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Abstract

Unsupervised surface anomaly detection aims at dis-
covering and localizing anomalous patterns using only
anomaly-free training samples. Reconstruction-based mod-
els are among the most popular and successful methods,
which rely on the assumption that anomaly regions are more
difficult to reconstruct. However, there are three major chal-
lenges to the practical application of this approach: 1) the
reconstruction quality needs to be further improved since it
has a great impact on the final result, especially for images
with structural changes; 2) it is observed that for many neu-
ral networks, the anomalies can also be well reconstructed,
which severely violates the underlying assumption; 3) since
reconstruction is an ill-conditioned problem, a test instance
may correspond to multiple normal patterns, but most cur-
rent reconstruction-based methods have ignored this criti-
cal fact. In this paper, we propose DiffAD, a method for
unsupervised anomaly detection based on the latent diffu-
sion model, inspired by its ability to generate high-quality
and diverse images. We further propose noisy condition
embedding and interpolated channels to address the afore-
mentioned challenges in the general reconstruction-based
pipeline. Extensive experiments show that our method
achieves state-of-the-art performance on the challenging
MVTec dataset, especially in localization accuracy.

1. Introduction
With the great success of deep neural networks in various

computer vision tasks, their application in surface anomaly
detection, which aims to detect anomalous patterns that de-
viate from normal samples, has also received unprecedented
attention. However, unlike traditional supervised computer
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Figure 1. The reconstructed samples Ir of traditional autoencoder-
based methods often fail into direct copies of the anomalous inputs
Ia (medium), especially for samples with structural deformations
(top). With our DiffAD, the generated samples are semantically
anomaly-free while keeping consistent in other non-anomalous re-
gions (bottom), yielding pleasing detection and localization results
Mo, closely matching the ground truth (GT).

vision tasks such as image recognition, anomalous samples
are quite rare in real-world scenarios. Therefore, unsuper-
vised methods for anomaly detection are of great signifi-
cance in practice.

Reconstruction-based models are among the most pop-
ular and successful methods of unsupervised anomaly de-
tection. Based on the assumption that anomaly regions are
more difficult to reconstruct, they try to detect anomalies by
comparing the input images with their reconstructed coun-
terparts.

To address the absence of anomalous samples, data aug-
mentation techniques are widely used in the reconstruction-
based framework. For instance, DRAEM [32] synthesizes
anomalous samples by blending predefined texture images
with normal training instances. Utilizing the synthetic
anomalous samples, an autoencoder-based reconstructive
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sub-network is trained to repair the anomalous regions
while keeping the non-anomalous parts unchanged. Both
the reconstructive and original images are concatenated and
fed to a following discriminative sub-network, which pro-
duces a segmentation map as the final anomaly detection
result.

However, there are three major challenges to the prac-
tical application of this approach. First, though current re-
construction networks are good at repairing textural anoma-
lies, they are vulnerable to structural changes in the images.
Considering the significant impact of reconstruction qual-
ity on the final result, it is necessary to explore more recent
and state-of-the-art models for image reconstruction. Sec-
ond, it is observed that for many neural networks, anomalies
can also be well reconstructed, which violates the under-
lying assumption. Specifically, the reconstruction network
may return a direct copy of the input image with anoma-
lies, resulting in detection failure. Third, since reconstruc-
tion is an ill-conditioned problem, a test instance may cor-
respond to multiple normal patterns. However, most current
reconstruction-based methods ignore this important fact, so
it is necessary to take into account the diversity of recon-
structions.

