradients at locations too close to S̄ are rela-
tively unreliable. Thus, pi are called off-surface sample
points. For each pi, we use the UDF value F (pi) and its
gradient ∇F (pi) to project pi towards the target surface
to obtain point qi = pi − F (pi)ni(pi) where n(pi) =
∇F (pi)/∥∇F (pi)∥ [5]. These points qi are called projec-
tion points. Although the points qi are very close to the
target surface S̄, as we will show later, the noisy error in the
neural UDF makes these points a poor approximation to the
target surface.

To further improve surface accuracy, for each projection
point qi we generate an estimated tangent plane Ti of S̄
such that Ti passes through qi and has the unit normal vec-
tor ni. Note that the normal vector ni of Ti is set to be
n(pi) rather than n(qi) since the former is a more reliable
estimation. This is because the initial sample point pi is not
too close to S̄, so the gradient ∇F (pi) is less contaminated
by the pronounced errors of the neural UDF close to S̄.

In Step (2), the estimated tangent planes are organized
into clusters, which may overlap. For each cluster of tan-

gent planes Ti, we solve a linear least squares problem to
produce a final surface point si that minimizes the sum of
its squared distances to the tangent planes Ti. This mini-
mization step based on tangent planes not only provides an
accurate surface point but also allows us to faithfully recon-
struct the sharp edges of the target surface. Finally, all the
surface points si from all the clusters are connected to form
the output mesh surface to approximate the target surface S̄.

To efficiently implement the above strategy, our
DualMesh-UDF method adopts an adaptive Octree struc-
ture to partition the space containing the target surface to
regular cells. We developed efficient procedures to deter-
mine those cells that contain part of the target surface and
perform the sampling and minimization procedures in each
occupied cell. To connect the surface points to create the
output mesh, we follow the Dual Contouring approach, con-
necting surface points residing in adjacent grid cells to cre-
ate polygons dual to octree edges.

Extensive experiments demonstrate that our DualMesh-
UDF significantly outperforms existing methods in terms of
surface reconstruction accuracy and sharp feature preserva-
tion.

The main contribution of this work is a new algorithm
to robustly and accurately extract a surface from a neu-
ral UDF. To overcome the inevitable approximation errors
near the target surface and cut locus, we obtain robust esti-
mation of surface tangent planes by leveraging off-surface
sample points, use least square minimization to better pre-
dict the surface points, and achieve high-quality surface ex-
traction results with sharp features better preserved com-
pared to the state of the art. The code is available at
https://github.com/cong-yi/DualMesh-UDF.

2. Related Work
The Marching Cubes method [13] and its variants have

been established as the de facto standard of converting dis-
tance fields to boundary mesh representations. Using the
gradient information of the distance function, Extended
Marching Cubes [11] and Dual Contouring [10] are both ca-
pable of producing meshes with faithfully preserved sharp
features (e.g., corners and edges).

However, all of these methods require inside/outside la-
beling on the sampling grid, which is either a regular grid
of cubes or an adaptive octree grid of cells, to determine
whether any zero-level set surface of the signed distance
field crosses a particular grid cell. This requirement for
sign changes limits the application of these methods to only
SDFs or its variants that have sign changes across the un-
derlying surface. Hence, they cannot be directly used to ex-
tract a mesh surface from a UDF, which is now often used
to represent arbitrary surfaces such as open surfaces or non-
orientable surfaces [5].

Our method is similar to [10] only in the sense that we
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follow [10] to solve a quadratic error function (QEF) to es-
timate a surface point per grid cell. But unlike [10], where
sign changes are available and the gradients at the zero-
crossings are reliable, unsigned distance fields do not have
sign changes and are non-differentiable at the zero level set.
Additionally, we will show that the information around the
zero-level set of a neural UDF is unreliable. Due to these
two reasons, we alternatively make use of the spatial sam-
ple points that are off the target surface in the neural UDF to
find reliably estimated tangent planes and formulate a QEF
for estimating the final surface points.

