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Abstract

Knowledge distillation transfers knowledge from a large
model to a small one via task and distillation losses. In this
paper, we observe a trade-off between task and distillation
losses, i.e., introducing distillation loss limits the conver-
gence of task loss. We believe that the trade-off results from
the insufficient optimization of distillation loss. The reason
is: The teacher has a lower task loss than the student, and a
lower distillation loss drives the student more similar to the
teacher, then a better-converged task loss could be obtained.
To break the trade-off, we propose the Distillation-Oriented
Trainer (DOT). DOT separately considers gradients of task
and distillation losses, then applies a larger momentum to
distillation loss to accelerate its optimization. We empiri-
cally prove that DOT breaks the trade-off, i.e., both losses
are sufficiently optimized. Extensive experiments validate
the superiority of DOT. Notably, DOT achieves a +2.59%
accuracy improvement on ImageNet-1k for the ResNet50-
MobileNetV1 pair. Conclusively, DOT greatly benefits the
student’s optimization properties in terms of loss conver-
gence and model generalization. https://github.com/megvii-
research/mdistiller.

1. Introduction

Knowledge distillation [17, 44, 12, 2, 21, 49, 24] has

been proved to be an effective manner to transfer knowl-

edge from a heavy (teacher) model to a light (student) one

in a wide range of deep learning tasks [40, 14, 35, 7, 4].

Novel learning algorithms have been proposed to achieve

better distillation performance [36, 46, 15, 43]. The work-

ing mechanism of knowledge distillation also attracts re-

search attention [33, 28, 20, 30, 42, 39, 41, 45]. Yet, the op-

timization property of knowledge distillation has not been

widely investigated, which is also an important perspective

to understand KD.

As shown in Figure 1 (left), the typical optimization ob-

jective of knowledge distillation is composed of two parts,

a task loss (e.g., the cross-entropy loss) and a distillation

loss (e.g., the KL-Divergence [17]). We mainly study how

the incremental distillation loss influences the optimization

of task loss. Concretely, for an image classification task,

we visualize (1) the task loss landscapes and (2) task and

distillation loss dynamics during the optimization. As Fig-

ure 1 (middle) illustrates, we observe that the distillation

loss helps the student converge to flat minima, where the

student tends to generalize better due to the robustness of

flatter minima [25, 22, 8]. However, as illustrated in Fig-

ure 1 (right), introducing distillation loss brings about a

trade-off. The task loss is not converged as sufficiently as

the cross-entropy baseline, although the student’s logits be-

come similar to the teacher’s.

We suppose that the trade-off is somehow counter-
intuitive. The reason is presented below: the teacher always

yields a lower task loss than the student due to the larger

model capacity. If the distillation loss is sufficiently opti-

mized, the task loss would also be decreased since the stu-

dent becomes more similar to the better-performing teacher.

We ask: why is there a trade-off and how to break it? We

attempt to answer this question from the following perspec-

tive. The task and distillation loss terms are combined with

a simple summation in practical implementations of popular

distillation methods [17, 36, 46, 43, 15]. It could make the

optimization manner degrade to multi-task learning, where

the network attempts to find a balance between the two

tasks. As aforementioned, if the distillation loss is suffi-

ciently optimized, both losses would be decreased. Thus,

we believe that sufficiently optimizing the distillation loss is
the key to breaking the trade-off.

To this end, we present the Distillation-Oriented

Trainer (DOT) which enables the distillation loss to dom-
inate the optimization. It separately considers the gradients

provided by the task and the distillation losses, then adjusts

the optimization orientation by weighing different momen-
tums. A larger momentum is applied to distillation loss,

while a smaller one is to task loss. It ensures the optimiza-

tion is dominated by gradients of distillation loss since a

larger momentum accumulates larger and more consistent
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Figure 1: Left: the framework of knowledge distillation (KD). KD introduces an extra distillation loss, transferring knowledge from the

teacher model. Middle: a conceptual sketch of flat and sharp local minima [22, 13]. The Y-axis denotes the loss value, and the X-axis the

network parameters. The considerable sensitivity of the training loss at sharp minima damages the generalization on test data. In this paper,

we discover that knowledge distillation (KD) benefits the student baseline (CE) with flatter minima but unexpectedly limits the convergence.

