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Abstract

Positive-unlabeled learning (PU learning) in hyperspec-
tral remote sensing imagery (HSI) is aimed at learning a bi-
nary classifier from positive and unlabeled data, which has
broad prospects in various earth vision applications. How-
ever, when PU learning meets limited labeled HSI, the un-
labeled data may dominate the optimization process, which
makes the neural networks overfit the unlabeled data. In
this paper, a Taylor variational loss is proposed for HSI
PU learning, which reduces the weight of the gradient of
the unlabeled data by Taylor series expansion to enable the
network to find a balance between overfitting and underfit-
ting. In addition, the self-calibrated optimization strategy
is designed to stabilize the training process. Experiments
on 7 benchmark datasets (21 tasks in total) validate the ef-
fectiveness of the proposed method. Code is at: https:
//github.com/Hengwei-Zhao96/T-HOneCls.

1. Introduction
Positive-unlabeled learning is aimed at learning a binary

classifier from positive and unlabeled data [21, 17, 3]. Due
to the lack of negative samples, PU learning is a challenging
task, but play an important role in machine learning appli-
cations, including product recommendation [16], deceptive
reviews detection [30], and medical diagnosis [39].

PU learning in HSI is a powerful tool for environmental
monitoring [43, 23]. For example, when mapping the in-
vasive species in complex forestry, PU learning only needs
positive labels of invasive species; however, traditional hy-
perspectral classification [19, 37, 46] requires the vari-
ous negative classes to be labeled to obtain a discriminate
boundary, which is labor-intensive, even impossible, to in-
vestigate the negative objects and annotate them in high
species richness areas [43].

Few releated works have focused on PU learning in HSI.
Compared to other tasks, the training data size in HSI is
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much smaller [9], and the deep models are more likely to
be over-fitting and susceptible to unalabeled data. These
characteristics make hyperspectral PU learning a more chal-
lenging task.

PU learning methods can be divided into two categories,
according to whether the class prior (πp, i.e., the proportion
of positive data) is assumed to be known. (1) Due to the
limited supervision information from PU data, most stud-
ies assume that the class prior is available [43, 23], but in
reality, the class prior is hard to be estimated accurately,
especially for HSIs, due to the severe inter-class similar-
ity and intra-class variation. (2) Class prior-free PU learn-
ing is a recent research focus of the machine learning com-
munity [3, 17], where variational principle-based PU learn-
ing [3] is one of the state-of-the-art in theory. It approxi-
mates the positive distribution by optimizing the posterior
probability, i.e., the classifier, and does not require knowing
the class prior. However, the unlabeled data may dominate
the optimization process, which makes it difficult for neu-
ral networks to find a balance between the underfitting and
overfitting of positive data, especially when the variational
principle meets limited labeled HSI data (discussed later in
Section 3 in detail).

In this paper, a Taylor series expansion-based variational
framework—T-HOneCls—is proposed to solve the limited
labeled hyperspectral PU learning problem without class
prior. The contributions of this paper are summarized as
follows:

• A novel insight is proposed in terms of the dynamic
change of the loss, which demonstrates that the unla-
beled data dominating the training process is the bot-
tleneck of the variational principle-based classifier.

• Taylor variational loss is proposed to tackle the prob-
lem of PU learning without a class prior, which reduces
the weight of the gradient of the unlabeled data and si-
multaneously satisfy the variational principle by Tay-
lor series expansion, to alleviate the problem of unla-
beled data dominating the training process.
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• Self-calibrated optimization is proposed to take advan-
tage of the supervisory signals from the network itself
to stabilize the training process and alleviate the poten-
tial over-fitting problem caused by limited labeled data
with a large pool of unlabeled data.

• Extensive experiments are conducted on 7 benchmark
datasets, including 5 hyperspectral datasets (19 tasks
in total), CIFAR-10 and STL-10, where the proposed
method outperforms other state-of-the-art methods in
most cases.

2. Related Works
Deep Learning Based Classification for HSI The meth-
ods of HSI classification can be divided into patch-based
framework and patch-free framework [46]. The patch-based
methods aim to model a mapping function fpb : RS×S →
R, and first extract the pixels to be classified and their
surrounding pixels to build patches with the size S × S,
and then use these patches and labels to train a neural net-
work. Different neural networks can be used to model
fpb [5, 38, 15, 6]. The patch-free frameworks aim to model
a mapping function fpf : RH×W → RH×W by a fully
convolutional neural network [19, 37, 46], and due to the
avoidance of redundant computation in patches, the infer-
ence time of the patch-free frameworks is improved by hun-
dreds of times [46].