In this paper, we propose DiffAD, a novel reconstruction-
based method for anomaly detection, which simultaneously
addresses the challenges mentioned above. Our method uti-
lizes the recently proposed diffusion model (DM) as the
reconstruction component. The denoising diffusion proba-
bilistic model [11] is a parameterized Markov chain trained
to produce samples by learning to reverse a diffusion pro-
cess, which gradually adds noise to the training data until
the original signal is destroyed. At the sampling stage, it
is capable of generating high-quality and diverse samples
from random Gaussian noise. To ameliorate the heavy com-
putation burden of diffusion models, we use the latent diffu-
sion model (LDM) [22] which is trained in the learned latent
space. Our method introduces noisy condition embedding,
which diffuses the latent representation of the test image
with noise before it is used to condition the generation pro-
cess. This avoids the reconstruction network from synthe-
sizing a direct copy of the anomalous region and forces it to
use global information, thus making the normal and anoma-
lous parts more distinctive. Furthermore, we proposed the
interpolated channels in the anomaly detection pipeline. Its
basic idea is to interpolate the latent features generated by
the diffusion model and that of the original input to pro-
duce additional channels, which are concatenated with the
original and the reconstructed images before being sent to
the segmentation sub-network. Intuitively, the interpolated
channels make our model aware of diversity during recon-
struction.

Extensive experiments on the MVTec-AD dataset [2]
demonstrate the effectiveness of our approach by improv-

ing performance on the tasks of both anomaly detection
and anomaly localization. The main contributions of our
method are summarized as follows:

• We propose a novel method for unsupervised anomaly
detection called DiffAD. To the best of our knowledge,
this is the first reconstruction-based method that takes
advantage of the latent diffusion model.

• We propose noisy condition embedding, which main-
tains the distinction between normal and anomalous
regions during reconstruction.

• We propose interpolated channels, which make our
model aware of the diversity during reconstruction and
ameliorate the distractions brought by the pixel-level
differences between the reconstructed and original im-
ages.

• Extensive experiments demonstrate that our proposed
method is effective and can greatly improve anomaly
detection and localization performance on the MVTec-
AD dataset.

2. Related Work
2.1. Anomaly Detection

Classical anomaly detection methods consider the task
as an extension of the one-class classification problem. The
early proposed OC-SVM [26] and SVDD [28] learn data
distribution by using support vectors machine. PatchSVDD
[31] utilizes a patch-based method to enable anomaly seg-
mentation.

Methods based on memory bank such as SPADE [7],
PaDiM [8], and PatchCore [24] assume that discriminative
features extracted by the pre-trained network with normal
samples can be leveraged to calculate distance metrics for
anomaly measurement. These methods focusing on feature
extraction are limited by heavy storage and retrieval costs.
Knowledge distillation based methods were first introduced
in [3], which uses a single teacher network to guide multiple
student networks during training, and determines anomalies
by comparing the difference in outputs between the teacher
and student networks. Reverse distillation [9] has also been
developed to utilize different architectures of teacher and
student to maintain the distinction of anomaly.

Methods based on reconstructive networks hypothesize
that when taking anomalous samples as input, reconstruc-
tion models trained on normal samples only succeed in nor-
mal regions, but fail in abnormal parts. Autoencoder (AE)
[4], Variational Autoencoder (VAE) [14], and Generative
Adversarial Network (GAN) [1, 20] have been introduced
into this task. However, due to their powerful generaliza-
tion ability, the anomalies are also well reconstructed, re-
turning a direct copy of the input image, and thus resulting
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Diffusion Process

Figure 2. The framework of the proposed DiffAD, which consists of two sub-networks: (i) Reconstructive sub-network takes normal data x
as training samples and simulated anomalous images xa, which is generated by random mask M and texture source image T , as condition
embedding. This sub-network is capable of sampling normal image xr from noise with the anomalous condition. (ii) Discriminative
sub-network takes the concatenation of anomalous images xa, reconstructed images xr , and the additional interpolated channels xinter as
input, producing pixel-level segmentation masks Mo. Loss is calculated between Mo and M .

in detection failure. Some works [15, 30, 33] tried to ame-
liorate overfitting by transforming the reconstruction task
into inpainting, which train the reconstructive network with
masked images. These methods, however, fuse the outputs
of multiple masked inputs, suffering from heavy computa-
tion costs and not practical for realistic scenarios. Recently,
DRAEM achieves excellent performance by restoring the
simulated anomalous samples and utilizing a discrimina-
tive network to segment the anomalies. However, DRAEM
is undermined by the limited generative ability of the AE-
based reconstructive network, failing to handle hard anoma-
lous cases with structural deformation.

