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Figure 1: Clipart-driven facial editing. Given a clipart image, our model can transfer its facial attributes (e.g., hair, beard, etc.)

to the input source image. It allows the users to efficiently conduct facial editing by simply adding/swapping components in

the reference clipart (as shown on the left). Compared with prior works [3, 28], our model can transfer facial attributes while

maintaining the identity (as shown on the right). Clipart © from Open Peeps [37].

Abstract

The development of face editing has been boosted since
the birth of StyleGAN. While previous works have explored
different interactive methods, such as sketching and exem-
plar photos, they have been limited in terms of expressive-
ness and generality. In this paper, we propose a new in-
teraction method by guiding the editing with abstract cli-
part, composed of a set of simple semantic parts, allow-
ing users to control across face photos with simple clicks.
However, this is a challenging task given the large domain
gap between colorful face photos and abstract clipart with
limited data. To solve this problem, we introduce a frame-
work called ClipFaceShop 1 built on top of StyleGAN. The
key idea is to take advantage of W+ latent code encoded
rich and disentangled visual features, and create a new
lightweight selective feature adaptor to predict a modifi-
able path toward the target output photo. Since no pairwise
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labeled data exists for training, we design a set of losses
to provide supervision signals for learning the modifiable
path. Experimental results show that ClipFaceShop gen-
erates realistic and faithful face photos, sharing the same
facial attributes as the reference clipart. We demonstrate
that ClipFaceShop supports clipart in diverse styles, even
in form of a free-hand sketch.

1. Introduction

Face editing aims to manipulate the attributes specified

by the users while maintaining the non-modifiable attributes

unchanged. With the rapid development of Generative Ad-

versarial Network (GAN) [12], this task attracts many re-

cent works [45, 32, 9] for achieving impressive results.

In particular, because of the powerful disentangled latent

space, StyleGAN [18] has become a de facto building block

for generating realistic editing results. To express the user’s

intention, there are mainly three ways of editing includ-

ing sketching, text-guiding, and exemplar photo. Unfortu-

nately, these interaction methods may not enable effective

and precise editing across different face photos for people

without design experience.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23341



More specifically, sketch-based face editing [30, 4, 25]

allows users to directly draw strokes on top of the face, such

as changing the size of eyes. Although simple, the quality of

results often relies on the users’ sketching skills and the in-

put sketch cannot directly adapt to different face photos. By

taking advantage of well-aligned textual-visual embedding

space of CLIP [31], text-based face photo editing [28, 21]

has appeared to control the facial attributes with simple tex-

tual instructions, such as making a face photo into “Emma

Stone” style. Such a condition can flexibly change the fa-

cial attributes without finetuning on a specific dataset, but

is unable to conduct fine-grained control given the ambigu-

ity and high-level nature of the text description. Another

stream of works [24, 13, 44] transfers the facial attributes

from a reference photo to the target photo, allowing both

fine-grained and cross-photo control. However, finding a

perfect examplar photo is not an easy task and such trans-

fer is a one-off operation that is hard to iteratively refine the

results.

In this work, we propose a new interaction method for

face editing using a mix-and-match clipart. Given a source

photo and a reference clipart, we aim to transfer the at-

tributes (e.g., facial expression, beard, hairstyle, etc.) from

the clipart to the face photo. Thanks to the growing cli-

part community, there are many well-curated libraries, such

as OpenPeeps [37] and Avataaars [36]. Users can easily

create the reference clipart by combining the components

through simple clicks, as shown in Fig. 2. However, clipart-

driven face editing poses many challenges. First, different

from directly editing on the photo, there exists a large do-

main gap between the clipart and the natural photo to be

influenced, not only on the identity. Since clipart is much

more abstract than the natural photo and with fewer visual

features, how to correctly match the facial attributes across

domains and identities is a critical problem to be solved.

Second, unlike face photos which have plenty of datasets

with annotations (e.g., segmentation), clipart is often lim-

ited by the data scale. Collecting pairwise datasets (i.e., ref-

erence clipart and source photo) for training is impractical.

