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Abstract

Significant advancements have been accomplished with
deep neural networks in diverse visual tasks, which have
substantially elevated their deployment in edge device soft-
ware. However, during the update of neural network-
based software, users are required to download all the
parameters of the neural network anew, which harms the
user experience. Motivated by previous progress in model
compression, we propose a novel training methodology
named Tiny Updater to address this issue. Specifically,
by adopting the variant of pruning and knowledge distilla-
tion methods, Tiny Updater can update the neural network-
based software by only downloading a few parameters
(10%~20%) instead of all the parameters in the neural
network. Experiments on eleven datasets of three tasks,
including image classification, image-to-image translation,
and video recognition have demonstrated its effectiveness.
Codes have been released in https://github.com/
ArchipLab-LinfengZhang/TinyUpdater.

1. Introduction

With the availability of large-scale datasets [15, 16,51]
and high-performance computing platforms, deep neural
networks have achieved remarkable achievements in vari-
ous visual tasks such as image classification [18,28,75,80],
segmentation [53, 62], and object detection [50, 67,68, 76].
Encouraged by their impressive performance, numerous
software developers have effectively integrated neural net-
works into their software products and deployed them on
edge devices such as mobile phones and tablet computers.

Typically, the development roadmap for a neural
network-based software follows the paradigm illustrate in
Figure 1(a). Initially, users install the software by down-
loading all the neural network parameters from a cloud plat-
form. Subsequently, as the software interacts with its users,
an abundance of new training data and requirements can be
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Figure 1. Comparison between (a) the traditional model updating
scheme and (b) the proposed efficient model updating. In efficient
model updating, only around 10% parameters in the neural net-
work are actually changed and thus users only require to download
these changed parameters for updating.

collected. Then, software developers may retrain the neural
network with the gathered data and update their software
to enhance its performance. However, during the retrain-
ing phase, all the neural network parameters are typically
changed compared to their values before updating. Conse-
quently, users are compelled to download all the parameters
of the neural network again from the cloud platform, se-
riously impairing their experience. While recent research
has explored text prompts and adapter layers to fine-tune a
large-scale pre-trained model at a low training cost [52,79],
there have been no prior efforts to reduce the download cost
during model updating, which has a more direct impact on
users with edge devices.

This paper proposes the challenge of efficient model up-
dating with the objective of reducing the download over-
head of neural network-based software during updating. As
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depicted in Figure 1(b), during the retraining phase, ef-
ficient model updating introduces an additional constraint
limiting the change of only a small subset (e.g. 10%) of the
neural network parameters compared to the pre-updating
model. Consequently, users are only required to download
a few parameters that have actually changed instead of all
the parameters in the neural network. In general, efficient
model updating raises two questions: how fo find the opti-
mal parameters that should be changed in the neural net-
work, and how to achieve comparable accuracy with the
Sfully-updated model (i.e., the model which has all the pa-
rameters changed during updating).

To tackle this challenge, we propose a novel neural net-
work training framework named Tiny Updater. Motivated
by previous works in model compression, Tiny Updater is
composed of the variants of two typical model compression
techniques - neural network pruning and knowledge dis-
tillation. Firstly, to determine which channels or layers in
neural networks should be modified during updating, Tiny
Updater applies the pruning technique. As shown in Fig-
ure 2, it iteratively calculates the L1-norm distance between
the pre-updating model and the post-updating model pa-
rameters. The channels with smaller distances are deemed
unnecessary for updating and are pruned to their origi-
nal values before updating. Conversely, the channels with
larger distances are considered essential for updating, and
thus they are actually changed. Secondly, during the re-
training period, we propose to improve the performance
of the partially-updated model by distilling the knowledge
from a fully-updated teacher model. The partially-updated
student model is trained to give predictions that are simi-
lar to those of the fully-updated teacher model by optimiz-
ing the knowledge distillation loss. This ensures that the
partially-updated model achieves comparable performance
with the fully-updated model.

Extensive experiments have been conducted on eleven
datasets and three different tasks, including, image classi-
fication, video classification, and image-to-image transla-
tion, using seven different neural networks. Experimental
results demonstrate that Tiny Updater can update the model
by changing only 10% to 20% of the parameters with min-
imal performance degradation. In summary, the main con-
tribution of this paper can be outlined as follows.

* To the best of our knowledge, we first propose the chal-
lenge of efficient model updating to reduce the com-
munication cost of downloading neural network pa-
rameters to the edge devices for software updating.