Differing from the above supervised classification meth-
ods, which both need positive and negative data, the method
proposed in this paper focuses on weakly supervised PU
learning and only requires positive data to be labeled.

Positive and Unlabeled Learning Early studies focused
on the two-step heuristic approach [8, 12], which first ob-
tain reliable negative samples from the unlabeled data and
then train a binary classifier; however, the performance of
these two-step heuristic classifiers is limited by whether the
selected samples are correct or not. Besides the two-step
methods, this weakly supervised task can be tackled by one-
step methods, by cost-sensitive based methods [25, 24, 27],
label disambiguation based methods [41], and density ratio
estimation-based methods [20]. Furthermore, the methods
based on risk estimation are some of the most theoretically
and practically effective methods [21, 43, 23, 44, 36, 45].
The imbalanced PU learning has attracted attention re-
cently [32, 4]. Specifically, OC loss [44] has been proposed
to solve the imbalance problem in HSI. However, most of
these methods assume that the true πp is available in ad-
vance, which is difficult to estimate from HSI with inter-
class similarity and intra-class variation.

Learning from PU data without a class prior has recently
received attention [17, 3, 22]. A convex formulation was
proposed in [2]. However, this was based on unbiased

risk estimation, and conflicted with the flexible neural net-
works [21]. Predictive adversarial networks (PAN) trans-
form the generator in the generative adversarial network
into a classifier [17] to learn from PU data. A heuristic
mixup technique is proposed in [22]. The vPU [3] is based
on the variational principle. However, the performance of
these methods is unsatisfactory with limited labeled sam-
ples, and the problem of unlabeled data dominating the op-
timization process still exists with vPU.

Other Weakly Supervised Learning Methods Label
noise representation learning and semi-supervised learning
are related to this paper.

The problem of PU learning can be regarded as label
noise representation learning, if the unlabeled samples are
regarded as noisy negative data. The adverse effects of
noisy labels can be mitigated in three directions: data, opti-
mization policy, and objective [13]. For the data, the insight
is to link the noisy class posterior and clean class posterior
by a noise transition matrix [33, 11, 28]. However, the un-
derlying noise transfer pattern is also difficult to estimate.
The dynamic optimization process of the deep neural net-
works is the key to the optimization policy, such as self-
training [18] and co-training [14, 40]. However, the noise
rate is difficult to estimate. Mitigating noisy labels from the
objective function is consistent with the purpose of this pa-
per, and some loss functions that are robust to noisy labels
have in fact been proposed [10, 42, 35, 7].

The problem of semi-supervised learning is to learn from
labeled and unlabeled data [31, 26], in the context of binary
classification, the labeled data contains positive and nega-
tive data. However, PU learning is a more challenging task
due to the lack of negative samples.

3. Class Prior-Free PU Learning Framework
with Taylor Variational Loss

The proposed PU learning framework (dubbed T-
HOneCls) is described in this section (Fig. 1). The proposed
Taylor variational loss is responsible for the task of learn-
ing from PU data without a class prior. The self-calibrated
optimization is proposed to stabilize the training process by
taking advantage of the supervisory signals from the net-
work itself with a large pool of unlabeled data.

3.1. Taylor Variational Loss

Preliminaries The spaces of the input and the output are
denoted as X ∈ Rd and Y ∈ {+1,−1}, respectively. The
joint density of (X,Y ) is p(x, y). The marginal distribu-
tions of the positive, negative, and unlabeled classes are
recorded as Pp(x) = P (x|y = +1), Pn(x) = P (x|y =

−1), and P (x), respectively. Let P = {xi}
Np

i=1
i.i.d∼ Pp(x)
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Figure 1: T-HOneCls: A Taylor series expansion-based
variational framework for HSI PU learning.

and U = {xi}Nu

i=1
i.i.d∼ P (x) are the positive and unla-

beled dataset, respectively. For simplicity, f(x; θ) is de-
noted as f(x), where θ represents the parameters of the
neural network. The PU classifier aims to obtain a paramet-
ric classifier, i.e., f(x), from the Bayesian classifier, i.e.,
f∗(x) = P (y = +1|x), from P and U .

The estimated positive distribution, i.e., P̂p(x), can be
obtained from the Bayes rule:

Pp(x) =
P (y = +1|x)P (x)∫
P (y = +1|x)P (x)dx

≈ f(x)P (x)

Eu[f(x)]
≜ P̂p(x).