A model that could learn such attribute transfer only from a

single clipart is desired. Furthermore, facial attributes can

be diverse, including intrinsic attributes (e.g., beard) and ac-

cessories (e.g., glasses). The model needs to transfer these

attributes accurately without modifying the face identity.

To this end, we introduce a novel pipeline, namely Clip-
FaceShop, to tackle the above challenges and make the fol-

lowing technical contributions: 1) Rather than finetuning

or changing StyleGAN’s architecture, we take the strength

of its latent code by learning a light-weight selective fea-

ture adaptor to conduct feature transformation. This can

also effectively avoid overfitting with few training data; 2)

To facilitate training without pairwise ground truth data,

we design a set of loss terms. Besides the general iden-

Figure 2: Examples of mix-and-match clipart, ©Open

Peeps.

tity and background preservation constraints, we further de-

sign transfer, similarity, and consistency losses by utilizing

the semantic info encoded in the CLIP embedding. These

terms help our adaptor to find a modifiable path to bridge

the domain gap while maintaining the identity of the input

source photo; 3) As not all features are equally contributed

to different facial attributes, we conduct an experiment to

analyze the layer-wise and channel-wise importance among

features for selective feature modification to edit the face

photo. We also take a two-stage training for inference to

allow customization on the final results.

We have conducted extensive experiments and a user

study to demonstrate the effectiveness of our model and

shown its superiority over state-of-the-art methods of

clipart-based face photo editing. Note that our model not

only works well on very abstract clipart containing only

black and white strokes, but it also works for more cartoon-

like clipart with diverse styles. We also show the generality

of our model on video in the supplementary material.

2. Related Work

Our paper falls into the domain of face photo editing,

which has been actively studied recently. The milestone

work StyleGAN [18] can generate high-resolution images

and its learned disentangled latent space is friendly for edit-

ing tasks.

StyleGAN Inversion. StyleGAN inversion aims to find

a latent vector that can reconstruct the input face photo.

It can be categorized into optimization-based and encoder-

based methods. The optimization-based methods obtain a

latent vector of an input image via an online optimization

process. For example, Image2StyleGAN [1] optimizes per-

ceptual loss to obtain a latent code. PTI [33] first gets

a rough latent vector by optimization, then fine-tunes the

generator to incorporate the out-of-domain images. The

encoder-based methods design an encoder to learn the la-

tent code mapping. For example, pSp [32] designs an en-

coder based on a feature pyramid to map the features of
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input images into the latent space of W+. e4e [38] uses a

latent discriminator to train an encoder. Besides, some other

works like HyperStyle [2] and HyperInverter [7] focus on

fine-tuning the weight of the StyleGAN for inversion. Fur-

thermore, InterfaceGAN [35] and StyleFusion [16] study

disentangled face representation in order to control proper-

ties more precisely. We borrow the idea of StyleGAN inver-

sion and leverage the optimization-based approach to train

an adaptor to help select proper features for face photo edit-

ing.

Text-driven Editing. Text-driven editing aims to edit a

face photo guided by text prompts. TediGAN [40] proposes

a multi-modal generation framework and controls images

with textual features. By using the CLIP’s [31] powerful se-

mantic features, StyleCLIP [28] edits images with shift la-

tent via three ways of text-guided manipulations. StyleMC

[21] extends the online optimization process of the style

layer in StyleGAN and improves its efficiency. StyleGAN-

NADA [11] presents diverse style transfer by shifting the

generator to characterized domains through CLIP prompts.

Recently, NVIDIA’s Textual Inversion [10] and Google’s

DreamBooth [34] apply prompt inversion to express the in-

formation of an image using a pseudoword and improve

the generative outputs, increasing the performance on ef-

ficiency, image fidelity, and information accuracy. Text-

driven algorithms produce reasonable visuals that corre-

spond to text descriptions, showing the surprising power.

However, as a high-level interaction format, text prompt has

its limitation on expressing local fine-grained changes.