» To tackle this challenge, we propose Tiny Updater,
which prunes the fully-updated model to the pre-
updating model and distills the knowledge from the
fully-updated model to the partially-updated model.

» Extensive experiments have been conducted on three
tasks with eleven datasets, including image classifi-
cation, image-to-image translation and video recogni-
tion. Experimental results demonstrate that Tiny Up-
dater can reduce the training overhead by 80%~90%
with almost no performance degradation.

2. Related Work
2.1. Neural Network Pruning

Neural network pruning is one of the most effective
methods for deep neural network compression by delet-
ing the unimportant neurons [42,47], filters [29, 38], chan-
nels [30,90] and layers [8, 69]. LeCun et al. and Hassibi et
al. first propose to prune neural networks depending on
the Hessian matrix [27,41]. Recently, Han et al. propose
deep compression, which finds the important connection in
neural networks with its absolute value and then iteratively
prunes them [24]. Liu et al. train a meta-network to gen-
erate the weights of neural networks and then apply it to
search the best-pruned architecture [58]. Ding et al. pro-
pose to apply a LSTM to learn the hierarchical character-
istics of deep neural networks and then generates the cor-
responding pruning scheme [17]. Liu ef al. propose joint
multi-dimension pruning to prune the channels, layers and
resolutions at the same time [59]. Frankle et al. propose the
lottery ticket hypothesis and find that a standard pruning
technique naturally uncovers subnetworks whose initializa-
tions made them capable of training effectively [21]. Be-
sides classification, neural network pruning has also be uti-
lized in image-to-image translation [37, 42], unconditional
image generation [56], object detection [22, 66], video re-
trieval [10] and pre-trained language models [14].

In this paper, Tiny Updater introduces neural network
pruning methods to find the parameters which are actu-
ally valuable for model updating. Its main difference com-
pared with previous pruning methods is that Tiny Updater
prunes the parameters to their value before updating instead
of zero, which makes it easier to be solved than traditional
pruning. Our experiments also show that Tiny Updater can
be utilized on the pruned models.

2.2. Knowledge Distillation

Knowledge distillation, also known as student-teacher
learning, has become one of the most popular deep learn-
ing techniques in various domains [6, 49, 72, 85, 86]. It
firstly trains an over-parameterized teacher model and then
distills teacher knowledge to a lightweight student. By
training the student to mimic the prediction results of the
teacher, the student can inherit the knowledge learned by
the teacher. Thus, it can achieve better performance than
traditional training. The concept of knowledge distillation
is first proposed by Bucilua ef al. [7] to compress ensemble
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Figure 2. The details of Tiny Updater. (1) Tiny Updater re-trains the model with the new data collected from users (named as fully-updated
models) by changing all the parameters. (2) Secondly, Tiny Updater finds the channels in the fully-updated models which have similar
value to the pre-updating model, and prunes these channels to their value before updating (the obtained models are named as partially-
updated models). (3) Then, Tiny Updater re-trains the unpruned weights. During re-training, the fully-updated model is utilized as the
teacher model for the partially-updated model with knowledge distillation (KD) loss to improve its performance. (4) Tiny Updater repeats
step-2 and step-3 until most channels have been pruned to their value before pruning. (5) Finally, users only require to download very few

parameters which are actually changed for updating.

of neural networks, and then extended by Hinton et al. with
a temperature hyper-parameter in the softmax function [32].
Following their success, abundant methods have been pro-
posed to distill teacher knowledge in their backbone fea-
tures [42,70], spatial attention [20, 84], task-oriented infor-
mation [87], pixel-wise relation [20,44,49,86], sample-wise
relation [63,65,78], prediction residual [43] and so on.

Previous knowledge distillation methods usually transfer
teacher knowledge in the categorical probability distribu-
tion. Then, abundant methods have been introduced to dis-
till the knowledge in the teacher feature [70] and its variants,
such as attention [84, 86], relational information [63, 78],
self-supervised knowledge [81] and task-oriented informa-
tion [87]. Besides distilling knowledge from a large teacher
to a tiny student, there have also been fruitful knowledge
distillation methods that distill knowledge from deeper lay-
ers to shallow layers [88, 89], from all the channels to par-
tial channels [83], from ensemble classifiers to single clas-
sifier [40], from multiple frames to few frames [5], from
RGB images to RGB-D images [23]. In this paper, we in-
troduce knowledge distillation by distilling the knowledge
from a teacher model, which has all the parameters changed
during updating to a student model, which is only updated
by changing a few parameters.