See Figure 2 and 3. Right: the task and distillation loss dynamics. It suggests that introducing KD brings about a trade-off between the

task and distillation losses. See Figure 3. To address this trade-off issue and achieve better performance, we propose Distillation-Oriented

Trainer (DOT). Our DOT breaks the trade-off and leads the student to ideal minima of both great flatness and convergence.

gradients than a smaller one. In this way, DOT ensures a

sufficient optimization of distillation loss. We validate the

effectiveness of DOT from three perspectives. (1) As illus-

trated in Figure 1 (right), we prove that DOT successfully

breaks the trade-off between task and distillation losses. (2)

As illustrated in Figure 1 (middle), our DOT achieves more

generalizable and flatter minima, empirically supporting the

benefits of DOT. (3) DOT improves performances of popu-

lar distillation methods without bells and whistles, achiev-

ing new SOTA results.

More importantly, our research brings new insights into

the knowledge distillation community. We show great po-

tential for a better optimization manner of knowledge distil-

lation. To the best of our knowledge, we provide the first at-

tempt to understand the working mechanism of knowledge

distillation from the optimization perspective.

2. Related Work

Knowledge distillation. Ideas correlated to distillation can

date back to [1, 5, 26, 27], and the knowledge distillation

concept has become widely known since the application in

compressing a heavy network into a light one [17]. Fol-

lowing representative works can be divided into two cate-

gories, i.e., distilling knowledge from logits [17, 3, 48, 10]

and intermediate features [36, 46, 31, 16, 15, 43]. More

and more attempts have been made on understanding how

and why knowledge distillation helps the network learn-

ing [33, 28, 20, 30, 42, 39, 45, 41] recently. KD [17] conjec-

tures that the improvement comes from network predictions

on incorrect classes. [28] explains distillation from a privi-

leged information perspective. [33] studies distillation with

linear classifiers and proposes that the success of distilla-

tion owes to data geometry, optimization bias, and strong

monotonicity. [20] explains the practice of mixing task loss

and distillation loss with the data inefficiency concept. Few

efforts are made to analyze distillation from the network op-

timization perspective, while we provide the first attempt in

this work.

Flatness of minima. The minima of neural networks has

attracted great research attention [22, 18, 19, 8, 13]. An

acknowledged hypothesis is that the flatness of converged

minima can influence the generalization ability of net-

works [22], and flatter ones correspond to better generaliza-

tion ability. The explanation is that flat ones reduce gener-

alization errors since there are random perturbations around

the loss landscape and the flatter one is more robust. [13]

also proves the correctness of this hypothesis. Thanks to

previous efforts in analyzing loss landscapes [25, 11, 32, 9],

we are allowed to visualize the converged minima learned

by knowledge distillation to understand its working mecha-

nism.

In this work, we investigate the optimization process of

the most representative method KD by visualizing the flat-

ness of minima for the first time. We show that introducing

distillation loss benefits the student with better generaliza-

tion flat minima while resulting in higher task loss. This

trade-off between the task and distillation losses is counter-

intuitive and mostly overlooked. To this end, we study the

optimization process and propose a method to break the

trade-off and approach ideal converged minima.

3. Revisiting Knowledge Distillation: An Opti-
mization Perspective

3.1. Recap of Knowledge Distillation

The working mechanism of knowledge distillation meth-

ods has been explored from various perspectives [33, 28,

20, 30, 42, 39, 45, 41]. Previous works seldom delve into

the optimization property of knowledge distillation. In this

section, we explore the optimization behavior of knowledge
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distillation by studying how the incremental distillation loss

influences the optimization property.

We study the most representative knowledge distillation

method KD [17] for easy understanding. The practical loss

function of KD could be written as:

L =αLCE(x, y;θ) + (1− α)LKD(x,φ;θ)

=αH(y, σ(p)) + (1− α)DKL (σ(p/T ) ‖ σ(q/T )),
(1)

where the input and its label are denoted as x and y. θ and

φ are the parameters of the student and teacher networks.

p and q are the output logits from student and teacher net-

works respectively. H is the cross-entropy loss function,

DKL is the KL-divergence, and σ is the softmax function.