Sketch-driven Editing. Sketch-driven editing aims to

edit a face photo referring to a sketch. Pix2Pix [15] and

DeepFaceDrawing [4] modify the target image based on

sketch editing via a pixel-level generation. FaceShop [30]

allows users to directly draw sketches on photos for edit-

ing and trains a convolutional neural network with its own-

collected dataset to render images with sketches. JoJoGAN

[5] and Mind the GAP [47] stylize faces into reference

domain (e.g., sketch) by using StyleGAN’s latent space.

DeepFaceVideoEditing [25] extends sketch-based transfer

to videos, and users can edit portrait attributes to each frame

with sketches. One downside effect of sketch-based inter-

action is that users may take effort to draw multiple times

before obtaining the satisfied results, and this drawing can-

not be adapted to other photos easily.

Exemplar-driven Editing. Exemplar-driven editing

aims to transfer the attribute from a reference face to a target

face. It usually uses real face photos or facial segmentation

as exemplars to guide editing. ELEGANT [41] creates a

model that transfers the same sort of properties from one

exemplar to another by swapping a portion of their encod-

ings. MulGAN [13] encodes various attributes about spe-

cific regions to improve image generation and editing abil-

ity. Yin et al. [44] apply a geometry-aware flow to imple-

ment instance-level attribute transfer. MaskGAN [24] em-

ploys semantic masks as intermediate features of references

to improve face editing while maintaining image fidelity.

Barbershop [46] and Style Your Hair [20] propose models

for solving hairstyle transfer with the help of segmentation

masks. TargetCLIP [3] makes contributions to manipulat-

ing high-level semantic attributes by doing essence transfer

with exemplars like real photos or cartoon photos. These

works, although effective when using a natural face photo as

the reference, will generate serious artifacts when directly

referring to a clipart face.

3. Method
Following previous works [28, 1, 3], our ClipFaceShop

also builds on top of the StyleGAN’s W+ space, which has

shown promising results on various applications. However,

directly finetuning the original StyleGAN model [5, 39] is

inadequate for our setting given the limited unpaired train-

ing data. To fully utilize the disentangled latent space, we

keep the pre-trained StyleGAN fixed and design a light-

weight selective feature adaptor and a set of losses for find-

ing the modifiable path along the W+ space, as shown in

Fig. 3. Formally, given a source photo Iface and the cli-

part reference Iart, we first encode the source photo into

the W+ space as w through e4e encoder [38]. Then our

adaptor A transforms w into w′ = A(w) before sending

it into the pre-trained StyleGAN generator G for obtaining

the transformed face photo.

3.1. Selective Feature Adaptor

The pre-trained StyleGAN has encoded rich facial at-

tributes in the w latent code and has been proven that simple

interpolation on w can generate faithful results [19, 1]. In-

spired by domain adaption works [42, 47], to preserve this

distribution as much as possible, we design our adaptor as a

linear transformation of w ∈ R
18×512 as:

A(w) = a� w + b,

where a, b ∈ R
18×512 are learned parameters during train-

ing, and � denotes the element-wise multiplication. We

regard b as the modifiable direction for transferring facial

attributes. Note that during the inference time, our model

acts differently from the training one, where we only use b
for transforming the w for obtaining Iout:

Iout = G(w + b).

The insight here is that directly predicting the modifiable

path b with w is difficult and parameter a serves as a domain

adaption operator, closing the drastic domain gap between

natural photo and clipart. In this way, the model can focus

on finding the high-level attribute changes instead of low-

level texture and style differences.
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Figure 3: Our pipeline. Given a clipart reference image Iart, our model trains to transfer its facial attributes (i.e., expression

and red hair) to the source photos {Ifacei} through a set of specially-designed losses. The lightweight selective feature

adaptor aims to learn a modifiable path b in stage (a) for conducting image editing in stage (b) during the inference time.

3.2. Training Objectives

To learn the modifiable path b and domain adaption op-

erator a, we design a set of losses in this subsection. They

can be generally categorized into two groups, one for facial

attributes transfer, and the other for identity and background

preservation.