2.3. Incremental Learning

Inspired by the observation that human beings can incre-
mentally learn knowledge about new tasks and categories
without forgetting the old knowledge, incremental learn-
ing (a.k.a. lifelong learning) is proposed to give the neu-
ral networks the similar ability. Elastic weight consolida-
tion (EWC) is proposed to maintain the knowledge of old
tasks and categories by first estimating the importance of
each neuron with Bays estimation or Fisher information
matrix and then training them with a consolidation con-
straint [39, 55, 77]. Then, memory aware synapse [!] is
proposed to compute the importance score of neural net-

work parameters in an unsupervised and online manner,
which is also similar to the Hebbian learning in biologi-
cal systems [31]. Besides these consolidation-based meth-
ods, knowledge distillation methods have also been utilized
in incremental learning to maintain the old knowledge by
learning its response to new tasks [13, 48, 92]. Besides
image classification, abundant recent research has applied
incremental learning to the other visual tasks, such as ob-
ject detection [11,26], action recognition [60] and image-
to-image translation [74].

Both the proposed efficient model updating and incre-
mental learning expect the neural network to maintain its
knowledge of old parameters. Their main difference is that:
(a) Incremental learning does not limit the change in old pa-
rameters strictly, while efficient model updating has a direct
constraint on the number of changed parameters to reduce
the download overhead for edge devices. (b) Incremental
learning usually assumes that the data for old knowledge is
not available while efficient model updating can still access
data, which is more practical to industrial applications. (c)
The target of incremental learning is to build human-like
artificial intelligence which can incrementally learn various
tasks, while the target of Efficient Model Updating is to re-
duce the number of parameters updated when new data for
the same task is collected.

2.4. Efficient Pretrained Model Finetuning

Large-scale pretrained models recently have shown pow-
erful representation ability in both natural language pro-
cessing and computer vision. However, since these pre-
trained models usually have billions of parameters, directly
finetuning them on downstream tasks usually suffers from
massive training overhead, making them impractical in real-
world applications. Recently, prompts methods have been
proposed to address this problem by designing specific in-
put templates for the specific downstream tasks [4,25,45,52,

,79,91]. Moreover, adapter methods have also been intro-
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duced to finetune several additional trainable layers instead
of the whole pre-trained model [3, 33]. These methods are
firstly proposed for pre-trained language models and then
extended to language-vision multi-modal models and vision
models [12, 36, 82]. Both these efficient finetuning meth-
ods and the proposed efficient model updating aim to freeze
the parameters of neural networks. Their main difference is
that: (a) Efficient finetuning is usually applied to the mod-
els which are firstly pre-trained on large-scale datasets to
learn task-unbiased knowledge and then finetuned for spe-
cific downstream tasks. Instead, the pre-updating models in
Efficient Model Updating are trained with very few training
samples (e.g. only 20% in our experiments) and then up-
dated with the new data collected from users. (b) The target
of efficient finetuning is to reduce the training overhead of
pre-trained models and improve their performance in down-
stream tasks. In contrast, the target of Efficient Model Up-
dating is to reduce the download overhead during software
updating. (c) Besides, adapter-based methods can be con-
sidered as a special case in Tiny Updater where all the pa-
rameters of backbone layers are frozen and all the adapter
layers are updated. Our experiments also demonstrate that
Tiny Updater achieves clearly better performance than di-
rectly applying efficient model updating methods. Please
refer to Appendix A for a more detailed comparison among
the proposed efficient model updating, incremental learn-
ing, and efficient pretrained model finetuning.

3. Methodology
3.1. Efficient Model Updating

Given a training dataset D = {(21,91), ., (Xn,Yn)}
the software developers firstly train a deep neural network
F with parameter © for their software. After deploy-
ing F on the edge devices, abundant new training sam-
ples {(Zn+1,Yn+1), - (Tntm, Yntm)} can be collected
from users and the dataset can be extended as DT =
D U {(Tn+1,Yn+1)s s (Tntm, Ynt+m)}- Then, software
developers can re-train F on DT to obtain better perfor-
mance, whose parameters can be denoted as ®. Usually,
during this re-training step, all the values in 6 can be to-
tally different from that in ®. Thus, the users have to
download all the parameters of ® to update the software,
which harms the user experience and limits the frequently
updating of neural network-driven software. In such kind
of paradigm, we name the model before updating as the
pre-updating model, the model after updating as the post-
updating model, the model with all the parameters updated
as the fully-updated model, and the model with partial pa-
rameters updated as the partially updated model. The target
of efficient model updating is to obtain a partially updated
model which has most of the parameters unchanged while
achieving similar performance to the fully-updated model.