The temperature T is introduced to soften predictions and

arise attention on negative logits.

Eqn. (1) manifests that the practical optimization objec-

tive L is composed of a task loss LCE and a distillation loss

LKD. We mainly study how the incremental LKD influences

the optimization property. First, we explore the influence

of distillation loss on loss landscapes which can be used

to measure the generalization ability of the converged min-

ima. Second, we visualize the loss dynamics and reveal a

trade-off between task and distillation losses along the en-

tire optimization process.

3.2. Loss Landscapes

(a)baseline (b)KD (c)our DOT

(a)baseline (b)KD (c)our DOT

CIFAR100

Tiny-ImageNet

Figure 2: Loss landscapes on CIFAR-100 and Tiny-ImageNet.

KD leads the student to flat minima with robust generalization

ability. Our DOT achieves much flatter minima, further improving

the model generalization and distillation performances.

It is well-acknowledged that the model generalization

performance is characterized by the flatness of the local

minima [22, 18, 19, 8, 13]. As illustrated in Figure 1 (mid-
dle), sharp minima correspond to a large gap between train-

ing and test loss values, i.e., inferior generalization abil-

ity, but flat minima tend to reduce the generalization errors.

After respectively training student networks with LCE (the

baseline) and L (the KD [17]) on CIFAR-100 [23](typical

ResNet32×4-ResNet8×4 pair) and Tiny-ImageNet (typical

ResNet18-MobileNetV2 pair), we visualize the task loss

landscapes of the converged student networks to study the

flatness of local minima in Figure 2. Compared to the base-

line trained with only LCE, optimizing with L helps the task

loss converge to flatter minima, which explains the gen-

eralization improvement of student networks. Conversely,

training with only the task loss LCE leads to the sharp min-

ima, resulting in unsatisfactory generalization performance

on the test distribution. It suggests that the improvements

made by knowledge distillation methods are attributed to

enabling the student to converge around flatter minima.

3.3. Trade-off Between Distillation and Task Losses

(a) LCE (b) LKD

(c) LCE (d) LKD

Figure 3: Task and distillation loss curves on CIFAR-100 and

Tiny-ImageNet. It suggests that there is a trade-off between task

and distillation losses. DOT could break the trade-off, achieving

lower task and lower distillation losses at the same time.

In Figure 3, we visualize the training task and distilla-

tion loss dynamics with the progress of optimization. For

the KD method, we respectively calculate the task loss and

the distillation loss of each epoch. For the baseline, we

are only allowed to obtain task loss, so we calculate the

KL-Divergence between logits of the student and teacher

on-the-fly (without back-propagation). The datasets and

the teacher-student pairs are the same as those in Sec-

tion 3.2. As shown in Figure 3, the introduction of distil-

lation loss (KD) greatly decreases LKD, because the output

logits of the student become more similar to the teacher.

However, the task loss LCE (on training set) is increased.

It indicates that the network attempts to find a trade-off be-

tween task and distillation losses. and the converged student

could be a “Pareto optimum” 1.

1The trade-off can not be solved by simply tuning the loss weights,
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We attempt to explain the trade-off from the perspec-

tive of multi-task learning. The targets of both losses are

not identical, and learning multiple tasks at the same time

makes the optimization difficult [47]. Therefore, it is rea-

sonable that a trade-off exists between task and distillation

losses. And the aforementioned observations prove that the

task training loss is increased due to the introduction of dis-

tillation loss 2. We suppose that regarding the optimization

of task and distillation losses as multiple tasks is improper

for the following reason: The teacher’s training and test

losses are both lower than the student’s due to the larger

model capacity. Making the student similar to the teacher

can help yield both lower distillation and test losses. Thus,

if the distillation loss can be sufficiently optimized, both

task loss and distillation loss would be decreased. It inspires

us to design an optimization manner where the distillation

loss could be more sufficiently optimized.