(1)
If a set A exists and it satisfies the condition of∫
A Pp(x)dx > 0 and f∗(x) = 1,∀x∈A, Pp(x) = P̂p(x) if

and only if f(x) = f∗(x) [3]. The Kullback-Leibler (KL)
divergence can be used to estimate the approximate quality
of P̂p(x), and the variational approach can be described as
follows:

KL(Pp(x)||P̂p(x)) = Lvar(f(x))− Lvar(f
∗(x)), (2)

where

Lvar(f(x)) = log(Eu[f(x)])− Ep[log(f(x))]. (3)

For completeness of this paper, the proof of Eq. 2 is attached
to Appendix 1.

According to the non-negative property of KL di-
vergence, Lvar(f(x)) is the variational upper bound of
Lvar(f

∗(x)), and the minimization of Eq. 2 can be achieved
by minimizing Eq. 3, which can be calculated from the em-
pirical averages over P and U without a class prior by

L̂var(f(x)) = log(

nu∑
i=1

f(xu
i )

nu
)−

np∑
i=1

log(f(xp
i ))

np
, (4)

where np and nu are the number of positive and unlabeled
samples in a batch, respectively. In other words, the classi-
fier can be obtained by minimizing Eq. 4, without πp.

Theoretical Analysis of Variational Loss The robust-
ness of the variational loss to negative label noise is first
analyzed in this subsection, and then a novel insight is pro-
posed to demonstrate that the bottleneck of variational loss
is the unlabeled data dominating the training process.

The robustness of variational loss can be obtained by
comparing it with cross-entropy loss (L̂ce),

L̂ce(f(x)) = −

nn∑
i=1

log(1− f(xn
i ))

k
−

np∑
i=1

log(f(xp
i ))

k
, (5)

where nn is the number of negative samples in a batch, and
k = np + nn.

The first characteristic of variational loss is robustness
to negative label noise, which can be analyzed from the
weight of the gradient. The gradients of the cross-entropy
loss and the variational loss are shown in Eq. 6 and Eq. 7,
respectively. The unlabeled data are treated as noisy nega-
tive data in Eq. 6.

∂L̂cef(x)

∂θ
=

nu∑
i=1

∇θf(x
u
i )

k(1− f(xu
i ))
−

np∑
i=1

∇θf(x
p
i )

kf(xp
i )

, (6)

∂L̂varf(x)

∂θ
=

nu∑
i=1

∇θf(x
u
i )

nu∑
i=1

f(xu
i )

−
np∑
i=1

∇θf(x
p
i )

npf(x
p
i )

. (7)

By calculating the gradient of a batch of data from Eq. 6,
the positive data labeled as unlabeled will be given a
larger weight if the classifier correctly identifies the sam-
ple, and then the neural network will overfit the sample
with the wrong label. However, the variational loss treats
each unlabeled sample fairly by assigning the same weight

1/
nu∑
i=1

f(xu
i ), to each unlabeled sample from Eq. 7, which

can alleviate the classifier from overfitting these mislabeled
positive samples.

The second characteristic of variational loss is the prob-
lem of the unlabeled data dominating the optimization pro-
cess, which makes it difficult for neural networks to find a
balance between the underfitting and overfitting of positive
data. This phenomenon can be demonstrated by studying
the dynamic changes of the positive part of the variational
loss (dubbed positive loss) (Fig. 2). As shown in Fig. 2b, al-
though the total loss (L̂var(f(x))) decreases as the training
progresses, the positive loss shows an increasing trend in the
early training stage (Fig. 2a). In other words, the unlabeled
data dominate the optimization process. This phenomenon
leads to sub-optimal F1-scores and an erratic training pro-
cess (Fig. 2c). The number of iterations is uncertain when
the unlabeled data dominate training, which leading to a sig-
nificantly large standard deviation of F1-score in Fig. 2c.
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(a) Positive loss of the variational classifier (b) Total loss of the variational classifier (c) F1-score of the variational classifier

(d) Positive loss of T-HOneCls (e) Total loss of T-HOneCls (f) F1-score of T-HOneCls

Figure 2: The curves of loss and F1-score of the variational classifier and T-HOneCls with different positive samples in the
training stage (taking the cotton in the HongHu dataset as an example). The first row show the curves of the variational
classifier, and the second row show the curves of the classifier proposed in this paper. The less positive class training data,
the faster the variational model collapses.