Algorithm 1 The proposed Tiny Updater.

Input: Dataset Dt = {(z1,%1), -, (Tntm, Yn+m)}, the
pre-updating model F with parameter O, an expected ra-
tio of updated parameters 7.

Output: The partially-updated model F with parameter ®.
// Update the model with DT.

Initialize the partially-updated model F with parameter ®.
while F ¢ is not converged do:

Sample a batch of data X’ from DT

Compute § := Fg(X).

Compute the task loss between y and .

Back propagate gradients and update ®.
//Pruning, and re-training with KD loss.
Initialize the parameters of the teacher 7 := @, an index
set of pruned weights as 7 = {}.

g;‘:j(%)) <1-—r7do:

Compute the L;-norm distance between ® and 6.
Append the indices of channels which have relatively
smaller distance to Z.

D[7] := O[Z]. //Prune ® to O.

while F ¢ is not converged do:

Sample a batch of data X’ from D+

Compute § := Fo(X) and y; := Fr(X).

Compute the task loss between y and ¢, and KD

loss between y and ;.

Back propagate gradients and update the

parameters of & which are not in Z.

Return The partially-updated model F with parameter P.

while

3.2. Tiny Updater

Fruitful previous works in model compression have suc-
cessfully proven that even a very tiny neural network can
have powerful representation ability, which motivates us to
propose to learn the knowledge in the collected training data
DT with only a few parameters instead of all the parame-
ters. The optimization objective of Tiny Updater can be
formulated as

n+m

Z »Clask(xh yz)

i=1 (1)
. |©— |,

subject to 7Card(®) <T

arg min
e n+m

where L, indicates the original task-specific loss function,
such as cross-entropy loss for image classification. |- |o indi-
cates the Ly-norm, which measures the number of non-zero
elements in a tensor. Card(-) denotes the cardinality, which
describes the number of parameters in a tensor. 7 is a ra-
tio threshold that determines how many parameters should
be changed during updating. It is observed that when 6
in Equation (1) becomes zero, the optimization objective is
similar to another deep learning technique - network prun-
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Figure 3. Experiments on four fine-grained image classification datasets with ResNet50. The pre-updating and the post-updating models
are trained with 25% and 100% training data, respectively. In subfigure (a), the newly collected images come from all categories uniformly.
In subfigure (b), the newly collected images come from only the categories that are not available before updating.

ing. Thus, we propose to solve this problem by introduc-
ing iterative pruning methods. Besides, knowledge distilla-
tion is also introduced to improve the model performance
with only a few parameters changed during updating with
the teacher from a model with all the parameters changed.
Please note that Tiny Updater is a framework that applies
pruning and knowledge distillation methods to tackle the
challenge of efficient model updating and it does not pro-
pose any new pruning and knowledge distillation method.

The details of Tiny Updater are shown in Algorithm 1.
With the extended dataset DV, it first trains a fully-updated
model Fg without any constraints and copies its parame-
ters to another neural network F7, which is considered as
the teacher network. Then, channel pruning is utilized to
find the parameters in ® (e.g. channels in convolutional
layers) whose value is not significantly changed compared
with the pre-updating model ©. Then, these parameters are
reset to their value in © and are not further trained in the
later re-training. During the re-training period, the partially-
updated model is trained with not only the origin task loss
but also the knowledge distillation loss from the teacher
of the fully-updated model F7. Please note that the pro-
posed Tiny Updater is a framework that employs pruning
and knowledge distillation to tackle the challenge of effi-
cient model updating and it does not depend on any specific
pruning and knowledge distillation methods.

4. Experiment

4.1. Image Classification

Experiment Setting Our method has mainly been eval-
uated on seven image classification datasets, including CI-

Table 1. The performance of Tiny Updater on ImageNet. Models
are firstly trained with 25% data and then updated with all the data.
“Updated Ratio” indicates the ratio of updated parameters.