In this paper, we replace the AE-based reconstructive
network with the latent diffusion model. By leveraging the
powerful generative ability of diffusion models, we can re-
duce models’ reliance on input images, yielding samples
strictly following normal modes.

2.2. Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) [11]
have recently achieved state-of-the-art results in various im-
age generation tasks and are also widely developed in other
applications [25, 5]. Gradually adding noise to the train-
ing data until the original signal is destroyed, DDPM is
a parameterized Markov chain trained to produce samples
by learning to reverse a diffusion process. At the sam-
pling stage, it is capable of generating high-quality and
diverse samples from random Gaussian noises. However,
DDPM samples images by denoising a noise step by step,
leading to low inference speed. DDIM [27] utilizes non-
Markovian processes to accelerate the sampling process,

increasing the sampling speed by 10 to 50 times. The re-
cently proposed latent diffusion models [22] departure to
the latent space, which is lower-dimensional and computa-
tionally much more efficient, further reducing the training
and sampling overheads and making diffusion models more
practical in application scenarios.

Recently, Teng et al. [29] attempt to introduce score-
based generative model into the unsupervised defect de-
tection task. The anomalous samples, injected with noise,
are projected into normal data distribution space through
two separate SDE functions. They obtain anomaly masks
by separately extracting feature maps and calculating dis-
tances. However, they are unaware of the large sample
variation in the same class, resulting in unpleasant perfor-
mance. In contrast, we introduce the noisy condition em-
bedded latent diffusion model as the reconstruction back-
bone, providing semantically anomaly-free but structurally
similar reconstructions, enabling pixel-level accurate com-
parisons.

3. Method

We propose a novel reconstruction-based method for un-
supervised surface anomaly detection. We follow the previ-
ous work [32] to create simulated anomalous training sam-
ples to compensate for the absence of real anomalous sam-
ples, and utilize the recent latent diffusion model as the
backbone of our reconstructive sub-network, which is capa-
ble of generating high-quality and diverse samples. How-
ever, there still exist two main challenges: 1) the “direct
copy” problem: anomalies can also be well reconstructed.
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2) the misalignment problem: several normal samples can
correspond to a given anomalous input, posing challenges to
pixel-level comparison and segmentation. We propose the
noisy condition embedding in Section 3.3 to solve the first
problem. Interpolated channels proposed in Section 3.4 pro-
vide a solution to the latter one.

3.1. Overall Architecture

The proposed method is composed of a reconstructive
sub-network and a discriminative sub-network as shown in
Figure 2. The reconstructive sub-network, which is a latent
diffusion model accompanied by the noisy condition em-
bedding, learns the distribution of normal samples. When in
the sampling stage, taking the anomalous samples as condi-
tion inputs, it is capable of generating high-quality normal
samples comparable to the anomalous conditions in overall
appearance. Next, the discriminative sub-network produces
segmentation maps from the concatenation of the input im-
age, its reconstructed version, and the additional interpo-
lated channels which help to distinguish anomalies. Since
anomalies usually account for a small area of the whole im-
age, we use a Focal Loss [17] to train the discriminative
sub-network, which ameliorates the data imbalance prob-
lem. The anomalous training samples are created by a com-
bination of randomly generated anomaly maps and texture
source images from the DTD dataset [6] following previous
work [32].

3.2. Latent Diffusion Models

Diffusion models (DM) are generative models that are
capable of sampling from the data distribution by learning
the reverse process pθ(x0:T ), which is defined as a Markov
chain initialized as Gaussian noise [11]. The forward pro-
cess or diffusion process q(x1:T |x0) gradually adds Gaus-
sian noise to the training data. These models utilize the for-
ward process to get xt, a noisy version of the input x, and
then train a network ϵθ(xt, t) to predict how to denoise. The
training objective can be simplified as

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
,

with t uniformly sampled from {1, ..., T}.
The latent diffusion model (LDM) [22] leaves the pixel-

level generation to Autoencoders, and focuses on training
and sampling in a lower dimensional latent space.