4. Method
Knowledge distillation benefits the student network with

flatter minima, yet introduces a trade-off between the task

and the distillation losses. We suppose that the key to break-

ing the trade-off is making the optimization have a domi-
nant orientation, which could reduce gradient conflicts and

ensure better network convergence. Since the distillation

loss helps the student similar to the teacher, making it dom-

inant (instead of the task loss) could leverage the knowledge

and achieve better generalization ability.

4.1. Making KD Dominate the Optimization

Optimizer with momentum. Firstly, we revisit the

widely-used Stochastic Gradient Descent (SGD) optimizer.

SGD (with momentum) updates the network parame-

ters (denoted as θ) with both the current gradients (denoted

as g = ∇θL(θ)) and the historical ones. Specifically, SGD

maintains a grad buffer named “momentum buffer”(denoted

as v) for network parameters. For every training mini-batch

data, SGD updates the momentum buffer by:

v ← g + μv, (2)

and then the parameters will be updated following the

gradient-descent rule:

θ ← θ − γv, (3)

where μ and γ denote the momentum coefficient and the

learning rate, respectively. Utilizing the momentum buffer

can benefit the optimization process with the historical gra-

dients. [34] shows that using momentum can considerably

proofs are presented in Figure 6 of Section 5
2We also conduct experiments with longer training time in the supple-

ment, to validate that the high loss value is not due to inadequate training.

accelerate convergence to a local minimum. Empirically,

the momentum coefficient μ is not the larger the better, and

0.9 is the most used value.

Independent momentums for distillation and task losses.
Momentum is a widely-used technique for accelerating gra-

dient descent that accumulates a velocity vector in direc-

tions of persistent reduction in the objective across itera-

tions [34]. Under the knowledge distillation framework,

setting independent momentums for the grads provided by

different losses (i.e., the distillation loss and the task loss)

could play an important role in controlling the optimization

orientation. Independent momentums enable the loss with

the larger momentum to dominate the optimization from

two aspects: (1) A large momentum on the distillation loss

ensures the optimization orientation is knowledge-transfer-

friendly in the initial “transient phase” [6]. (2) A large mo-

mentum keeps the historical gradient value undiminished in

later training, ensuring the consistency of optimization ori-

entation.

Distillation Oriented Trainer. Driven by the analysis

above, we present Distillation-Oriented Trainer (DOT) 3. As

shown in Figure 4, DOT maintains two individual momen-

tum buffers for the gradients of CE loss and KD loss. The

two momentum buffers are denoted as vce and vkd. DOT

updates vce and vkd with different momentum coefficients.

DOT introduces a hyper-parameter Δ and sets the coeffi-

cients for vce and vkd as μ − Δ and μ + Δ, respectively.

Given a single mini-batch data, DOT first computes the gra-

dients (denoted as gce and gkd) produced by LCE and LKD

respectively, then updates the momentum buffers according

to:
vce ← gce + (μ−Δ)vce,

vkd ← gkd + (μ+Δ)vkd.
(4)

Finally, the network parameters are updated with the sum of

two momentum buffers:

θ ← θ − γ(vce + vkd) (5)

DOT applies larger momentum to the distillation loss

LKD and smaller momentum to the task loss LCE. Thus, the

optimization orientation could be dominated by the gradi-

ents of the distillation loss. DOT better leverages the knowl-

edge from the teacher and mitigates the trade-off problem

caused by insufficient optmization 4.

4.2. Theoretical Analysis of Gradient

To investigate the difference between DOT and a vanilla

trainer, we dissect the gradients of task and distillation

3DOT can be applied to all optimization methods with momentum

mechanism. In this paper, we apply DOT to SGD since it is the most

common one in the knowledge distillation community.
4The algorithm of DOT and more details about DOT’s implementation

are attached in the supplement.
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Figure 4: Illustration of a vanilla trainer and our Distillation-Oriented Trainer (DOT). DOT separately calculates the gradients of task and

distillation losses, then applies larger momentum to the distillation gradients and smaller momentum to the task ones.

losses as:
vce = vcon + vincon

ce ,

vkd = vcon + vincon
kd .

(6)

vcon denotes the “consistent” gradient component of both

losses. vincon
ce and vincon

kd are the “inconsistent” components.