Although the positive loss will decrease when the number
of positive data is small, F1-score will not steadily increase,
which indicates that the network has changed from under-
fitting to overfitting of positive data, rapidly. The smaller
the number of positive training samples, the more obvious
the instability in the training process, which can be shown
in Fig. 2c.

One of the potential factors for training instability is the
large weight given to the gradient of the unlabeled data. A
simple example is illustrated: the flexible neural networks
can very easily overfit to the training data, which makes
f(xu

i ) keep going to 0, and causes the weight of the gradi-
ent of the unlabeled samples to keep increasing. Based on
the above analyses, a new loss function is designed in the
following.

Taylor Series Expansion for Variational Loss The Tay-
lor series expansion is introduced into the variational princi-
ple to reduce the weight of the gradient of the unlabeled data
and simultaneously satisfy the variational principle, that is,
the loss should be greater than or equal to the variational
upper bound (Lvar).

If a given h(x) is differentiable at x = x0 to order o, the
Taylor series of h(x) is:

h(x) =

∞∑
i=0

h(i)(x0)

i!
(x− x0)

i, (8)

where the i-th order derivative of h(x) at x0 is h(i)(x0). If
the h(x) is defined as h(x) = log(x), then we set x0 = 1,

and for ∀i ≥ 1,

h(i)(x0 = 1) = (−1)i−1(i− 1)!, (9)

then the log(Eu[f(x)]) can be expressed as

log(Eu[f(x)]) =

∞∑
i=1

− (1− Eu[f(x)])
i

i
. (10)

If the finite terms are reserved, the variational loss can be
approximated as

LTar(f(x)) =

o∑
i=1

− (1− Eu[f(x)])
i

i
− Ep[log(f(x))],

(11)
where o ∈ N+ denotes the order of the Taylor series. The
Taylor variational loss can be calculated from the empirical
averages over P and U by

L̂Tar(f(x)) =

o∑
i=1

−σi
u

i
− σp

np
, (12)

where σu = 1− 1
nu

nu∑
i=1

f(xu
i ) and σp =

np∑
i=1

log(f(xp
i )).

The proposed Taylor variational loss can effectively al-
leviate the problem of training instability. It is obvious that

LTar(f(x)) ≥ Lvar(f(x)). (13)

The effectiveness of the Taylor variational loss can be fur-
ther illustrated from the weight of the gradient of the unla-
beled data. The detailed proof is as follows:
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If we let

L̂Tar−u(f(x)) =

o∑
i=1

−σi
u

i
, (14)

and then,

∂L̂Tar−uf(x)

∂θ
=

1

nu

o∑
i=1

σi−1
u

nu∑
i=1

∇θf(x
u
i ). (15)

Given that 0<
nu∑
i=1

f(xu
i )<nu, then

∂L̂Tar−uf(x)

∂θ
=

1− σo
u

nu∑
i=1

f(xu
i )

nu∑
i=1

∇θf(x
u
i ). (16)

More proof of Eq. 16 can be found in Appendix 2.
According to Eq. 16, as with the variational loss, the Tay-

lor variational loss also assigns the same weight to each
unlabeled sample, but the weight of the unlabeled sample
in the Taylor variational loss is less than that in variational
loss if the finite terms are reserved, as shown in Eq. 17,
which prevents the gradients of the unlabeled samples from
being given too much weight and then avoids the unlabeled
samples dominating the optimization process of the neural
network.

1
nu∑
i=1

f(xu
i )

− σo
u

nu∑
i=1

f(xu
i )

<
1

nu∑
i=1

f(xu
i )

. (17)

As o gets larger, the weight of the gradient of the unlabeled
samples in Taylor variational loss is convergent to that of
variational loss for a given classifier.

3.2. Self-calibrated Optimization

Self-calibrated optimization is aimed at improving the
performance of the classifier from the optimization process
by using additional supervisory signals from the neural net-
work itself. Specifically, KL-Teacher is proposed to utilize
the memorization ability of the neural network, to stabilize
the training process and alleviate the overfitting problem
with a large pool of unlabeled data.

The memorization ability [1] of the neural network can
also be observed when using variational-based loss to train
the neural network. As the number of training epochs in-
creases, the F1-score of the test set will first rise and then
decrease until convergence, as shown by the curves of the
F1-score in Fig. 2c, especially when the number of labeled
samples is limited (40 labeled samples).