Three relevant methods, MeshUDF [7], CAP-UDF [21]
and Neural Dual Contouring (NDC) [3], have recently been
proposed to extract meshes from UDFs. MeshUDF [7] and
CAP-UDF [21] use the gradient information of the UDF
to assign different signs (+ or −) to grid points on differ-
ent sides of the underlying surface, thus invoking Marching
Cubes to extract the surface according to the sign labels.
However, the quality of the estimated sign labels can be sig-
nificantly affected by the accuracy of the neural UDF. As
we will show later, the neural UDF becomes less accurate
around the target surface it represents, contaminating the
inferred sign labels and explaining the poor performance of
these two methods. Their use of Marching Cubes is inca-
pable of preserving sharp corners or edges, while the use
of a regular grid incurs high memory overhead when a high
grid resolution is needed to resolve shape details. In con-
trast, our DualMesh-UDF method preserves sharp features
and uses an adaptive octree grid to reduce computational
expense even with a high grid resolution. Furthermore,
estimating the surface point location is done by solving a
least square problem (QEF) which is more robust than the
gradient-based sign-labeling strategy used in MeshUDF in
terms of the topology of the resulting meshes.

The NDC method [3] uses a data-driven approach to train
a neural network that predicts vertex position per regular
grid cell and the overall dual faces directly from a UDF.
However, as a data-driven method, NDC’s performance is
largely influenced by how accurately the network is trained.
We show in the extensive experiments that our explicit
geometry-based method consistently outperforms NDC in
terms of reconstruction accuracy, preserving sharp features,
and preserving smooth boundaries in the original shapes.

3. Error Characteristics of Neural UDF
We first analyze the characteristics of the errors intro-

duced by the MLP representation used to approximate a
UDF, which explains why extracting a mesh surface from a
neural UDF is difficult. This analysis also provides a foun-
dation for justifying design choices in our method to over-
come these challenging characteristics and achieve robust
surface extraction.

We begin with an ideal UDF F̄ (x) that represents a target

Figure 1: A 2D illustrative example. We observe that the
neural UDF tends to have larger errors near the zero-level
set S̄ and its cut locus. (a) The target shape (the red solid
curve), its cut locus (green dashed), and the induced GT
UDF; (b) Approximation errors of the neural UDF to the
GT UDF; (c) Gradient direction errors between the neu-
ral UDF and the GT UDF; For the local region outlined
with the white box around the corner, we show the close-up
views of the distance error and the gradient direction error
of the region in (e) and (f), respectively; (d) The GT UDF
and its approximation by a neural UDF showing that the
neural UDF is positive and smooth at the zero-level set of
the ideal UDF, but the ideal UDF is non-differentiable.

surface S̄ defined by the zero-level set of F̄ (x), that is, S̄ =
{x|F̄ (x) = 0} ⊂ R3. Note that the UDF F̄ (x) is non-
negative, so it does not have sign changes across the surface
S̄. Furthermore, F̄ (x) is not differentiable at the surface S̄
or the surface’s cut locus 1 [9].

Now suppose that the ideal UDF F̄ (x) is approximated
by an MLP, denoted by F (x). The approximation errors of
F (x) to F̄ (x) are significant in the narrow region around
the surface and a narrow region around the cut locus of S̄,
because the neural UDF F (x) is inherently smooth and thus
poorly approximates the ideal F̄ (x), which is non-smooth
at the surface S̄ and its cut locus. Due to these errors, in
general, we have F (x) > 0 for any x ∈ S̄ when the MLP
is differentiable.

For ease of visualization, we will use a 2D example (see
Fig. 1) to illustrate the characteristic behaviors of the ap-
proximation errors of F (x), whose zero-level set defines
an open curve (red in Fig. 1(a)). The characteristics of the
approximation errors of F (x) in 3D space are similar. De-
tailed visualization and analysis of the error behaviors in
3D space are provided in the supplementary materials. Note

1The cut locus of a surface is a set of points such that each point of the
set has two or more distinct closest points on the surface.
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that the cut locus (Fig. 1(a)) of S̄ touches the sharp features
of S̄. Therefore the neural UDF F (x) has even more sig-
nificant errors in terms of both the distance value and the
gradient direction around the sharp features (see the error
maps of the distance values and the gradient directions in
Fig. 1(e,f), respectively). Consequently, in 3D space, the
resulting inaccurate distance values and unreliable gradi-
ent vectors of the neural UDF F (x) make it hard to faith-
fully reconstruct the target surface, especially to preserve
the sharp edges in the extracted surface.