To adapt the LDM model to the anomaly detection task,
for a given normal image x ∈ RH×W×3 in RGB space, we
train an encoder E , which is a VAE [14] with KL-penalty, to
learn the pixel-level reconstruction of normal samples and
encode x into a latent vector z = E(x), where z ∈ Rh×w×c.
Then a UNet-based LDM is followed to learn semantic fea-
ture generation, which trains the denoising process directly
on the noisy latent vectors zt. The objective is modified as

LLDM = Ez,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t)∥22

]
.

Sampling also takes place in the latent space. The latent
vector zr sampled from the distribution p(z) is decoded to
an image through a decoder as D, and the final output is
obtained as xr = D(zr).

3.3. Noisy Condition Embedding

Diffusion models are capable of modeling the condi-
tional distribution of the form p(z|y), controlling the syn-
thesis process through condition y such as text [21] and
class-labels [10]. A common approach to introducing im-
ages as conditions is through direct concatenation with the
input images [25]. However, in the unsupervised scenario
of anomaly detection, the simulated anomalous samples
are quite similar to the normal ones, compared with other
image-to-image translation tasks [13]. Simple concatena-
tion would make the model fall into a shortcut, which ap-
pears as relying too much on conditions and vulnerable to
severe structural changes in real anomalous samples. Thus,
we propose a noisy condition embedding to instruct sample
generation while avoiding the model excessively relying on
the condition.

Given a normal sample x, we generate a simulated
anomalous sample xa through data augmentations and tex-
ture pasting following DRAEM. The simulated anomalous
sample is firstly encoded into a latent vector by an encoder
c = E(xa), which is viewed as the initial state c0 and fol-
lowed by passing the diffusion process q over T iterations,
with a series of variance β1, ..., βT of the added noise:

q(c1:T |c0) =
T∏

t=1

q(ct|ct−1)

q(ct|ct−1) = N (ct|
√
1− βtct−1, βtI)

We choose a random time point t to get the noisy con-
dition vector cnoisy with the notation αt = 1 − βt and
ᾱt =

∏t
s=1 αs:

cnoisy =
√
ᾱtc +

√
1− ᾱtϵ

We then learn the conditional LDM via

LLDM = Ez,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, cnoisy)∥22

]
.

Taking cnoisy as condition in LDM training process, the
model can be more robust. Even taking real anomalous
samples with severe deformations as conditions in the sam-
pling stage, the generated samples can still be semantically
anomaly-free while keeping the overall appearance as sim-
ilar as possible to the anomalous conditions.

3.4. Interpolated Channels

After obtaining the reconstructed images, a discrimina-
tive sub-network is followed to produce pixel-level anomaly
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(a)
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(c)
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Figure 3. Visual comparisons between (a) the anomalous inputs;
the reconstruction outputs of (b) autoencoder, (c) DDPM, and (d)
our DiffAD. Our reconstructions are semantically anomaly-free
and similar to the original inputs in overall appearance.

segmentation maps. We use a U-net-based segmenta-
tion backbone [23] with modules of the form convolution-
BatchNorm-ReLu [12] as our discriminative sub-network
which usually takes the channel-wise concatenation of the
reconstructed output xr and the anomalous input image xa

as the network input. However, some subtle differences
in the normal pixels between the reconstructed and origi-
nal images are inevitable, e.g. some texture changes in the
background regions, which may distract the discriminative
sub-network. To alleviate the side effects caused by non-
anomalous differences, we propose the interpolated chan-
nels, allowing the discriminative sub-network to recognize
diversity during reconstruction and distinguish real anoma-
lies.

We interpolate the latent vector c and zr, which is en-
coded from the anomalous input image xa and the normal
vector reconstructed by LDM, to get the intermediate states:

zinter = λ · c + (1− λ) · zr

where λ ∈ [0, 1].
Then we decode zinter into image space through de-

coder D to get xinter and concatenate the additional inter-
polated channels with xa and xr to form the discriminative
network input. Passing through the encoder and decoder,
the non-anomalous regions of intermediate state xinter fol-
low the learned distribution of generated samples, while
some anomalous features are still remaining, enabling the
discriminative sub-network to locate anomalies more accu-
rately.