In order to capture the supervisory signal brought by the
memorization ability of the neural network, two neural net-
works with the same architecture are used, with one being

the teacher network (T ) and the other the student network
(S). The weights of the teacher network (θtT , where t is the
number of iterations) are updated by the exponential mov-
ing average (EMA) of the student network, as follows:

θtT = αθt−1
T + (1− α)θtS . (18)

Due to the utilization of the EMA, the teacher network acts
as an “F1-score filter” and can obtain more stable classifi-
cation results, which is demonstrated in Section 4.

A consistency loss (Lkl) based on KL divergence is used
to force the teacher network and the student network to have
the same output, which can be used as an additional supervi-
sory signal to alleviate the overfitting problem of the student
network from a large pool of unlabeled data:

Lkl = KL(pT ||pS) +KL(pS ||pT ), (19)

where pT and pS are the probabilistic outputs of the teacher
network and the student network, respectively. The objec-
tive function of the student network is:

LS = LTar + βLkl. (20)

The output of the teacher network is used as the final clas-
sification result.

A detailed description of the training of T-HOneCls is
provided in Appendix 3. More ablation experiments about
EMA and Lkl can be found in Section 4.

4. Experimental Results and Analysis
4.1. Experimental Settings

Datasets 7 challenging datasets were used, including
3 UAV hyperspectral datasets (HongHu, LongKou, and
HanChuan, 15 tasks in total) [47], 2 HSI classification
datasets (Indian Pines and Pavia University, 4 tasks in to-
tal) and 2 RGB datasets (CIFAR-10 and STL-10). More
detailed information can be found in Appendix 4.

PU learning on UAV hyperspectral datasets is a challeng-
ing task. These UAV datasets mainly contain visually indis-
tinct crops, and have strong inter-class similarity and intra-
class variation. The UAV HSI along with the ground truth
and spectral curves as an example are shown in Appendix
4. It can be seen that the spectral curves of the vegetation
are very similar. In particular, there are shadows in the
HanChuan dataset, which significantly increase the intra-
class variability. In UAV datasets, some ground objects with
very high textural and spectral similarity were selected for
classification. For 5 HSI datasets, only 100 positive samples
for each class were used to simulate the situation of limited
training samples to train the neural network.

CIFAR-10 and STL-10 were used to verify the effective-
ness of the proposed LTar compared with other state-of-
the-art PU learning methods.
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Class Class prior-based classifiers Label noise representation learning Class prior-free classifiers
nnPU [21] OC Loss [44] MSE Loss [10] GCE Loss [42] SCE Loss [35] TCE Loss [7] PAN [17] vPU [3] T-HOneCls

Cotton 99.44(0.32) 99.44(0.25) 17.08(8.25) 18.39(4.80) 96.34(2.36) 20.11(6.31) 16.66(1.40) 1.86(0.48) 98.15(0.35)
Rape 82.06(0.71) 81.81(1.23) 96.32(0.72) 96.69(0.72) 97.35(0.18) 97.64(0.12) 77.89(10.17) 8.31(1.10) 97.81(0.16)

Chinese cabbage 0.00(0.00) 88.06(2.89) 93.61(0.55) 94.06(0.60) 93.78(0.63) 94.19(0.43) 92.31(1.34) 24.89(1.22) 94.25(0.70)
Cabbage 54.20(49.50) 89.79(1.27) 99.20(0.21) 99.10(0.18) 99.12(0.20) 99.30(0.08) 98.18(0.28) 34.84(2.51) 99.37(0.07)

Tuber mustard 23.99(0.21) 23.57(0.22) 95.23(0.66) 96.05(0.56) 95.50(0.87) 96.60(0.11) 92.17(1.79) 23.28(1.19) 97.38(0.35)

Macro F1 51.94 76.53 80.29 80.86 96.42 81.57 75.44 18.64 97.39

Macro F1 of supervised binary classifier 75.62

Table 1: The F1-scores for the HongHu dataset

Class Class prior-based classifiers Label noise representation learning Class prior-free classifiers
nnPU [21] OC Loss [44] MSE Loss [10] GCE Loss [42] SCE Loss [35] TCE Loss [7] PAN [17] vPU [3] T-HOneCls

Strawberry 89.16(1.49) 89.52(1.54) 33.69(5.71) 34.56(2.53) 92.44(0.96) 77.69(18.03) 30.95(0.88) 9.40(0.97) 94.58(1.28)
Cowpea 59.66(3.63) 58.97(3.56) 46.55(3.39) 46.27(2.38) 70.98(7.69) 56.82(3.09) 43.95(1.08) 12.83(1.00) 90.31(1.13)
Soybean 43.63(3.14) 42.34(1.06) 97.42(0.94) 97.26(1.06) 97.19(1.11) 98.55(0.59) 86.74(4.51) 38.73(2.36) 99.13(0.28)