Model Updated Ratio (%) Top-1 Accuracy Top-5 Accuracy
00.00 68.86 _g.44 88.74 _3.46
21.54 74.76 _o.54 91.70 _o.50
ResNet50 4242 75.12 _p.18 91.93 _p.27
65.69 76.25 10.95 93.14 _p.04
100.0 75.30 92.20
00.00 62.23_3.08 84.25_5.99
24.31 64.54_¢ .77 85.53_1.01
. 31.66 65.23_¢.08 86.42_¢.12
MobileNetv2 66.55 66.300.90 87.194 0,65
87.60 66.8641.55 87.5010.96
100.0 65.31 86.54
00.00 72.04_9.96 89.75_5.85
Swin 18.56 79‘91,1_39 94.33,1_27
36.31 80.87_0.43 94.53_1.07
Transformer 3026 81.73 40,45 957410 14
100.0 81.30 95.60

FAR10, CIFAR100, and ImageNet for general image clas-
sification, Stanford Car, Oxford Flower, Stanford Dog,
FGVC Aircraft for fine-grained image classification. Please
refer to Appendix B for the details of these datasets. Note
that on the fine-grained image classification datasets, mod-
els are initialized with backbone weights pre-trained on Im-
ageNet. In ImageNet experiments, we adopt the basic train-
ing policy from PyTorch [64] with task-oriented feature dis-
tillation [87]. On the other datasets, each model is trained
by 200 epochs with the naive logit and feature knowledge
distillation loss [32, 70].

Main Results The performance of Tiny Updater on Ima-
geNet, CIFAR10&100, and four fine-grained image classifi-
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Figure 4. Experiments on CIFAR with ResNet50. The pre-

updating models and fully-updated models are trained with 25%
and 100% training data, respectively. Tiny Updater with random
pruning indicates pruning the randomly selected channels.

cation are shown in Table 1, Figure 4, Figure 3, respectively.
It is observed that: (i) Tiny Updater achieves consistent ef-
fectiveness on all seven datasets. By changing around 20%
parameters during updating, the neural networks trained
with Tiny Updater achieve a similar performance with fully-
updated models on all these datasets. (ii) On ImageNet,
Tiny Updater achieves significant performance on the reg-
ular convolutional network such as ResNet [28], the ef-
ficient convolutional networks such as MobileNetv2 [71],
and Swin Transformer [57]. (iii)) With the proposed Tiny
Updater, when a large ratio of parameters is changed, it even
leads to higher performance than the fully-updated model.
For instance, on Oxford Flowers datasets in Figure 3, the
84% updated model trained with Tiny Updater has 0.25%
higher accuracy than the fully-updated model. We suggest
this accuracy benefit is caused by the knowledge distilla-
tion loss in Tiny Updater. As pointed out by some previous
research [2, 61], even if the student and the teacher have
similar performance, knowledge distillation can still lead to
consistent accuracy benefits.

Ablation Study Tiny Updater is mainly composed of two
modules - pruning and knowledge distillation. Ablation
studies on CIFAR10 and CIFAR100 are shown in Figure 4.
It is observed that: (i) Compared with Tiny Updater with
random pruning, Tiny Updater with L;-norm based prun-
ing leads to consistently higher accuracy (around 6%) es-
pecially when only a low ratio (0~50%) of parameters are
changed, indicating L;-norm is an effective metric to find
which channels are actually important for model updating.
(i1) Significant accuracy boosts can be observed by apply-
ing knowledge distillation during re-training. For instance,
on CIFAR100, when around 10% and 20% parameters are
changed, 1.79% and 1.15% accuracy boost can be observed
with knowledge distillation, respectively. These observa-
tions indicate that the pruning and knowledge distillation in
Tiny Updater have their individual effectiveness.

Categorical Incremental Updating Figure 3(b) shows
the effectiveness of Tiny Updater in the categorical incre-
mental settings, where the pre-updating models are trained

CIFAR1O
95.0
92.5 — 5%
10%

19 —— 153 1

75.017)
—— 20%
50.0 —— 25%

0 20 40 60 80 100
Changed Parameters (%)

Top-1 Accuracy

Figure 5. Experiments on CIFAR10 with the pre-updating models
trained with different ratios of data.

with 25% training data belonging to 25% categories. Dur-
ing the updating period, the model is further trained with
data of all the categories. It is observed that Tiny Updater
can still achieve significant performance by only changing
around 10% parameters, indicating that Tiny Updater is also
effective on the categorical incremental updating setting.