To recap, given a neural UDF F (x), there are mainly
two reasons for the difficulty in extracting a surface S̄M to
approximate the target surface S̄ defined by the ideal UDF
F̄ (x): (1) the given neural UDF F (x) is usually a poor ap-
proximation of the ideal UDF F̄ (x) around the target sur-
face S̄ and its cut locus, where F̄ (x) is non-differentiable;
and (2) the neural UDF F (x) does not, in general, have
a zero-crossing around the target surface S̄ , thus no well-
defined surface is associated with it. These issues, faced
by current deep neural networks, make it hard to estimate
the location of the surface in a numerically stable manner
and thus motivate us to develop the two filtering criteria de-
scribed in Sec. 4.3.

4. Method
Our method consists of three major designs: (1) a

quadratic error function (QEF) that solves for a surface
point within a cell for mesh extraction (Sec. 4.1); (2) an
adaptive octree data structure that produces high-resolution
grid cells while reducing the number of QEF solves required
(Sec. 4.2); and (3) a point filtering strategy (Sec. 4.3) for a
neural UDF, whose distance values and gradient directions
are considerably more noisy compared to the GT as dis-
cussed in Sec. 3.

The proposed DualMesh-UDF pipeline has three main
steps. Firstly, it employs an adaptive tree to partition the
domain of the UDF containing the target surface S̄. Then,
it detects non-empty cells (defined in Sec. 4.2) based on
a two-step cell-shape intersection detection method, and
solves one surface point per non-empty leaf cell in a least
squares manner. For a neural network, two distance bounds
are introduced to filter out sample points that may introduce
noisy information and contaminate the localization of the
target surface. Lastly, since there are no sign changes in the
UDFs, we construct the mesh faces by checking each edge
shared by four incident non-empty cells in the octree.

4.1. QEF to locate surface points

Given a cell that contains part of the target surface, we
present a procedure to estimate a surface point in this non-
empty cell, as illustrated in Fig. 2 for 2D demonstrations.
For a neural UDF, we aim to compute a reconstructed point
per non-empty cell. For a set of sample points {pi}mi=1 in
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Figure 2: The QEF formulation for the unsigned distance
field. The orange lines represent the target surface to be
reconstructed. The gray lines in (a) stand for the esti-
mated tangent planes contributed by the corresponding sam-
ple points. The red point is the solution to the QEF problem.

the given cell, we query the neural UDF F (x) to get the ap-
proximate distance value and the normalized gradient vec-
tor1 at pi, i.e., di = F (pi) and ni = ∇F (pi)/∥∇F (pi)∥,
respectively (see Fig. 2a).

Each of the points contributes to an estimated tangent
plane of the target surface S̄: ni · (pi − x)− di = 0. Con-
sidering the inaccurate nature of the neural UDF, we define
the estimated surface point to be the point that is the closest
to all these tangent planes and compute it by minimizing a
quadratic error function (a least squares problem):

v = argmin
x

m∑
i=1

(ni · (pi − x)− di)
2
, (1)

where m is the number of points {pi} and x is a sur-
face point to be solved. In our implementation, we solve
the linear least squares problem in Eqn. 1 of the form
min ∥Ax − b∥2. For a non-empty cell, this procedure can
yield a reconstructed point v, which the target surface S̄
approximately crosses.

However, when A is nearly singular, the solution to
Eqn. 1 can be located near the boundary of the cell or even
outside of it, which would compromise the quality of ex-
tracted mesh surfaces. Note that while [10] proposed an
approach with an additional regularization point to stabilize
such cases, their approach relies on the intersection points
at the zero-level set of an SDF with the cell edges. How-
ever, in our setting, the zero-level set of the UDF is elusive
or unavailable, therefore we do not have such intersections.
We propose an alternative approach based on singular value
analysis of the matrix A. We denote the three singular val-

1While ∥∇F∥ should be 1 for a distance function, note that since ∇F
is drawn from a neural representation, it may differ slightly, and thus need
normalization.
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ues of the matrix A as σ0 ≥ σ1 ≥ σ2 ≥ 0 and consider
three cases:

1) In the non-singular case, where all three singular val-
ues are much larger than 0, v corresponds to a sharp feature
point that can be solved directly from Eqn. 1.

2) If only σ2 ≈ 0, the solution space of v corresponds to
a linear edge within the cell. This line has the same direc-
tion with the singular vector corresponding to σ2 and passes
the solution of Eqn. 1. We then compute the intersections
between this line and all 6 faces of the cell, yielding two
intersecting points. We set v as the midpoint of these two
points.