Transfer Loss. Inspired by TargetCLIP [3], we use the

CLIP embedding for capturing semantic info. We also ex-

periment with other backbones [8], and find CLIP performs

the best because of its well-learned visual-semantic embed-

ding. After transforming through the adaptor, the image

should share high-level semantics with the reference clipart

and we use cosine similarity to compute the loss as:

Ltl = 1− C (Iart) · C(G(A(w)))

‖C (Iart)‖2 ‖C(G(A(w)))‖2 , (1)

where C denotes the visual encoder of the CLIP model.

Gap Loss. To further reduce the domain gap, we cre-

ate a standard clipart reference Istd by computing the aver-

age face over Open Peeps dataset in the W+ space, and the

changing direction in face photo domain should be aligned

with the clipart domain and compute the loss as:

Δ ˆIart = C(Iart)−C(Istd),Δ ˆIface = C(G(A(w)))−C(Iface).
(2)

Lgap = 1− Δ ˆIart ·Δ ˆIface∥∥∥Δ ˆIart

∥∥∥
2

∥∥∥Δ ˆIface

∥∥∥
2

. (3)

Consistency Loss. When transforming facial features

of the same clipart reference to different face photos, the

shift directions should be correlated, and we measure this

shift direction as the semantic difference in CLIP space:

ΔIface = C(G(A(w))) − C(G(w)). We enumerate all

pairwise comparisons and define the loss as:

Lcon =
1(
N
2

)
∑

i,j∈N

1− ΔIfacei ·ΔIfacej
‖ΔIfacei‖2

∥∥ΔIfacej
∥∥
2

, (4)

where N denotes the number of face photos in a training

batch.

Identity Loss. To keep the identity of the input photo,

we add this term for constraining the identity changes with

the help of a pre-trained face recognition model called Arc-

Face [6] R(·):

LID = 1− R(G(A(w))) ·R(Iface)

‖R(G(A(w)))‖2 ‖R(Iface)‖2 . (5)

Similarity Loss. To strengthen the identity preservation

and avoid the influence of domain gap, we add this loss to

measure the similarity of the face photo before and after

transferring in CLIP visual embedding as:

Lsim = 1− C(G(A(w))) · C(Iface)

‖C(G(A(w)))‖2 ‖C(Iface)‖2 . (6)

Background Loss. We find that the background may be

altered during the training and add this loss for constraining:

Lbg = ‖G(A(w))P (G(A(w)))− IfaceP (Iface)‖1, (7)

where P denotes the pre-trained face parsing model [23],

for segmenting the background region out.

In summary, our total loss is:

L = λconLcon + λtlLtl + λsimLsim + λIDLID

+λgapLgap + λbgLbg + λL2(‖a‖2+‖b‖2),
(8)
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where {λ} are used to balance among different loss terms.

Besides, we also add a L2 regularization term during the

optimization.

3.3. Selective Masking and Two-stage Training

There are many recent works [40, 19] studying the W+
space and finding that different parts of the latent code con-

trol different visual features. Some are more suitable to con-

duct global changes, and some tend to be served for more

local modifications. Motivated by StyleCLIP [28], to adopt

more fine-grained changes, we compute layer-wise impor-

tance over the latent code for facial attributes. Then the im-

portance values can be converted into a binary mask after

thresholding (i.e., , the top 5 most activated layers empiri-

cally). We impose this binary mask directly on a, b, since

they are all in the same dimension with w ∈ R
18×512 (i.e.,

18 layers with 18× 512 channels) and we have fixed w for

training.

We regard the clip embedding difference for every at-

tribute i as the target direction Δti using a bank of sentence

templates. We then perturb each channel c of the latent code

with a random noise, the same as StyleCLIP [28] for obtain-

ing the code direction Δwc. The channel-wise importance

for all N attributes can be easily computed by projecting

the code direction onto the target direction as
∑ |Δwc·Δti|

N .

The final importance value of each layer is thus obtained by

averaging all the channel importance values in that specific

layer.