For the SGD baseline, the updated momentum buffer can be

written as :

vsgd = gce + gkd + μ(vce + vkd)

= gce + gkd + μ(vincon
ce + vincon

kd + 2vcon)
(7)

For DOT, the updated momentum buffer is :

vdot = gce + gkd + (μ−Δ)vce + (μ+Δ)vkd

= gce + gkd + (μ−Δ)(vincon
ce + vcon)

+ (μ+Δ)(vincon
kd + vcon)

(8)

Comparing Eqn. (7) and Eqn. (8), the difference between

the two methods is calculated as follows:

vdiff = vdot − vsgd

= Δ(vincon
kd − vincon

ce ).
(9)

Eqn. (9) indicates that when the gradient of task loss con-

flicts with that of distillation loss, DOT produces gradient

Δ(vincon
kd −vincon

ce ) to accelerate the accumulation of the gra-

dient of the distillation loss. Thus, the optimization is driven

by the orientation of distillation loss 5. The student network

would achieve better convergence since the conflict between

gradients is alleviated.

5Besides, we also conduct a toy experiment for better understanding

our DOT in the supplement.

5. Experiments
In this part, we first detail the implementations of all ex-

periments. Second, we empirically validate our motivations

and then discuss the main results on popular image classifi-

cation benchmarks. We also provide analysis (e.g., visual-

izations) for more insights.

5.1. Experimental Settings

Datasets. We conduct experiments on three image clas-

sification datasets, CIFAR-100 [23], Tiny-ImageNet and

ImageNet-1k [37]. CIFAR-100 is a well-known image clas-

sification dataset that consists of 100 classes. The image

size is 32×32. Training and validation sets are composed of

50k and 10k images, respectively. Tiny-ImageNet consists

of 200 classes and the image size is 64 × 64. The training

set contains 100k images and the validation contains 10k

images. ImageNet-1k is a large-scale classification dataset

that consists of 1k classes. The training set contains 1.28

million images and the validation contains 50k images. All

images are cropped to 224× 224.

Implementations. All models are trained three times and

we report the average accuracy.

For CIFAR-100, we follow the settings in [43]. We train

all models for 240 epochs with learning rates decayed by 0.1

at 150th, 180th, and 210th epoch. The initial learning rate

is set as 0.01 for MobileNetV2 [38] and ShuffleNetV2 [29],

and 0.05 for ResNet8× 4. The batch size is 64 for all mod-

els. We use SGD with 0.9 momentum and 0.0005 weight

decay as the optimizer. We find Δ ranging from 0.05 to

0.075 works well in all experiments. All models are trained

on a single GPU.
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For Tiny-ImageNet, we follow the settings in [45]. All

the models are trained for 200 epochs with learning rates

decayed by 0.1 at 60th, 120th, and 160th epoch. The initial

learning rate is 0.05 for a 64 batch size. We use SGD with

0.9 momentum and 0.0005 weight decay as the optimizer.

The hyper-parameter Δ for our DOT is set to 0.075. All

models are trained on 4 GPUs.

For ImageNet-1k, we use the standard training recipe in

[43]. All models are trained for 100 epochs and the learn-

ing rates decayed by 0.1 at 30th, 60th, 90th epoch. The

initial learning rate is 0.2 for a 512 batch size. We use SGD

with 0.9 momentum and 0.0001 weight decay as the opti-

mizer. The hyper-parameter Δ for our DOT is set to 0.09.

All models are trained on 8 GPUs.

5.2. Motivation Validations

The verification of our conjectures and motivations is the

most important experiment. In this part, We mainly validate

that (1) the distillation loss is the dominant component, (2)

the trade-off problem is alleviated, and (3) the student is

benefited with reasonable flatter minima compared with the

classical KD. Additionally, we also conduct ablation exper-

iments for μ and Δ.