3) In the case where both σ1,2 ≈ 0, the part of the target
surface enclosed in this cell is approximately planar. Simi-
lar to the edge case, we can formulate a plane function from
the corresponding singular vectors. By computing the in-
tersecting points between all 12 edges of the cell and this
plane, we obtain multiple intersecting points. We use the
centroid of these points as v.

This way, in the degenerate cases (2 and 3), the point
v is still a good approximate solution to Eqn. 1 and well
positioned inside the cell.

In a neural UDF (e.g., Fig. 2a), the UDF values {di}
and the gradient directions {ni} are approximated and of-
ten unreliable. Consequently, the tangent plane computed
from each sample point pi may not exactly align with the
target surface. Solving Eqn. 1 yields a least squares solu-
tion that is numerically robust to the approximation errors
in neural UDF and can lead to an accurate estimation of the
surface point in this non-empty cell. For an ideal UDF case,
our method is also applicable to yield an accurate result as
shown in Fig. 2b.

Furthermore, to enhance the robustness of our method,
we also design a point filtering strategy to remove unreliable
sample points, especially those near the target surface and
its cut locus, where larger approximation errors exist in the
MLP-encoded UDF. The details of this filtering strategy are
explained in Sec. 4.3.

Differences to DC [10]. Note that the dual contouring
(DC) method [10] designs a QEF using intersection points
between the surface and cell edges, along with the gradi-
ent directions at these intersection points. This approach is
not applicable to our objective of extracting surface meshes
from a neural UDF. This is because (1) it is difficult to find
a reliable intersection point, as an exact zero-level set that
crosses an edge may not exist, and (2) the gradient direc-
tions in the region with lower UDF values (i.e., closer to
the target surface) are highly unstable and thus unreliable
for estimating the tangent plane. Hence, our method lever-
ages off-surface points that are sufficiently far from the tar-
get surface, as indicated by their UDF values (see Sec. 4.3).
Our approach thus has less stringent requirements than the
DC method (as presented in [10]), yet produces satisfactory
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Figure 3: The pipeline of our mesh extraction method.

results even on noisy neural UDFs as demonstrated by our
results.

4.2. Octree Design and Subdivision

To efficiently process high-resolution data and speed up
the mesh extraction process, we employ an octree data
structure. As shown in Fig. 3, we recursively subdivide the
cells unless they are categorized as empty according to the
following criterion or they reach the maximal depth. Af-
ter the subdivision, all leaf nodes that are non-empty will
invoke the QEF procedure to solve for the dual points.

Checking obviously empty cells. Firstly, we design a
checking condition to help quickly prune obviously empty
cells. Given an octree cell C, let c0 denote its center and
d0 denote the UDF value at c0, that is, d0 = F (c0). Then
we have the following sufficient condition for cell C to be
empty:

d0 > Diag(C)/2, (2)

where Diag(C) is the diagonal length of cell C. Since the
UDF distance indicates the distance between a spatial point
and the target surface, this criterion determines if the tar-
get surface lies outside the sphere centered at c0 with ra-
dius Diag(C)/2. Given that this sphere contains the entire
octree cell, the cell will not contain any portion of the sur-
face if Eqn. 2 is satisfied. Otherwise, the cell will first be
categorized as an unsolved cell. Since neural UDF is a rea-
sonable approximation of the ideal UDF, we tailor Eqn. 2
to d0 > Diag(C)/2 + ϵ, where ϵ > 0 is a tolerance for
the approximation error and set to ϵ = 2 × 10−3 through-
out all experiments. Empirically, we observed this pruning
strategy did not affect the quality of the results.

Maximum octree depth. Having a predefined maximal
depth of the octree is critical, not only in terms of limiting
the amount of computation but also because of the inaccu-
racy of the neural UDF near the target surface. Specifically,
if the octree keeps subdividing the space that contains the
target surface, after a certain depth the cells will become
too small and the sample points p within these cells will
lie in the unreliable region of the neural UDF, which will
eventually lead to unstable estimation.
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4.3. Point filtering for neural UDFs

Since our method makes use of the gradient directions
and the distance values to estimate a surface point in each
non-empty grid cell (see Eqn. 1), the quality of the extracted
mesh heavily depends on the approximation accuracy of the
neural UDF F (x). Consider a neighborhood of a sharp fea-
ture of the target surface, as shown in the zoom-in views of
Fig. 1(e,f). The distance errors and gradient direction er-
rors are more significant around the target surface and its
cut locus.