As shown in Fig. 4, our model can also transfer the color

from the reference. To provide such flexibility for user con-

trol, we train our model in two stages. The first stage mainly

focuses on structural changes of facial attributes by only us-

ing black-and-white reference clipart. While in the second

stage, we change the standard clipart in Lgap to the black-

white version of the input reference clipart to learn the color

shift. Each stage will learn a separate modifiable path bi,
and the output is calculated as:

Iout = G(w + α1b1 + α2b2), (9)

where users can use αi to control the extent of each opera-

tion.

4. Experiments
We show our results on face photo editing in Fig. 4. As

can be seen, our model can work on various face photos

and references for changing different facial attributes (e.g.,
hairstyle, expression, hair color, eyeglasses, etc.) while

maintaining the facial identity. It can also generate uncom-

mon faces, such as women with beard. Note that our model

is not limited to this particular style of Open Peeps, but a

general method for different kinds of reference medias (e.g.,
cartoon) as shown in Fig. 10 and Fig. 11. In this section,

Figure 4: Our results on clipart-driven face photo editing.

Our model can edit various facial attributes according to the

input reference.

we conduct several experiments and a user study to demon-

strate the effectiveness and generality of our model.

4.1. Implementation Details.

We use the pre-trained StyleGAN2 [19] on the FFHQ

dataset [17] as our generator G, and ViT-B/32 as our CLIP

model C. To train our model, we randomly sample face

photos from FFHQ dataset. We mainly use clipart from

Open Peeps [37] for training and testing, but we will show

the generality of our model on other diverse data (e.g., dig-

ital paintings and cartoons) in the following subsections.

The optimizer is set to Adam with a default learning rate

of 0.1. And each training takes 6∼8mins with a GPU

RTX3090 under 300 epochs. We use different sets of hyper-

parameters for re-weighting loss in different stages. For the

first stage, we set λid = 1.5, λsim = 0.3, λtl = 1, λcon =
0.1, λgap = 1, λL2

= 5e − 5, λbg = 1e − 7, and for

the second stage, we set λid = 0.2, λsim = 0.1, λtl =
0.15, λcon = 0.05, λgap = 0.5, λL2 = 3e−6, λbg = 1e−7.

4.2. Comparisons

In this subsection, we compare our pipeline with the

state-of-the-art methods both qualitatively and quantita-

tively.

Baselines. We compare with three methods includ-

ing StyleCLIP [28], a work that manipulates face at-

tributes based on semantics encoded in CLIP embedding;
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BlendGANSourceReference Ours TargetCLIP StyleCLIP

Figure 5: Comparison of different methods for clipart-

driven face photo editing. Our method can better transfer

the facial attributes from the reference while keeping the

identity. The clipart © from Open Peeps [37].

Table 1: Quantitative comparison with state-of-the art meth-

ods.

Model ID ↓ FID ↓ SIM ↑ Color ↑
BlendGAN 0.8418 105.14 0.66 0.52

StyleCLIP 0.5452 54.54 0.77 0.42

TargetCLIP 0.6642 49.35 0.68 0.60

Ours 0.5750 74.92 0.68 0.65

Table 2: Accuracy on different transferred facial attributes

over different compared methods.

Model BeardAcc ↑ GlassAcc ↑ HairAcc ↑ SmileAcc ↑
BlendGAN 0.50 0.50 0.51 0.46

StyleCLIP 0.59 0.52 0.48 0.62

TargetCLIP 0.78 0.53 0.46 0.64

Ours 0.64 0.56 0.58 0.80

BlendGAN [27], generating stylized face photo based on

digital painting; and TargetCLIP [3], using cartoon photos

to conduct essence transfer on human faces. All three works

are open-source projects and are easy to adapt to our task.

For StyleCLIP, we replace the prompt encoding with the

CLIP embedding of input reference clipart tailored to our

task.

Testset and Metrics. We evaluate models quantitatively

across 2,500 editing cases, covering 25 clipart from Open

Peeps and 100 real photos from FFHQ dataset [17] with

varied appearances that out of training set. We measure the

performance from different perspectives: 1). Identity (ID),

by implementing with Eq. 5. 2). Quality, by calculating

FID (Fréchet Inception Distance) [14]. 3). Faithfulness,

by computing cosine similarity (SIM) of CLIP embeddings

between generated face photo and the input source one. 4).