Influence from Pre-updating Model In previous experi-
ments, the pre-updating models are trained with 25% data.
With less training data, the pre-updating models tend to
have less representative ability, and thus the performance
of Tiny Updater tends to be reduced. In this subsection,
we study how the performance of the pre-updating model
influence Tiny Updater on CIFAR10 in Figure 3(a). It is
observed that when most of the parameters (>50%) are
changed during updating, the accuracy gap between differ-
ent pre-updating models is not significant (<0.2%). In con-
trast, when only a few parameters (10%~20%) are changed,
the ratio of data for training pre-updating models has a more
significant influence. For example, compared with the pre-
updating model trained with 25% data, the pre-updating
model trained with only 5% data leads to around 2.5% ac-
curacy loss when 20% parameters are changed during up-
dating, indicating that the performance of the pre-updating
model has a direct influence to Tiny Updater. Specifically,
when the pre-updating model is not trained with any data, it
can be considered as a model with all parameters initialized
with zero matrices, and thus Tiny Updater in this case de-
generates to the common neural network pruning problem.

Multi-step Model Updating Previous experiments
mainly show the result of one-step updating from using
25% to 100% training data. In this subsection, we show
the performance of Tiny Updater in a multi-step updating,
where the model is first trained with 5% data and then
updated with 10%, 15%, 20% 25%, and 100% training
data, successively. As shown in Table 4, there is almost no
accuracy loss when around 20% parameters are changed
for each update. When there are around 10% parameters
changed for each update, accuracy loss becomes significant
with the increment on the update iterations (from -0.44% to
-2.33%). This observation indicates that the accuracy loss
tends to be accumulated in multi-step updating when an
extremely low ratio of parameters is changed for updating.
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Table 2. Experiments of multi-step updating on CIFAR10. Mod-
els are firstly trained with 5% training data and then updated by
five times with 10%, 15%, 20%, 25%, and 100% training data by
changing all, 10% and 20% parameters.

: Data Ratio 3%  10% 15% 20% 25% 100%
Params. Ratio

Fully-Updated 465 642 788 846 878 953
10% Params. Updated 465 638 783 832 859 929
20% Params. Updated 465 643 790 842 875 948

Tiny Updater on Pruned Models In this subsection, we
study whether the proposed Tiny Updater can be utilized
on a pruned model. Concretely, we first train a ResNet18
model with 25% training data on CIFAR10, which achieves
87.43% top-1 accuracy. Then, we apply the L;-norm prun-
ing technique to prune 53% neurons at the expense of
0.37% accuracy loss (87.43%—87.06%). Thirdly, the pro-
posed Tiny Updater is applied to update this model with
100% training data, which achieves 94.22% at the ex-
pense of changing 24.3% parameters (87.06%—94.22%).
In contrast, a pruned fully-updated model with the same
pruning ratio achieves 94.87% accuracy, which is only
0.65% higher than the pruned model with Tiny Updater
(87.06%—94.87%). These observations indicate that the
proposed Tiny Updater can be utilized on pruned models.

Comparison with Finetuning and Adapter Finetuning
and adapter-based methods are two well-known efficient
training methods and the parameters changed in these two
methods are also much fewer than global finetuning. Fig-
ure 4 gives the comparison between Tiny Updater and these
two methods on CIFAR10, CIFAR100 with ResNet18. It
is observed that when the same number of parameters are
changed, Tiny Updater outperforms these two methods by a
clear margin, indicating that Tiny Updater is more effective
than directly applying previous methods.

4.2. Image-to-Image Translation with GANs

Experiment Setting We mainly evaluate Tiny Up-
dater on image-to-image translation with CycleGAN for
Horse—Zebra translation, and Pix2Pix for Edge—Shoe
translation. CycleGAN is a typical unpaired image-to-
image translation model, which has a ResNet-based gen-
erator trained with GAN loss and cycle consistency [94].
Pix2Pix is a typical paired image-to-image translation
model, which has a U-Net architecture generator trained
with conditional GAN loss and the Li-norm loss [35].
Horse—Zebra is an unpaired dataset that translates natu-
ral images of horses to zebras and vice versa. It consists of
1,187 horse images and 1,474 zebra [93]. Edge—Shoe is a
paired data that translates the edges of shoes to their corre-
sponding natural images [34]. Fréchet Inception Distance
(FID), which measures the distance between the feature dis-
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Figure 6. Qualitative analysis on Horse—Zebra and Zebra—Horse
with CycleGAN. The partially-updated model trained with Tiny
Updater has around 20% parameters changed. The pre-updating
models are trained with 25% data.
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Figure 7. Experiments of image-to-image translation
on Horse—Zebra and Zebra—Horse with CycleGAN, and

Edge—Shoe with Pix2Pix. In all these experiments, the pre-
updating models are trained with 25% training data.

tribution of the real and the generated images, is utilized as
the metric for both datasets. A lower FID indicates the syn-
thetic images have better quality.