4. Experiments and Results
In this section, we first describe our experimental setup

and the implementation details of our DiffAD. Second, we

(a) xa (b) x̃a (c) xinter (d) xr

Figure 4. Visual comparisons between (a) the anomalous input xa,
(b) the VAE-reconstructed version x̃a, (c) interpolated channels
xinter and (d) the reconstruction output of our method xr . As
shown above, xinter is more similar to xr in the texture of non-
anomalous regions such as the body of hazelnut or the background
of cable, while still keeping some anomalous features.

summarize three challenges in the anomaly detection task
and our corresponding solutions. To evaluate the effective-
ness of our solutions, we conduct ablation studies on the
individual components of DiffAD. Finally, we compare Dif-
fAD with other unsupervised anomaly detection methods in
both detection and localization tasks and provide qualitative
and quantitative results.

4.1. Experiments Setup

To evaluate the effectiveness of our method, we choose
the recent challenging MVTec-AD dataset [2], which con-
tains 10 object and 5 feature classes of industrial anomalous
samples with mask annotations. Following prior works, the
image-level Area Under the Receiver Operating Curve (AU-
ROC) is used for evaluation in the anomaly detection task.
To authentically reflect the localization accuracy, in addi-
tion to the pixel-based AUROC, the pixel-wise average pre-
cision (AP) is also reported, which is more appropriate for
samples with small anomalies [32].

In our experiments, the input image size is set as 256 ×
256 and encoded by a VAE into a latent vector with size
32 × 32 × 4. The simulated anomalous samples gener-
ated following DRAEM are also encoded into 32 × 32 × 4
features and passed through the diffusion process with a
random time step t ∈ [0, 1000] to get a noisy condition
embedding. The LDM is trained in the latent space for
4000 epochs and samples reconstructive normal images
with clean anomalous condition inputs. The following dis-
criminative sub-network is trained in image space for 700
epochs independently. We implement our models on the
Pytorch framework [19] on NVIDIA Tesla V100 GPUs.

4.2. Ablation Studies

We summarize three main challenges in the
reconstruction-based anomaly detection task: 1) The
autoencoder is limited in the reconstruction ability to
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Recon. Net Discr. Net Results
Method backbone condition input Det. Loc.
DRAEM AE × concat(xa, xr) 98.0 97.3 / 68.4
DiffADf&r DM forward+reverse concat(xa, xr) 94.6 93.6 / 57.3
DiffADc DM c concat(xa, xr) 95.8 93.9 / 61.1
DiffADno inter DM cnoisy concat(xa, xr) 96.4 97.0 / 65.1
DiffADx̃a inter DM cnoisy concat(xa, x̃a, xr) 97.4 97.3 / 67.0
DiffAD DM cnoisy concat(xa, xinter, xr) 98.7 98.3 / 74.6

Table 1. Ablation studies with detection (Det.) and localization (Loc.) performance, grouped into (i) the architecture of reconstructive
sub-network, (ii) the input of discriminative sub-network, and (iii) the performance of our DiffAD for reference.

Class [1] [16] [33] [32] Ours

te
xt

ur
e

Carpet 82.1 99.4 84.2 97.0 98.3
Grid 74.3 99.6 99.6 99.9 100

Leather 80.8 97.1 100 100 100
Tile 72.0 95.5 98.7 99.6 100

Wood 92.0 95.7 93.0 99.1 100

ob
je

ct

Bottle 79.4 99.6 99.9 99.2 100
Cable 71.1 99.1 81.9 91.8 94.6

Capsule 72.1 96.2 88.4 98.5 97.5
Hazelnut 87.4 98.5 83.3 100 100
Metal Nut 69.4 99.5 88.5 98.7 99.5

Pill 67.1 98.3 83.8 98.9 97.7
Screw 100 100 84.5 93.9 97.2

Toothbrush 70.0 98.7 100 100 100
Transistor 80.8 98.3 90.9 93.1 96.1

Zipper 74.4 99.0 98.1 100 100
Average 78.2 98.3 91.7 98.0 98.7

Table 2. Results for anomaly detection with AUROC metric on
MVTec-AD, compared with other reconstruction-based methods.

amend structural deformations. 2) The anomalies can be
well reconstructed as well as normal regions, falling into
“direct copy”. 3) Some differences in the non-anomalous
regions brought by the generative model may distract the
discriminative sub-network.