Color, by evaluating across 500 editing cases, covering 5

clipart (with different hair colors: black, grey, yellow, blue,

and red) and 100 real face photo. The results are classified

into these five color categories based on CLIP embedding

similarity between each output image and color prompt and

we use the accuracy to represent the color performance.

Results. We show the qualitative comparison in Fig. 5

over various design cases. As can be seen, our model can

generate superior results over compared methods. It can

transfer the facial attributes and accessories not only at the

semantic level (i.e., whether possess an attribute), but at the

appearance/style level. For example, in the second and third

row of the first group of results, our model can transfer the

beard and eyeglasses (i.e., black lenses) in the exact style of

those in the reference clipart. Instead, BlendGAN prefers

to generate less realistic results. Though TargetCLIP and

StyleCLIP can successfully edit some attributes, they often

have artifacts due to the large domain gap, such as glaring

eyes and pale skin. Our model can reduce such domain gaps

and maintain the identity of the input source photo.

The quantitative comparison is shown in Tab. 1. Since

the facial attributes cannot be changed by StyleCLIP very

often, it obtains the highest identity score and lower FID.

BlendGAN fades the color of photos to mimic the style

of input clipart, leading to a lower SIM score but a high

FID. Though TargetCLIP gets better results on transferring

facial attributes (i.e., high SIM), it sacrifices the identity.

Our model balances these terms well and obtains the high-

est score for the Color metric. As the SIM is influenced by

the textural appearance which may not be accurate at the

semantic level, we further compute accuracy over different

facial attributes including beard (i.e., w/ or w/o), eyeglasses

(i.e., w/ or w/o), hair (i.e., long or short), and smile (i.e., w/

or w/o) similar to the Color. The result is shown in Tab. 2.

Our model outperforms the others in most cases, validat-

ing the effectiveness of our model in transferring facial at-

tributes in such a challenging scenario.

4.3. User Study

We conduct a user study to visually compare results. We

invited 30 participants in public from various backgrounds.

Each participant was asked to fill up a questionnaire, and

each questionnaire contains three sets of questions, cover-

ing 20 different editing cases randomly selected from our

test set. In each design case, we displayed results of ours

and baselines randomly and asked the participants to choose

the best one based on 1). Realistic; 2). Faithfulness,

whether it shares the same facial attributes as the reference

clipart; and 3). Identity, whether it has the same identity
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(a) Realistic (b) Faithfulness (c) Identity

Figure 6: User study result. We show the user preference

over different methods from three aspects.
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Figure 7: The effectiveness of selective feature adaptor. We

train and test on different variants of adaptors.

as the input photo. The results are shown in Fig. 6, and our

model obtains the best result, outperforming the others by a

large margin.

4.4. Ablation Study

The Effectiveness of Selective Feature Adaptor. We

test different variants of the selective feature adaptor by

training and testing in different ways, as shown in Fig. 7.

By visualizing a � w + b and a � w, we can find that a
helps the model to obtain a more average face to reduce the

domain gap, focusing more on modifiable path b prediction.

Without the a by directly training with w + b fails to ob-

tain a consistent modifiable direction and cannot faithfully

transfer the facial attributes across all photos.

The Effectiveness of Loss Terms. To validate different

loss designs, we start with the transfer loss Ltl and grad-

ually add the others one by one. We show the qualitative

comparison in Fig. 8 and the quantitative comparison in

Tab. 3. By adding Lgap and Lcon, the photo shares more

similar attributes as the reference clipart. By adding Lbg ,

Lsim and LID, the identity has been restored properly.

Note that the visual quality (Fig. 8) has explicit improve-

Figure 8: The effectiveness of different loss terms.

Table 3: The effectiveness of masking and different loss

terms.