Main Results Experiments of Tiny Updater on image-to-
image translation are shown in Figure 7. It is observed that
on the three image-to-image translation tasks, Tiny Updater
is able to improve model performance by 5~10 FID when
around 60% parameters are changed during updating. Be-
sides, Tiny Updater can update the models by changing 40%
parameters with no performance loss or by changing only
20% parameters with a slight FID increment. Qualitative
analysis in Figure 6 shows that the pre-updating models can
not transform the whole body of horses into the zebras, or
remove all the stripes of zebras. In contrast, with Tiny Up-
dater, the partially-updated model with only 20% parame-
ters changed can address this problem and achieve compara-
ble performance with the fully-updated models, indicating
that Tiny Updater enables the neural network to be success-
fully updated by changing only a few parameters.

4.3. Video Recognition

Experiment Setting We evaluate Tiny Updater in
video recognition datasets including UCF-101 [73] and
Diving-48 [46] with video recognition models including
SlowOnly [19] and Inception3D [9]. UCF-101 is an ac-
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Figure 8. Experimental results of Tiny Updater of video recognition on UCF-101 and Diving-48 with SlowOnly and Inception3D (I3D).

The pre-updating models are trained with 25% training data.

tion recognition dataset with 101 action classes over 13,000
video clips [73]. Diving-48 is a fine-grained video dataset
of competitive diving. It has around 18,000 video clips be-
longing to 48 dive sequences [9]. Both top-1 and top-5 ac-
curacy are reported.

Main Results Figure 8 shows the performance of Tiny
Updater on video recognition. It is observed that on both
SlowOnly and Inception3D (I3D), UCF-101 and Diving-48,
the model with only 20% parameters changed trained by
Tiny Updater achieves comparable and even higher perfor-
mance than the fully-updated models. Moreover, the model
with only 10% parameters changed during updating leads
to only around 0.5% accuracy loss.

5. Discussion
5.1. Choice of Pruning Granularity

Existing network pruning methods can be mainly di-
vided into regular pruning (e.g. channel-wise pruning) and
irregular pruning (e.g. element-wise pruning). Usually,
irregular pruning can achieve a higher compression rate,
while regular pruning is more friendly to hardware. In this
paper, we prefer to use regular pruning in Tiny Updater and
suggest that using irregular pruning may cause the problem
of index overhead and memory access overhead.

Index Overhead When Tiny Updater is utilized for up-
dating neural network-based software, users should down-
load not only the parameters which are changed during up-
dating but also an index file that records the corresponding
position of each changed parameter in the neural network.
Given a neural network with N parameters, when irregular
pruning is utilized, for each updated parameter, log, N bits
storage space is required to record which layer, filter, and
position in the kernel this parameter should be. Thus, an
ignorable additional downloading overhead is caused. In
contrast, the index overhead for channel-wise pruning is
log, % bits, which is small enough to be almost ignor-
able. Here C' and K indicate the channel number and the
kernel size, respectively.

Memory Access Overhead In Tiny Updater, irregular
pruning can result in the updated parameters being dis-
tributed across various neural layers, channels, and filters,
leading to their storage in different data blocks of the file
system. Consequently, when updating the model with the
downloaded parameters, almost all data blocks of the edge
device need to undergo a writing operation, resulting in a
significant memory access overhead. In contrast, regular
pruning ensures that the updated weights are channel-wise
and, therefore, can be stored in the same data blocks. Con-
sequently, only these data blocks for the updated parameters
require memory access, potentially reducing the updating
overhead on edge devices.

6. Conclusion

This paper introduces the challenge of efficient model
updating to reduce the download overhead during neural
network-based software updating. To this end, we propose
Tiny Updater, which aims to change only a small subset
of the parameters during model retraining, thereby reduc-
ing the number of parameters that need to be downloaded
by users. Tiny Updater comprises an iterative pruning tech-
nique that prunes the parameters of the fully-updated mod-
els to the pre-updating models and a knowledge distillation
technique that treats the fully-updated models as teachers
and the partially-updated models as students.