To address the above issues, we propose three solutions:
1) Replace the AE-based reconstructive sub-network with
diffusion models. 2) Introduce noisy condition embedding
to enhance global information. 3) Concatenate the interpo-
lated channels to emphasize the real anomalies.

We then conduct ablation studies to verify the effective-
ness of our proposed solutions.

4.2.1 DM with Noisy Condition Embedding

As shown in Figure 3, we provide visual comparisons of
the anomalous inputs and the reconstruction outputs of
the autoencoder, DDPM (a basic diffusion model), and
our DiffAD. The autoencoder fails especially on anoma-
lies that are close to the normal image distribution, such

as samples with structural changes or missing parts: re-
gions where some object features are missing usually con-
tain other features which are also in the learned distribu-
tion, leading to good reconstructions of anomalies. On the
contrary, by generating samples based on the distribution of
all normal data without specific inputs, the diffusion model
yields high-quality synthesis of normal samples but differ-
ent from anomalous samples especially in classes with high
sample diversity, making pixel-level segmentation impossi-
ble. However, our method successfully reduced the “direct
copy” problem in the anomalous regions without affecting
the overall appearance.

Aside from visual comparisons, we can also use a quan-
titative metric to evaluate how much “direct copy” has
been reduced by our diffusion-based method. Intuitively,
when “direct copy” occurs, the anomalous area between
the anomalous inputs and the reconstructed images remains
similar. Based on such facts, we can measure the degree of
direct copy with PSNR on the GT anomaly-masked regions
(A higher PSNR indicates a severer direct copy). Particu-
larly, our DiffAD achieves 36.73 dB, while the autoencoder
gets 38.49 dB, which shows that our method can reduce di-
rect copy. On the other hand, a good reconstruction not only
reduces direct copy, but also is similar to normal samples.
To verify this, we also calculate the FID score to measure
distribution distance with normal samples (A smaller FID
means closer to normal). As a result, the autoencoder’s av-
erage FID is 121.7, while ours is 69.2. These observations
show our diffusion-based method has superior reconstruc-
tion ability over the AE-based method.

In the diffusion-based image-to-image translation task,
there exist two common practices to instruct the generation
process: 1) Perturb the unseen input image with a forward
process and do reverse sampling based on the noisy input
to make it follow the distribution of training data [18]. 2)
Insert input images as conditions to the training process of
diffusion model by direct concatenation [25]. However, in
the scenario of anomaly detection, disturbing the anoma-
lous samples with a diffusion process needs to carefully
select the time step t, for a small t may retain anomalous
features while a large t may lose too much information. Di-
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Class RDistillation [9] PaDim[8] PatchCore [24] RIAD*[33] DRAEM* [32] Ours
te

xt
ur

e

Carpet 98.9 / 56.8 99.0 / 60.7 98.9 / 64.6 96.3 /61.4 95.5 / 53.5 98.1 / 74.1
Grid 99.3 / 49.6 97.1 / 35.7 98.7 / 29.1 98.8 / 36.4 99.7 / 65.7 99.7 / 73.7

Leather 99.4 / 47.7 99.0 / 53.5 99.3 / 48.5 99.4 / 49.1 98.6 / 75.3 99.1 / 73.7
Tile 95.6 / 53.2 94.1 / 52.4 95.6 / 67.5 89.1 / 52.6 99.2 / 92.3 99.4 / 95.1

Wood 95.3 / 48.8 94.1 / 46.3 95.0 / 59.4 85.8 / 38.2 96.4 / 77.7 96.7 / 80.0

ob
je

ct

Bottle 98.7 / 78.7 98.2 / 77.3 98.6 / 82.5 98.4 / 76.4 99.1 / 86.5 98.8 / 87.4
Cable 97.4 / 52.8 96.7 / 45.4 98.4 / 74.7 84.2 / 24.4 94.7 / 52.4 96.8 / 64.9