Model ID ↓ FID ↓ SIM ↑ Color ↑
w/o mask 0.8865 103.38 0.72 0.59

Ltl 0.8858 66.00 0.74 0.52

+Lcon 0.8951 66.25 0.74 0.52

+LID 0.5941 59.48 0.70 0.62

+Lsim 0.5395 59.17 0.70 0.54

+Lgap 0.6641 72.87 0.69 0.82
+Lbg (Ours) 0.5750 74.92 0.68 0.65

Table 4: Accuracy on transferred facial attributes over dif-

ferent model variants over masking and loss terms.

Model BeardAcc ↑ GlassAcc ↑ HairAcc ↑ SmileAcc ↑
w/o mask 0.52 0.47 0.61 0.33

Ltl 0.75 0.73 0.49 0.63

+Lcon 0.75 0.73 0.55 0.61

+LID 0.58 0.74 0.55 0.60

+Lsim 0.58 0.71 0.55 0.53

+Lgap 0.59 0.75 0.50 0.79

+Lbg (Ours) 0.64 0.56 0.58 0.80

Figure 9: The effectiveness of two-stage training. Users

are allowed to control the extent of transferred attributes by

adjusting the parameters of each modifiable path.

ment when adding different loss terms even though the met-

ric increases a little.

The Effectiveness of Masking and Two-stage Train-
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ing. as shown in Tab. 3, by removing the masks during

training, the performance drops a lot, indicating the ef-

fectiveness of the masking operation. As mentioned in

Sec. 3.3, we use two-stage training to provide users more

controllability over results. We alter the weights of learned

modifiable paths and show the result in Fig. 9. As the

weight increases, the transferred facial attributes become

stronger. Users can manipulate a slider bar to flexibly con-

trol the extent of modification during editing.

4.5. Generality to Diverse Reference Styles

To examine the generality of our model, we also test

on reference images with different styles, such as rough

sketches and cartoons. We show the results compared with

previous works in Fig. 10 and more results in Fig. 11. As

can be seen, rather than being as a customized method for a

unique style, our model is a general method that can work

well on various types of reference styles. For example,

it can transfer hairstyle from a hand-drawn coarse sketch

(Fig. 10, fourth row) and hair color with facial expression

from colorful cartoon images (Fig. 10, fifth row).

4.6. Discussions

Though our model can achieve promising results, it still

has some limitations given such a challenging task. First,

since our model is based on a pre-trained StyleGAN, it is

hard to generate out-of-distribution photos, such as a person

wearing a hat. We believe that using an advanced generator

trained on a more diverse dataset will mitigate this prob-

lem. Second, some attributes are entangled, such as smile

and expression. For example, as shown in the last row of the

photos in Fig. 10, the eyes are closed given a sad face, and

in Fig. 7, the teeth go with a smiling face. One possible so-

lution is to find latent hyperplanes and map latent to a more

disentangled subspace, as discussed in InterfaceGAN [35].

Third, as shown in the supplementary video, when apply-

ing our model directly on a talking face, it keeps the mouth

close all the time because of the reference clipart. Since our

model is designed for static images, adding guidance of op-

tical flow may help in such a dynamic case. Last, to avoid

potential ethical issues, we advocate users for choosing ad-

equate clipart for editing.

5. Conclusion
In this work, we introduce ClipFaceShop, a novel

pipeline for clipart-driven face photo editing. Our model

can transfer the facial attributes from abstract clipart to the

face photo while preserving the identity. This allows users

to edit a photo easily by adding/removing components in

clipart through clicks. To achieve this and resolve the large

domain gap, we propose a selective feature adaptor with

masking and a set of losses. We have demonstrated the

effectiveness of our model through extensive experiments.

Figure 10: Generality to different reference styles. We show

results under diverse source and reference image pairs, and

our model can transfer the facial features faithfully. The

clipart © from Vue Color Avatar [22], cartoon from Disney

Animation, and sketches from Toonify [29], PSP [32] and

ArtLine [26].
So

ur
ce

Reference

Figure 11: More results on diverse reference images. The

cartoon © from Disney Animation, B&T Animation, and

sketches from ArtLine [26], PSP [32], EmoG [43].

We believe editing with such abstract art has big potential

in practical applications, and we are the very initial step in

this direction. We will release our code and hope our model

can inspire more future work.
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