Hence, motivated by our observation and analysis in
Sec. 3, to avoid building the QEF using points from these
regions, we use the following criteria to filter out unreliable
points to enhance the robustness of the QEF solution to the
noisy characteristics of the MLP-encoded UDFs.
Criterion 1: Removing sample points potentially near
the surface. A candidate point pi is considered too close
to the target surface if F (pi) < δ1, where δ1 is a preset
filtering threshold; such points are discarded. This criterion
ensures the sample points are from a region where the dis-
tance errors are expected to be relatively small.
Criterion 2: Removing sample points whose projections
have large UDF values. While the previous criterion re-
jects the sample points that are too close to the target sur-
face and thus avoids the erroneous approximation at those
regions, some sample points may still have larger UDF er-
rors even far from the target surface (e.g. near the cut locus).
We observe that these sample points will not be projected to
regions near the target surface. Hence, if the UDF of the
projected point {qi} is large, we consider it to be an incor-
rect estimate and thus reject the corresponding sample point
{pi} as unreliable. To this end, we introduce the second fil-
tering criterion as follows, F (qi) > δ2, where δ2 is another
preset filtering bound; again, the corresponding points pi

are discarded.

4.4. Creating Output Mesh Surfaces

We consider the regular grid of cubic cells at the max-
imum depth of the octree. Then each edge of the grid is
shared by four cubic cells surrounding the edge. To build
the initial mesh connectivity, for each edge of the grid, we
examine each of its four incident cells. Similar to [10], the
mesh connection rule is designed as follows: if all four in-
cident cells are non-empty, a quad-face candidate that con-
nects the four dual points in these cells will be constructed.
To ensure the correct connectivity, we validate and triangu-
late the quad faces. We further examine if the normals of
the face candidates can consistently reflect their geometric
property, being a sharp corner, part of a sharp edge, or part
of a plane as classified by the SVD shape analysis (Sec. 4.1).
For example, all correct triangulated faces incident to a sur-
face point classified as part of a plane would have all their
normals parallel to the singular vector corresponding to the

largest singular value from SVD shape analysis, while the
normals of triangulated faces incident to a surface point be-
ing part of a sharp edge should be orthogonal to its singular
vector direction. This way, we reject all inconsistent face
candidates.

We also provide a practical approach to make sure the
output mesh is manifold when the desired target surface is
manifold: With the help of the octree cells and the defini-
tion of reconstructed dual points, it is feasible to generate
an auxiliary blocky model by moving all mesh vertices to
the centroids of the corresponding cells. By extracting the
outer envelope of this auxiliary model, we obtain a manifold
structure. Finally, we tessellate the surface points using the
connectivity from that manifold structure to produce a man-
ifold mesh. This approach is crucial for applications that
require manifold meshes (e.g. parameterization, remeshing,
or shape analysis).

5. Experiments

5.1. Experimental details and metrics

Experimental setting. We rescaled all the shapes to
a bounding cube with a side length of 2, centered at the
origin. To improve efficiency, we share sample points be-
tween cells, i.e. m = 27 points in each non-empty leaf cell,
including 8 corner points, 12 edge midpoints, 6 face mid-
points, and 1 centroid point. We set the filtering parameters
δ1 = 2 × 10−3 and δ2 = 2 × 10−3 to filter the sampled
points as described in Sec. 4.3. We notice that more sample
points may bring marginal performance improvement but
incur computational overhead in our ablation study.

Given that the grid resolution of 1283 and 2563 are com-
monly used in related works, we compare our method with
these prior techniques using a maximal octree resolution of
1283 and 2563. We also discuss how the resolution will af-
fect our results by varying the maximum depth of the octree
to have a resolution from 643 to 5123 in our supplementary
material.

MLP architecture. To overfit single shapes using indi-
vidual MLPs, we employed the MLP implementation pro-
vided by [18]. The activation functions are the Sine activa-
tion, except for the last one which is a SoftPlus (β = 100)
activation to ensure the output value is non-negative. All
neural UDFs in the experiments were trained with the de-
scribed MLP implementation. All MLP networks were
trained for 3k iterations with the ADAM optimizer to min-
imize the difference between the predicted and the GT un-
signed distance fields. For more general tasks, we also test
an MLP with latent codes that represent a shape space, fol-
lowing the network and training settings in [5]. We report
the timing performance on a Linux desktop with an Intel
CoreTM i7-10870H CPU and an NVIDIA GeForce RTX
3090 graphics card. We elaborate on the loss function as