Does KD Loss dominate the optimization? To verify that

DOT makes KD loss dominate the optimization, we ana-

lyze the gradients of DOT and a vanilla trainer in the opti-

mization process. As shown in Figure 5, DOT leads to the

following consequences: (1) The cosine similarity between

gradients of distillation and total losses is significantly in-

creased, and (2) cosine similarity between gradients of task

and total losses is decreased. It suggests that the optimiza-

tion orientation prefers distillation gradients after applying

our DOT, which proves that DOT enables the distillation

loss to dominate the optimization.

(a) cos(vkd, v) (b) cos(vce, v)

Figure 5: Cosine similarities. We visualize the cos(vkd,v) and

cos(vce,v) of each training iteration. It indicates that applying

DOT greatly increases cos(vkd,v), showing the momentum gradi-

ents are dominated by the distillation component.

Does KD and Task Losses converge better? We visual-

ize the training loss curves to study the convergence of task

and distillation losses. As shown in Figure 3, DOT simulta-
neously achieves lower task and distillation losses than the

vanilla trainer and the cross-entropy baseline. It strongly

supports our motivation that sufficiently optimized distil-

lation loss contributes to low task loss. Moreover, it also

demonstrates that dominating the optimization with distil-

lation loss eliminates the trade-off between task and distil-

lation losses.

Does DOT lead to better minima? As shown in Figure 2

we provide visualizations based on experimental settings

in Section 3, which reveal the effect of applying DOT to

the representative method KD [17]. Concretely, the loss

landscapes of baseline, KD, and DOT on the CIFAR-100

training set are respectively illustrated. It is proven that

DOT leads the student to minima with great flatness, which

is even flatter than the ones of KD. Conclusively, DOT

achieves the goal to learn minima with both good flatness

and low task loss, as also illustrated in Figure 1 (middle).

Δ 0.0 +0.025 +0.05 +0.075 +0.09

top-1 73.33 74.08 74.22 75.12 74.43

Δ -0.09 -0.075 -0.05 -0.025 0.0
top-1 61.58 68.88 72.77 72.86 73.33

Table 1: Different Δ on CIFAR-100. The results indicate

that “distillation-oriented” (positive Δ) could achieve stable im-

provements among different hyper-parameter values while “task-

oriented” (negative Δ) leads to performance drops.

μ 0.81 0.825 0.85 0.875 0.9
top-1 73.53 73.66 73.45 73.21 73.33

μ 0.9 0.925 0.95 0.975 0.99

top-1 73.33 73.16 73.14 68.75 37.19

Table 2: Ablation study for different μ on CIFAR-100. It indicates

that tuning μ brings no significant performance improvement.

Are independent momentums necessary? To prove that

the improvements come from the design of the indepen-

dent momentum mechanism instead of carefully hyper-

parameter tuning, we explore the influence of different

hyper-parameter Δ for DOT. As shown in Table 1, setting

Δ = 0 means training task and distillation losses with the

same momentum (i.e., equals to a vanilla SGD). Applying

DOT with Δ > 0 (ranging from 0.025 to 0.09) enables

the distillation loss to dominate optimization, which con-

tributes to stable performance improvements. It indicates

that distillation-oriented optimization is of vital importance.

Moreover, we also experiment with Δ < 0 (ranging from

-0.09 to -0.025), corresponding to a “task-oriented trainer”

where the task loss dominates the optimization. Significant

performance drops could be observed in Table 1, which fur-

ther supports our motivation to make the distillation loss

dominant instead of the task loss.

Are improvements attributed to tuning momentum?
Without utilizing DOT, we also explore the distillation per-
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teacher student KD AT CRD DKD KD+DOT CRD+DOT DKD+DOT

ResNet32×4 as the teacher, ResNet8×4 as the student
top1 79.42 72.50 73.33 73.44 75.51 76.32 75.12 (+1.79) 75.99 (+0.48) 76.64 (+0.32)

top5 94.58 92.72 93.00 93.06 93.92 93.94 93.46 (+0.46) 94.09 (+0.17) 94.03 (+0.09)

VGG13 as the teacher, VGG8 as the student
top1 74.64 70.36 72.98 71.43 73.94 74.68 73.77 (+0.79) 74.21 (+0.27) 74.86 (+0.18)

top5 92.60 90.57 92.27 91.94 92.25 92.62 92.33 (+0.05) 92.72 (+0.47) 92.81 (+0.19)