Capsule 98.7 / 45.3 98.6 / 46.7 98.8 / 48.5 92.8 / 38.2 94.3 / 49.4 98.2 / 54.4
Hazelnut 98.9 / 61.2 98.1 / 61.1 98.7 / 58.1 96.1 / 33.8 99.7 / 92.9 99.4 / 85.9
Metal Nut 97.3 / 79.5 97.3 / 77.4 98.4 / 94.6 92.5 / 64.3 99.5 / 96.3 99.1 / 94.4

Pill 98.2 / 78.5 95.7 / 61.2 97.1 / 85.5 95.7 / 51.6 97.6 / 48.5 97.7 / 68.9
Screw 99.6 / 53.3 98.4 / 21.7 99.4 / 39.3 98.8 / 43.9 97.6 / 58.2 99.0 / 58.5

Toothbrush 99.1 / 50.5 98.8 / 54.7 98.7 / 47.2 98.9 / 50.6 98.1 / 44.7 99.2 / 70.1
Transistor 92.5 / 55.1 97.6 / 72.0 96.3 / 74.7 87.7 / 39.2 90.9 / 50.7 93.7 / 60.2

Zipper 98.2 / 57.0 98.4 / 58.2 98.8 / 72.7 97.8 / 63.4 98.8 / 81.5 99.0 / 77.8
Average 97.8 / 57.9 97.4 / 55.0 98.1 / 63.1 94.2 / 48.2 97.3 / 68.4 98.3 / 74.6

Table 3. Results for anomaly localization with AUROC / AP metric on MVTec-AD. Methods based on reconstruction are marked with *.
The best results among all types of models are in bold, and the best of reconstruction-based methods are highlighted by underline.

rect concatenation of the anomalous samples during train-
ing may cause the diffusion model to rely too much on con-
ditions since the distributions of the simulated anomalous
samples and the normal ones are quite similar. Some hard
cases could result in reconstructions retaining anomalous
features because the model would still depend on the con-
ditions during sampling. On the contrary, with our noisy
condition embedding, the generated samples can remain se-
mantically non-anomalous while still appearing consistent
with the inputs.

We provide qualitative results of the mentioned meth-
ods in Table 1 : (i) using autoencoder as reconstructive
sub-network (DRAEM [32]), (ii) injecting noise to inputs
and then reconstructing based on diffusion models (Dif-
fADf&r), (iii) concatenating the latent vector c of the simu-
lated anomalous sample as the condition during training of
diffusion models (DiffADc) and (iv) using our noisy condi-
tion embedding (DiffAD). Our method shows superior per-
formances both in visual results of the reconstruction out-
puts and quantitative results in the following detection and
localization tasks.

4.2.2 Interpolated Channels

To ameliorate the distractions brought by differences in the
non-anomalous pixels between the reconstructed and orig-
inal images, we propose interpolated channels. Generated
from the interpolation of the anomalous vector and the re-
construction, the intermediate states closely match the re-
constructive images in non-anomalous regions, while re-
taining some anomalous features, which help the discrim-
inative sub-networks localize the anomalies. To verify the

(e)

(a)

(b)

(c)

(d)

Figure 5. Qualitative comparisons with other methods: (a) the
anomalous images, (b) the anomalous maps generated by Patch-
Core, (c) the anomalous maps of DRAEM, (d) our anomalous
maps, and (e) the ground truth.

claim that interpolated latent leads to more similar recon-
struction in the normal regions, we compare PSNR of non-
anomalous regions (formally defined as the complement of
the GT anomaly mask) of various methods. Specifically,
we compute PSNR between the interpolated latent xinter

and the reconstruction xr (denoted as p1), PSNR between
the VAE-reconstructed image x̃a and xr (p2), and PSNR
between the anomalous input xa and xr (p3). Experiments
showed that p1 = 35.41 > p2 = 30.24 > p3 = 28.08.
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Figure 6. Qualitative examples. From top to bottom: the original anomalous input, our reconstruction, our predicted anomaly mask, and
the ground truth mask. In some cases such as hazelnut and wood, our predicted masks are more accurate than the given ground truth masks.
We also provide some unsatisfying outputs in the red box, which have pleasing reconstruction results but inaccurate segmentation results.