22536



Figure 4: Meshes extracted from neural UDFs. We show 6 examples and compare our results to the mesh extraction results
in MeshUDF [7], CAP-UDF [21] and NDC [3]. Our method preserves sharp geometric features better, yields results without
undesirable holes, and reconstructs the original smooth boundaries of open surfaces.
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Table 1: Quantitative comparison between the results obtained by our method and those by the competing methods,
MeshUDF, CAP-UDF, and NDC. The average performance on the dataset containing 354 shapes is reported. The Cham-
fer distance (CD) and the Hausdorff Distance (HD) are scaled by 10−4 and 10−3, respectively. T1 and T2 stand for the time
spent (seconds) on the mesh extraction and that on the UDF query, respectively.

MGN Thingi10K ABC Running time
CD↓ F-score↑ HD ↓ CD↓ F-score↑ HD ↓ CD↓ F-score↑ HD ↓ T1 T2

1283

Ours 2.38 98.09 11.91 1.97 97.51 9.21 3.69 93.41 11.47 0.297 1.184
MeshUDF [7] 4.76 90.06 22.39 4.57 90.78 15.33 8.49 87.74 23.11 0.313 1.316
CAP-UDF [21] 13.53 87.10 60.04 19.55 84.85 57.49 27.75 77.43 53.46 6.466 4.764
NDC [3] 3.32 95.61 12.04 2.74 96.44 9.69 3.95 92.65 14.04 2.358 1.324

2563

Ours 2.03 98.96 7.35 1.60 98.29 6.78 2.22 96.57 8.20 1.492 5.508
MeshUDF [7] 3.45 95.10 12.8 3.33 94.13 8.91 3.25 93.85 11.49 1.600 10.27
CAP-UDF [21] 8.45 92.88 49.40 12.17 90.53 47.28 21.67 83.88 43.33 49.416 37.336
NDC [3] 2.54 98.04 7.84 2.42 97.16 7.83 2.36 96.10 11.38 9.363 10.256

Table 2: Quantitative comparison between our method and
three competing methods, MeshUDF, CAP-UDF, and NDC
on a pre-trained UDF network with latent codes, on the
ShapeNet dataset. In this table, CD and HD are scaled by
10−3 and 10−2 respectively. The F-score is calculated with
a threshold of 0.006.

CD↓ F-score↑ HD ↓
Ours 3.41 82.30 3.92
MeshUDF [7] 4.10 79.35 4.67
CAP-UDF [21] 7.70 70.30 7.21
NDC [3] 7.16 78.38 12.38

well as other details regarding training the neural UDFs in
the supplementary materials.

Metrics. To evaluate the performance of our method and
the other methods, we adopt the following metrics, i.e. the
double-sided Chamfer distance (CD), the F-score based on
CD, and the Hausdorff distance (HD). The Chamfer dis-
tance reflects the overall quality of the extracted surface
mesh as compared to the GT shape. The F-score indicates
the percentage of points that are reconstructed correctly un-
der a threshold (set to 0.001 for shape-overfitting neural
UDFs, and 0.01 for shared UDF network with latent codes).
The Hausdorff distance can reveal if there is anything miss-
ing or redundant in the reconstructed geometry (e.g. a hole
or a floating piece).

5.2. Comparison with SOTA methods

We compared our results with three existing methods: 1)
MeshUDF [7], 2) the standalone mesh extraction module
presented in CAP-UDF [21], and 3) the UNDC presented
in NDC [3]. The first two methods use gradients of the UDF
to estimate sign changes in the field to invoke the March-
ing Cubes method to extract a surface mesh from the UDF.
NDC proposes a data-driven approach to extract a surface
mesh from the grid-based representation of an implicit field.
Shape-overfitting neural UDFs

We first compare our results to those obtained by these
three methods on a shape collection consisting of shapes
from four public sources: 1) 100 from the Thingi10K
Dataset [22] containing 3D printing models; 2) 134 from
the MGN Dataset [2] containing garments with open bound-
aries; 3) 100 from the ABC Dataset [12] containing CAD
models; and 4) 20 commonly used shapes in geometric pro-
cessing research. In addition, we also compare different
methods on a Möbius strip, which is a non-orientable sur-
face. We fit each shape with an independent neural UDF
and apply mesh extraction to each of these neural UDFs.