ResNet32×4 as the teacher, ShuffleNetV2 as the student
top1 79.42 71.82 74.45 72.73 75.65 77.07 75.55 (+1.10) 76.64 (+0.99) 77.41 (+0.34)

top5 94.58 91.77 93.02 93.07 93.71 94.19 93.24 (+0.22) 94.00 (+0.29) 94.13 (-0.06)

(a) CIFAR-100

teacher student KD AT CRD DKD KD+DOT CRD+DOT DKD+DOT

ResNet18 as the teacher, MobileNet-V2 as the student
top1 62.99 56.28 58.35 57.18 61.18 62.04 64.01 (+5.66) 64.12 (+2.94) 64.60 (+2.56)

top5 83.36 80.32 82.07 81.52 83.13 84.12 84.30 (+2.23) 84.43 (+1.30) 85.38 (+1.26)

ResNet18 as the teacher, ShuffleNetV2 as the student
top1 62.99 60.78 62.26 62.45 63.97 65.06 65.75 (+3.49) 65.21 (+1.24) 66.21 (+1.15)

top5 83.36 82.49 83.79 83.51 84.70 85.31 85.51 (+1.72) 85.13 (+0.43) 86.16 (+0.85)

(b) Tiny ImageNet

teacher student KD AT OFD CRD DKD KD+DOT DKD+DOT

ResNet34 as the teacher, ResNet18 as the student
top1 73.31 69.75 71.03 70.69 70.81 71.17 71.70 71.72 (+0.69) 72.03 (+0.33)

top5 91.42 89.07 90.05 90.01 89.98 90.13 90.05 90.30 (+0.25) 90.50 (+0.45)

ResNet50 as the teacher, MobileNetV1 as the student
top1 76.16 68.87 70.50 69.56 71.25 71.37 72.05 73.09 (+2.59) 73.33 (+1.27)

top5 92.86 88.76 89.80 89.33 90.34 90.41 91.05 91.11 (+1.31) 91.22 (+0.17)

(c) ImageNet-1k

Table 3: Applying our DOT can bring significant performance gains and achieve new state-of-the-art distillation results on CIFAR-

100, Tiny-ImageNet and ImageNet-1k. Both logit- and feature-based methods could benefit from our DOT. Notably, for the ResNet50-

MobileNetV1 pair on ImageNet-1k, DOT achieves a significant +2.59% accuracy gain.

formance when training with different momentums μ to ver-

ify that the gains mainly come from our design of indepen-

dent momentums instead of better momentum values. Re-

sults in Table 2 show that carefully tuning μ could lead to

certain performance gain (73.33% v.s. 73.66%), but not as

significant as DOT’s improvement (73.33% v.s. 75.12%).

5.3. Main Results

Following the common setting, we benchmark our DOT

on three popular image classification datasets, i.e., CIFAR-

100, Tiny-ImageNet, and ImageNet-1k. Additionally, we

prove that DOT is compatible with representative distilla-

tion methods, and contributes to new state-of-the-art results.

CIFAR-100. Results of CIFAR-100 in Table 3 (a) show that

our DOT could contribute to significant performance gains

for the classical knowledge distillation 6. For instance, DOT

6More pairs on CIFAR-100 can be attached to the supplement.

improves the classical KD method from 73.33% to 75.12%

on the ResNet32×4-ResNet8×4 teacher-student pair. To

prove the scalability of DOT, we combine DOT with pop-

ular logit-based and feature-based distillation methods. We

select DKD [48] and CRD [43] as representative logit-based

and feature-based methods, respectively. As shown in Ta-

ble 3 (a), DOT still succeeds in advancing the performances

of evaluated methods, supporting DOT’s practicability.

Tiny-ImageNet. Tiny-ImageNet is a more challenging

dataset than CIFAR-100. Results in Table 3 (b) demonstrate

that our DOT still achieves more remarkable performance

gains on such a challenging dataset. DOT greatly improves

the top1 accuracy from 58.35% to 64.01% on the ResNet18-

MobileNetV2 teacher-student pair, and improves the top-

1 accuracy from 62.26% to 65.75% on the ResNet18-

ShuffleNetV2 pair. DOT also increases the SOTA perfor-

mance to 64.60% and 66.21% on SOTA methods.