Watermelon 11.76(0.36) 12.23(0.46) 94.02(0.74) 93.79(0.98) 93.45(0.94) 92.67(0.84) 91.99(0.45) 54.77(2.43) 92.99(0.90)
Road 0.00(0.00) 89.40(4.34) 76.54(4.98) 74.53(3.88) 85.71(1.84) 86.29(2.06) 61.56(1.93) 25.02(1.63) 91.73(1.06)
Water 95.25(0.81) 94.90(0.63) 87.52(9.20) 92.12(5.26) 96.97(0.49) 94.15(4.70) 73.08(24.40) 1.43(0.98) 98.37(0.32)

Macro F1 49.91 64.56 72.62 73.09 89.46 84.36 64.71 23.70 94.52

Macro F1 of supervised binary classifier 66.96

Table 2: The F1-scores for the HanChuan dataset

Training Details As for hyperspectral datasets, follow-
ing [44], this paper used FreeOCNet as the fully convolu-
tional neural network. As shown in Appendix 5, FreeOCNet
includes an encoder, decoder, and lateral connection. More
details about FreeOCNet can be found in [44]. In order to
make a fair comparison, all the methods used the same net-
work and the same common hyperparameters. If not spec-
ified, the order of the Taylor expansion in T-HOneCls is 2,
and α = 0.99. β = 0.5 in the HongHu, LongKou, In-
dian Pines and Pavia University datasets, and β = 0.2 in
the HanChuan dataset. As for RGB datasets, 7-layer CNN
was used for CIFAR-10 and STL-10. The settings of these
common hyperparameters are listed in Appendix 4. The
experiments were conducted using an NVIDIA RTX 3090
GPU.

Metrics The F1-score were selected as the metric to mea-
sure the performance in HSI datasets. The precision and
recall are shown in Appendix 6 as supplements. The macro
F1-score is the average of the F1-scores over the selected
classes, which can measure the robustness of a classifier on
different ground objects. The overall accuracy (OA) were
selected as the metric in RGB datasets. Without special in-
structions, all the experiments were repeated five times, and
the mean and standard deviation values are reported.

Methods There were three types of comparison algo-
rithms in HSI datasets. Firstly, the proposed method—T-
HOneCls—is compared with the class prior based classi-
fiers, i.e., nnPU [21] and OC Loss [44]. The class pri-

ors were estimated by the KMPE [29]. Methods of label
noise representation learning were also compared, i.e., MSE
Loss [10], GCE Loss [42], SCE Loss [35], TCE Loss [7].
What is more, the proposed method was also compared with
the state-of-the-art class prior-free PU classifiers from the
machine learning community, i.e., PAN [17] and vPU [3].
As a supplement, unlabeled data is used as negative class to
illustrate that the performance of supervised binary classi-
fier is limited in one-class scenarios.

As for RGB datasets, the proposed LTar is compared
with other state-of-the-art PU learning methods: nnPU [21],
PUET [36], DistPU [45], P3MIX [22] and Lvar [3].

4.2. Results on Hyperspectral Datasets

The results of hyperspectral data are listed in Table 1-
Table 4. Limited by the number of pages, the distribution
maps are shown in Appendix 6.

From the macro F1-score, T-HOneCls achieves the best
results in all UAV datasets, which fully demonstrates the ro-
bustness of the proposed algorithm. A more detailed analy-
sis follows: 1) It is clear that, without the limitation of the
class prior, the macro F1-score of T-OneCls is significantly
higher than that of the class prior-based methods. The class
prior estimation for cotton is accurate, and the best F1-score
for the cotton is obtained by the class prior-based meth-
ods; however, the F1-score drops when the estimated class
prior is inaccurate (e.g., tuber mustard). 2) Compared with
the label noise representation learning methods, T-HOneCls
achieves a better F1-score in 17 of the 19 tasks, which in-
dicates the necessity for developing a PU algorithm instead
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Class Class prior-based classifiers Label noise representation learning Class prior-free classifiers
nnPU [21] OC Loss [44] MSE Loss [10] GCE Loss [42] SCE Loss [35] TCE Loss [7] PAN [17] vPU [3] T-HOneCls