As expected, the results quantitatively show that the inter-
polated latent is more similar to the reconstruction in nor-
mal regions, and helps ameliorate distractions brought on
by pixel-level differences in normal regions.

Table 1 reports the results of our DiffAD variants trained
(i) without the interpolated channels (DiffADno inter), (ii)
with decoding the latent vector c of the anomalous in-
put into x̃a as the additional channels, i.e. λ = 1 (Dif-
fADx̃a inter ) and (iii) with our interpolated channels with
λ = 0.5 (DiffAD). We also provide visual comparisons in
Figure 4. When trained without interpolated channels, the
discriminative sub-networks significantly drop in both de-
tection and localization performance. However, the perfor-
mance gaps can be narrowed by using a simple concatena-
tion with the VAE-reconstructed sample.

4.3. Comparison with State-of-the-art Methods

4.3.1 Anomaly Detection

For the anomaly detection task, we choose four
reconstruction-based methods as our baselines, in-

cluding GANomaly[1], OCR-GAN[16], RIAD[33] and
DRAEM[32]. More comparisons are shown in the supple-
mentary materials. Our method significantly outperforms
other baselines, achieving the highest AUROC in 4 out of 5
feature classes and 9 out of 15 classes in general as shown
in Table 2. We also achieve comparable results in other
classes and the best average score among all the baselines.

Our method shows superior performance in texture type
classes, where all the regions of the images belong to the
detection area, without distinction between object and back-
ground. In the object type classes, however, the back-
grounds of some images are not very clean, with some tex-
tures or contaminants that may cause distractions to the dis-
criminative sub-network.

4.3.2 Anomaly Localization

As shown in Table 3, we compare the pixel-level anomaly
localization performance with the recent state-of-the-art
baselines, including representation-based methods (e.g.
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Reverse Distillation [9], PaDim [8] and PatchCore [24]
) and reconstruction-based methods (RIAD [33] and
DRAEM[32]). Our DiffAD outperforms the state-of-the-
art in terms of both AUROC and AP among all types of
methods, surpassing the former SOTA by a margin of 0.2
percentage points in AUROC and 6.2 percentage points in
AP. As shown in Figure 5, PatchCore produces rough seg-
mentation results and misclassification of normal areas as
abnormal. DRAEM, on the other hand, tends to ignore
some minor anomalies. However, our DiffAD generates pre-
cise anomalous masks. More visual results are provided
in 6 (green box). As illustrated in some cases such as the
hazelnut with letters and the wood with scratch, we yield
more accurate predicted anomalous masks than the ground
truth, which suggests that our method is sometimes un-
derestimated due to the ambiguous annotations. Review-
ing some unpleasing cases with lower scores, as shown in
Figure 6 (red box), we are surprised to find that the recon-
struction outputs are quite correct while the discriminative
sub-network either fails to distinguish the anomalies or mis-
takes some background changes for anomalies. As one test
instance may correspond to multiple normal patterns, it is
inferred that the basic U-net-based segmentation backbone
is not capable enough to differentiate real anomalies despite
irrelevant changes in normal regions.

5. Conclusion

We present a new method for anomaly detection called
DiffAD, which is based on the diffusion model. Our
goal is to overcome the challenges of reconstruction-based
anomaly detection methods, such as limited ability to han-
dle structural deformations, the over-generalizing ability of
the models that reconstructs the anomalies as well as the
normal regions, and the variety of the corresponding nor-
mal patterns for given anomalous samples. To address these
challenges, we propose using latent diffusion models in-
stead of traditional autoencoder-based sub-networks for re-
construction. We also introduce noisy condition embedding
and interpolated channels to guide the generation and re-
duce misalignment between the reconstructed and original
images. We conduct extensive experiments to evaluate the
effectiveness of our approach, and the results demonstrate
its promise. In future work, we plan to further develop the
use of attention mechanisms to improve the discriminative
sub-network’s ability. Overall, we believe that our DiffAD
has the potential to further improve the performance of sur-
face anomaly detection based on reconstruction.
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