ImageNet-1k. We also conduct experiments on ImageNet-
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1k. Experimental results in Table 3 (c) consistently vali-

date the superiority of DOT. Especially for the ResNet50-

MobileNetV1 pair, DOT achieves a +2.59% accuracy gain

on the classical KD method, outperforming previous state-

of-the-art methods. It strongly demonstrates that the op-

timization of knowledge distillation methods deserves fur-

ther exploration. Additionally, applying DOT to DKD could

further increase the state-of-the-art performance to a new

73.33% milestone.

5.4. More Analysis

In this part, we first investigate whether simply tuning

the loss weight α can break the trade-off, then visualize the

distillation fidelity for intuitive understanding.

(a) LCE, CIFAR-100 (b) LKD, CIFAR-100

(c) LCE, TinyImageNet (d) LKD, TinyImageNet

Figure 6: Illustration of loss curves for weighing α. It indicates

that simply tuning loss weights still suffers from the trade-off. A

larger α leads to a lower task loss but a higher distillation loss. In

contrast, our DOT effectively breaks the trade-off and achieves

both low task and distillation losses, i.e., better convergence.

Adjusting α can not alleviate the trade-off. Intuitively,

adjusting α could somehow help the task loss converge bet-

ter too. As shown in Table 4, Table 5 and Figure 6, we adjust

the weight α of the task loss (and the weight of the distil-

lation loss 1 − α is correspondingly adjusted) and provide

the distillation results and the loss curves. Intuitively, the

larger α strengthens the influence of the task loss on the op-

timization and weakens the influence of the distillation loss.

Table 4 and 5 show that weighing α can not exert notice-

able influences on final distillation performances. What’s

more, Figure 6 suggests that the larger α leads to lower task

loss but higher distillation loss, which means the network

still suffers from the trade-off. Conversely, applying DOT

achieves both lower task and distillation losses simultane-

ously, i.e., the trade-off between task and distillation losses

is successfully alleviated.

Distillation fidelity. We visualize the distillation fidelity

α 0.1 0.25 0.5 0.75 0.9 DOT
top-1 73.33 73.56 73.49 73.23 73.19 75.12

Table 4: Different weight (α) for task loss on CIFAR-100.

ResNet32×4-ResNet8×4 as the teacher-student pair.

α 0.1 0.25 0.5 0.75 0.9 DOT
top-1 58.35 58.86 59.23 58.36 57.45 64.01

Table 5: Different weight (α) for task loss on Tiny-ImageNet.

ResNet18-MobileNetV2 as the teacher-student pair

following [43, 48] for intuitive understanding. Concretely,

for ResNet32×4-ResNet8×4 (CIFAR-100) and ResNet18-

MobileNetV2 (Tiny-ImageNet) pairs, we calculate the ab-

solute distance between correlation matrices of the teacher

and the student. Compared with KD, introducing DOT

helps the student output more similar logits to the teacher,

resulting in better distillation performance.

(a) KD, CIFAR-100 (b) DOT, CIFAR-100

(c) KD, TinyImageNet (d) DOT, TinyImageNet

Figure 7: Difference of student and teacher logits. DOT leads to a

significantly smaller difference (more similar prediction) than KD.

6. Conclusion

In this paper, we investigate the optimization property of

knowledge distillation. We reveal a counter-intuitive phe-

nomenon that introducing distillation loss limits the conver-

gence of task loss, i.e., a trade-off. We conjecture that the

key to breaking the trade-off is sufficiently optimizing the

distillation loss. To this end, we present a novel optimiza-

tion method named Distillation-Oriented Trainer (DOT).

Extensive experiments validate our motivation and the prac-

tical value of DOT. Visualizations show that DOT leads to

surprisingly flat minima with both lower task and distilla-

tion losses. Additionally, we demonstrate that DOT im-

proves the performance of popular distillation methods. We

hope this work can provide valuable experiences for future

research in the knowledge distillation community.
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