Corn 98.54(2.24) 99.67(0.11) 99.44(0.27) 99.16(0.25) 98.50(0.87) 98.82(0.70) 97.16(2.10) 8.54(1.03) 99.70(0.12)
Sesame 10.97(24.52) 75.95(2.78) 99.77(0.07) 99.77(0.09) 99.78(0.03) 99.79(0.09) 99.73(0.04) 67.99(13.73) 99.82(0.07)

Broad-leaf soybean 84.69(1.11) 88.02(0.26) 81.98(2.84) 87.29(1.67) 87.03(3.36) 74.94(3.48) 58.23(6.90) 4.47(0.25) 92.64(0.89)
Rice 0.00(0.00) 99.70(0.39) 98.94(0.24) 99.19(0.14) 99.16(0.24) 98.78(0.84) 98.63(0.40) 34.94(1.28) 99.50(0.16)

Macro F1 48.55 90.84 95.03 96.35 96.12 93.09 88.44 28.98 97.92

Macro F1 of supervised binary classifier 90.49

Table 3: The F1-scores for the LongKou dataset

Class Class prior-based classifiers Label noise representation learning Class prior-free classifiers
nnPU [21] OC Loss [44] MSE Loss [10] GCE Loss [42] SCE Loss [35] TCE Loss [7] PAN [17] vPU [17] T-HOneCls

India Pines-2 42.30(0.73) 43.14(0.96) 85.30(1.19) 86.16(2.19) 86.89(0.77) 88.60(1.45) 82.54(1.45) 8.44(1.72) 93.40(0.50)
India Pines-11 63.35(1.01) 62.88(0.46) 75.95(2.64) 77.04(2.30) 83.65(1.34) 83.03(1.73) 65.22(3.69) 3.40(0.62) 91.86(1.14)

Pavia University-2 89.17(2.60) 90.75(0.80) 93.52(1.24) 91.29(1.45) 92.38(2.54) 90.41(1.14) 89.92(3.49) 10.74(2.32) 95.01(1.04)
Pavia University-8 0.00(0.00) 82.63(3.46) 90.90(0.67) 91.27(1.46) 88.67(1.46) 92.05(0.77) 87.08(1.59) 37.46(2.20) 91.89(1.81)

Table 4: The F1-scores for the Indian Pines and Pavia University datasets

of directly applying the label noise representation learning
methods to HSI. 3) Compared with the rencent class prior-
free methods proposed by the machine learning community,
T-HOneCls obtains a better F1-score on all tasks.

Another conclusion is that the proposed T-HOneCls can
balance the precision and recall. As shown in Appendix 6,
most other methods cannot obtain high precision and recall
at the same time, that is, these methods cannot find a bal-
ance between the overfitting and underfitting of the training
data. This balance was found by T-HOneCls, and a good
F1-score was obtained by T-HOneCls in all tasks.

4.3. Results on CIFAR-10 and STL-10

The experimental results on RGB datasets show that
LTar is not limited to hyperspectral data, and LTar also
performs well in other PU learning tasks. The OA of LTar

is better than that of other state-of-the-art PU learning meth-
ods (Table 5), and the curves of loss and OA can also prove
the effectiveness of the proposed LTar (Fig. 3).

4.4. Ablation Experiments Analysis

Analysis of the Training Process and Training Samples
The curves of T-HOneCls for the positive class and the to-
tal loss of the different positive training samples of cotton
in the HongHu dataset are shown in Fig. 2d and Fig. 2e,
respectively. The curves of the F1-score are also shown
(Fig. 2f). The variational loss using fewer training sam-
ples will lead to the gradient domination optimization pro-
cess of unlabeled samples at the beginning of the training,
which makes the loss of positive class rise at the beginning
of the training. Although the loss of the positive samples de-
creases as the training progresses, for example, 40, 100, or
400, the F1-score is unstable, and determining the optimal
training epoch is very challenging without using additional
data. The total loss of cotton of vPU shows large reduction

(a) CIFAR-10 loss (b) STL-10 loss

(c) CIFAR-10 OA (d) STL-10 OA

Figure 3: The curves of loss and OA on CIFAR-10 and
STL-10 datasets.