Table 1 reports the performance of different methods on
this shape collection. Our method outperforms the other
three competing methods in terms of all three quantitative
metrics. While all of these methods use uniform grids, our
octree structure results in increased computing efficiency.
MeshUDF and CAP-UDF would likely be accelerated by
adopting an octree structure, however, it would be non-
trivial to adopt an octree structure for NDC. For a fair com-
parison, we also test our method without using the octree
acceleration approach for the resolution of 1283; by doing
so, the T1 time increases to 2.70s, and the T2 time increases
to 5.54s.

To qualitatively compare results obtained by different
methods, we show the mesh surfaces extracted from neu-
ral UDFs for several shapes in Fig. 4. We can see that our
results are higher quality than those produced by MeshUDF
and CAP-UDF. These two methods cannot preserve sharp
geometric features due to the use of the Marching Cubes
method. Compared to NDC – a data-driven method – our
method also produces consistently better results both quan-
titatively and qualitatively. Specifically, some mesh sur-
faces extracted by NDC are less smooth than ours. One ex-
ample (the Pants) is shown in the fourth row in Fig. 4. The
staircase artifact observed may be attributed to NDC hav-
ing been trained on the ABC dataset [12] containing only
mechanical components.

Our method is the only method that recovers open
boundaries faithfully, while the other compared methods

22538



Table 3: Quantitative comparison between two different sampling number settings (27 and 125 per cell respectively). The
Chamfer distance (CD) and the Hausdorff Distance (HD) are scaled by 10−4 and 10−3, respectively. T1 and T2 stand for the
time spent (seconds) on the mesh extraction and that on the UDF query, respectively.

MGN Thingi10K ABC Running time
CD↓ F-score↑ HD ↓ CD↓ F-score↑ HD ↓ CD↓ F-score↑ HD ↓ T1 T2

27 2.38 98.09 11.91 1.97 97.51 9.21 3.69 93.41 11.47 0.297 1.184
125 2.34 98.11 11.77 1.91 97.52 9.02 3.70 92.89 11.12 0.965 7.608

show staircase artifacts or even redundant pieces near the
open boundaries; see the first two rows of Fig. 4. Also,
unexpected holes can be observed on the mesh surface ex-
tracted by the competing methods from the neural UDFs.
Empirically, our method produces quality results without
redundant pieces or unexpected holes, generating clear-cut
boundaries of the open surfaces as shown in the top four
rows of Fig. 4, and reproducing the sharp features as shown
in the bottom two rows of the same figure.

More results and comparisons (also on the GT UDF) are
presented in our Supplementary Materials, which further
validate the superior performance of our method.

Shared, pre-trained UDF network with latent codes.
We consider a single neural network with latent codes
trained to represent the entire shape space, where each
shape is associated with a unique latent code. Specifi-
cally, we test our method and the competing methods on
the pre-trained UDF network provided by [5] representing
300 ShapeNet car models. Although this UDF network is
less accurate than the other overfitting-based network set-
tings considered earlier, our method still outperforms the
other methods by a significant margin as reported in Tab. 2,
showing the versatility and robustness of our method.

5.3. Ablation study

We conducted an ablation study on our method using
sampling numbers (the number m in Eqn. 1) of 27 (33) and
125 (53) to justify our design choice to use 27 as our sam-
pling number. In Tab. 3, we demonstrate that using 125
sample points per cell results in a marginal improvement
but incurs a significantly higher computing cost.

5.4. Limitations

While DualMesh-UDF demonstrates the ability to accu-
rately extract surfaces from neural UDFs, some limitations
remain. First, the extracted surface cannot be adaptively
subdivided with respect to sharp features or fine geometry
details. To faithfully reconstruct the fine geometry details,
we need to pre-define a sufficient depth of the octree and
solve the QEF problem in each of its non-empty leaf nodes.
Second, to share the UDF and gradient values at sampled
points between adjacent octree cells, we adopt a regular grid
sampling strategy. A more flexible and adaptive sampling
strategy may bring further improvement to our method.

6. Conclusion
We have presented a method for extracting high-quality

surface meshes from unsigned distance fields. In order to at-
tain robust performance on MLP-encoded neural UDFs, we
discuss the characteristics of the approximation errors of the
neural UDF and develop an adaptive octree-based method to
effectively localize the target surface embedded in the given
UDF. Extensive experiments show that our method outper-
forms the SOTA methods and produces high-quality results
with sharp geometry features, with clear open boundaries,
and free of undesirable holes.
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