Extensive experiments were conducted on eleven
datasets covering general image classification, fine-grained
image classification, video recognition, paired image-to-
image translation, and unpaired image-to-image translation.
The results demonstrate that Tiny Updater can update neural
network-based software by changing only 10% to 20% of
the parameters with almost no loss in accuracy. In addition,
the experimental results show the effectiveness of Tiny Up-
dater in various scenarios, including categorical updating,
multi-step updating, and pruning. We believe that this pa-
per will encourage further research to address the challenge
of efficient model updating on edge devices.
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Table 3. Comparison among incremental learning, efficient finetuning, and the proposed efficient model updating.

| Problem | Target | Pre / Post Tasks | Usage of Training Data | Constraints on Parameters |
A small ratio of data is used for . .
. . L . No direct constraints.
The human-like ability training pre-updating models. .
. . - . Reducing the number
. of incrementally learning | .. More data is used for updating.
Incremental Learning . Different. s of changed parameters
new tasks without Data for pre-training data .
. . sometimes lead to
forgetting old tasks. can not be accessed during L
. . positive influence.
updating (learning new tasks).
. No direct constraints.
. . . Pre-updating models are
Finetuning pre-trained . Do not finetune the
pretrained on large-scale
models for downstream whole model usually
. . datasets, and then finetuned
. . . tasks with low training . leads to no changes
Efficient Finetuning - Different. on much less data for . . .
overhead, and achieving in pre-trained weights.
downstream tasks. Usually .. .
better downstream Additional parameters in
do not access data for
performance. . . . adapter layers and
pre-training during finetuning. .
prompts are required.
Update models with A small ratio of data is . . .
- .. Having direct constraints,
new data by changing used for pre-training the chaneed parameters
Efficient Model Updating | only a few parameters Same. models, and these data gedp
. . should be as few as
to reduce communicat can still be accessed .
. . . possible.
-ion overhead. during updating.
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A. Detailed Comparison

A detailed comparison among incremental learning, effi-
cient finetuning and the proposed efficient model updating
is shown in Table 3.

B. Detailed Experimental Setting

CIFAR10/100 are two datasets for low resolution gen-
eral image classification with 50,000 images and 1,000 im-
ages in the training and validating set, respectively. Ima-
geNet is a large-scale dataset for general image classifica-
tion with images belonging to 1,000 categories. Stanford
Car is a dataset for fine-grained image classification with
car images belonging to 197 classes. Oxford Flower is a
dataset for fine-grained image classification which consists
of 102 different categories of flowers common to the UK.
Stanford Dog is a dataset for fine-grained image classifi-
cation which contains 20,580 dog images of 120 breeds of
dogs from around the world. FGVC Aircraft is a dataset
for fine-grained image classificaiton which contains 10,000
images of aircrafts spanning 100 aircraft models.

C. Experiments on More Datasets and Tasks

Experimental results on more kinds of tasks and datasets
are shown in Table 4 and Table 5. It is observed that

Table 4. Comparison between our method with previous efficient
finetuning methods on ImageNet with Swin Transformer. Models
are firstly trained with 25% data and then updated with all the data.

Updating Method Ratio of Updated Params.(%) Top-1 Acc (%)
Pre-updating Model 0.0% 72.04
Global Finetuning 100.0% 81.30
Linear Finetuning 1.16 72.23
Non-linear Finetuning2 34.6 75.53
Non-linear Finetuning3 66.3 78.80
Adapterl 35 72.40
Adapter? 17.2 74.39
Visual Prompt Tuning < 1% 72.32
Ours’ 3631 80.87
Ours? 18.56 79.91

Table 5. Experimental results on more tasks.

Task Dataset Model Updated Params (%) Acc. / mAP/PSNR
0.00 9223
Cross Domain 18.7 98.3
Image Classification O iee31 ResNets0 10.9 98.0
100.0 98.5
0.00 30.5
. . 27.3 36.2
Object Detection MS COCO  Faster RCNN 14.6 35.6
100.0 36.4
0.00 33.90
Single Image 224 34.60
Super-Resolution DIv2K ESRGAN 13.0 34.56
100.0 34.61

our method leads to consistent good performance on cross-
domain image classification, object detection and image
super-resolution. Besides, our method outperforms previ-
ous efficient finetuning methods on ImageNet.
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