Datasets nnPU [21] PUET [36] DistPU [45] P3MIX [22] Lvar [3] LTar

CIFAR-10 77.53(2.04) 75.60(0.10) 79.15(1.12) 83.99(1.68) 60.00(0.00) 86.76(0.35)
STL-10 76.98(1.91) 75.67(0.22) 59.83(10.03) 67.05(5.58) 51.26(1.46) 79.17(0.71)

Table 5: The OA of different methods on CIFAR-10 and
STL-10 datasets. Definitions of classes (‘Positive’ vs ‘Neg-
ative’) are as follows: CIFAR-10: ‘0,1,8,9’ vs ‘2,3,4,5,6,7’.
STL-10: ‘0,2,3,8,9’ vs ‘1,4,5,6,7’.

in Fig. 2, however, the F1 (1.86) is very poor, which is be-
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Figure 4: The F1-score curves (cotton in the HongHu
dataset) for the different order of the Taylor series.

cause vPU overfits the noisy negative data (i.e., unlabeled
data). These shortcomings can be solved by the proposed
LTar due to the reduction of the weight of the gradient of
unlabeled data. More analysis can be found in Appendix 7.

Analysis of the Order of the Taylor Series One of the
contributions of this paper is that we point out that the rea-
son for the poor performance of variational loss is that the
gradient of the unlabeled data is given too much weight,
which can be tackled by the proposed Taylor variational
loss. The order of the Taylor expansion is analyzed as a
hyperparameter in this subsection, and the F1-score curves
of cotton in the HongHu dataset are shown in Fig. 4 as an
example. Five other ground objects were also analyzed, and
the results are displayed in Appendix 8. As shown in Fig. 4,
the neural networks converge to a poor result with varia-
tional loss. An empirical conclusion can be obtained from
the order analysis: the higher the order of the Taylor expan-
sion, the faster the neural network converges. However, the
rapid convergence of the neural network can lead to overfit-
ting. In other words, the classification results will rise first
and then decline with the progress of the training.

Analysis of KL-Teacher This subsection analyzes the
advantages of the proposed self-calibrated optimization.
Three ground objects from the three datasets were se-
lected as examples to demonstrate the advantages of self-
calibration optimization. The F1-score curves of cowpea in
the HanChuan dataset are shown in Fig. 5 and other classes
are shown in Appendix 9.

It can be seen from Table 6 that the training is failed,
if Lvar with self-calibrated optimization is used. It can be
seen from Fig. 5 that the F1-score fluctuates greatly when
only stochastic gradient descent is used to optimize the Tay-
lor variational loss. The EMA has the function of an “F1-
score filter”, which makes the F1-score of the teacher model
more stable. The EMA allows the teacher model to lag be-
hind the student model, and due to the memorization abil-
ity of the neural network, the F1-score of the lagged neu-

Figure 5: The F1-score curves (cowpea in the HanChuan
dataset, o=5) for the different components of KL-Teacher.

Class Order L Self-calibrated optimization F1-score
EMA L2 Lkl

Cotton

- Lvar ✓ ✓ 0.00

2

LTar 97.51
LTar ✓ 97.58
LTar ✓ ✓ 97.61
LTar ✓ ✓ 98.15

5

LTar 72.01
LTar ✓ 84.27
LTar ✓ ✓ 81.25
LTar ✓ ✓ 91.01

Broad-leaf soybean

- Lvar ✓ ✓ 0.12

2

LTar 90.74
LTar ✓ 91.22
LTar ✓ ✓ 91.42
LTar ✓ ✓ 92.64

5

LTar 81.06
LTar ✓ 81.61
LTar ✓ ✓ 81.78
LTar ✓ ✓ 82.79

Cowpea

- Lvar ✓ ✓ 4.00

2

LTar 88.87
LTar ✓ 88.59
LTar ✓ ✓ 88.78
LTar ✓ ✓ 90.31

5

LTar 74.78
LTar ✓ 78.20
LTar ✓ ✓ 80.38
LTar ✓ ✓ 83.90

Table 6: Analysis of KL-Teacher

ral network is better than that of the student network at the
later stage of training. The use of consistency loss can pro-
mote the output of the student model to approximate that
of the teacher model with a large pool of unlabeled data,
so as to alleviate the overfitting problem. If L2 loss (L2) is
regarded as the consistency loss, it is equivalent to Mean-
Teacher [34] being used. However, according to the results
listed in Table 6, Lkl can more effectively alleviate the over-
fitting of the student model.

5. Conclusion
In this paper, we have focused on tackling the problem

of limited labeled HSI PU learning without class-prior. The
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proposed Taylor variational loss is responsible for the task
of learning from limited labeled PU data without a class
prior. The self-calibrated optimization proposed in this pa-
per is used to stabilize the training process. The extensive
experiments (7 datasets, 21 tasks in total) demonstrated the
superiority of the proposed method.
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