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Abstract

This paper tackles the challenges of self-supervised

monocular depth estimation in indoor scenes caused by

large rotation between frames and low texture. We ease

the learning process by obtaining coarse camera poses

from monocular sequences through multi-view geometry to

deal with the former. However, we found that limited by

the scale ambiguity across different scenes in the train-

ing dataset, a naı̈ve introduction of geometric coarse poses

cannot play a positive role in performance improvement,

which is counter-intuitive. To address this problem, we

propose to refine those poses during training through ro-

tation and translation/scale optimization. To soften the

effect of the low texture, we combine the global reason-

ing of vision transformers with an overfitting-aware, iter-

ative self-distillation mechanism, providing more accurate

depth guidance coming from the network itself. Experi-

ments on NYUv2, ScanNet, 7scenes, and KITTI datasets

support the effectiveness of each component in our frame-

work, which sets a new state-of-the-art for indoor self-

supervised monocular depth estimation, as well as out-

standing generalization ability. Code and models are avail-

able at https://github.com/zxcqlf/GasMono

1. Introduction

Depth estimation from images is one of the fundamen-

tal tasks in computer vision and plays a key role in sev-

eral higher-level applications [28, 44]. It has a long history

and has been intensively studied building upon multi-view

geometry [17, 37], exploiting image matching across two

or multiple images and their camera positions [31, 35, 41].

The advent of deep learning rejuvenated this field and intro-

duced new, exciting perspectives. Among many, the possi-

bility of learning to estimate depth out of a single image –

for long considered the holy grail in computer vision – be-
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Figure 1. Comparison between existing methods [2, 11, 27] and

GasMono. Our framework shows remarkable accuracy on thin

objects and global structures.

came true [7, 9, 23, 38, 39]. However, this came at the cost

of requiring a massive amount of images annotated with

ground truth depth, often expensive to collect.

In light of this, multi-view geometry maintained a key

role in softening this latter constraint, allowing for the de-

velopment of self-supervised monocular depth estimation

frameworks [57]. These replace the need for depth labels

by exploiting a proxy signal based on image reconstruction

of the frame given as input to the network, i.e. the target,

starting from one or multiple source images. The only re-

quirement consists of collecting raw video sequences [64]

or rectified stereo images [12]. Among the two alternatives,

the former [64] results as the cheapest and most flexible,

since requiring a single camera only to move around and

collect training data, with the relative camera poses between

consecutive frames needing to be estimated by employing a

dedicated pose network (PoseNet) alongside the depth esti-

mation task. A large body of literature built ever more accu-

rate self-supervised solutions, mainly focusing on outdoor

environments – i.e. with driving context [10, 51] represent-

ing the preferred benchmark.

Nonetheless, the indoor setting is equally important for

the development of, among others, navigation and assistive

technologies, although featuring 1) much more complex

ego-motion configurations and 2) large untextured regions,

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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making this setting itself challenging for self-supervised

depth estimation frameworks [62]. Specifically, the differ-

ent data collection equipment involved in outdoor and in-

door scenes – car-mounted vs handheld cameras – leads to

motion models largely different in the two cases. As an

example, the average rotation between consecutive images

in KITTI [10] is 0.25◦, while on NYUv2 [32] dataset it is

2.28◦ [2]. Larger rotations among the images hinder the

training process, because of the discontinuous Euler angle

representation [65] commonly used for this task. Addition-

ally, the lack of texture tampers the image reconstruction

process through which supervision is provided to the net-

work, with several local minima in the training loss signal.

In this paper, we propose a novel, Geometry-aided

self-supervised framework for Monocular depth estimation,

dubbed GasMono, specifically designed to face these chal-

lenges. Specifically, we leverage classic structure-from-

motion algorithms such as COLMAP [41] on the training

sequences to initialize the pose estimation process, which

is then refined to cope with the scale inconsistency occur-

ring between the different monocular sequences part of the

training set. To deal with the reduced texture characterizing

indoor images, we combine recent architectures based on

vision transformers [59] with an iterative, self-distillation

scheme to obtain stronger supervision and, thus, train Gas-

Mono more effectively. Our main contributions are:

• We tackle the challenges of learning camera poses in

indoor scenes by exploiting strong priors coming from

classic structure-from-motion algorithms [41].

• This, however, is not sufficient: we explore the fac-

tors in such an approach making the training process

unstable and a further, learning-based refinement strat-

egy is proposed to optimize both rotation and transla-

tion/scale of the initial poses.

• We explore the effectiveness of transformer architec-

ture in improving the depth estimation of low-texture

regions for indoor scenes, coupled with an overfitting-

aware iterative self-distillation method, iteratively dis-

tilling pseudo labels from the depth network itself.

• Our GasMono framework is evaluated on a variety of

indoor datasets, establishing a new state-of-the-art for

indoor, self-supervised monocular depth estimation.

Fig. 1 shows a comparison between existing frameworks

and GasMono, which shows more coherent predictions.

2. Related Work

We review the basic framework and related works con-

cerning self-supervised monocular depth estimation.

Outdoor Self-Supervised Methods. Pivotal works in

self-supervised monocular depth estimation focused on the

outdoor setting, in particular dealing with driving environ-

ments [10], by replacing ground truth labels with image

reconstruction losses on stereo images [12] or monocular

videos [64]. A rich literature of method following either the

former [13, 14, 36, 46, 48, 56] or the latter [3, 11, 15, 54, 59]

strategies have been developed, with monocular sequences

being more practical, yet requiring 1) to estimate relative

poses between frames at training time and 2) to deal with

independently moving objects, violating the principles be-

hind image reconstruction. This second challenge has been

the object of study by several works, by masking the repro-

jection loss [11, 43], exploiting additional tasks – e.g. as

optical flow [54], semantic segmentation [21] or both [47]

– while additional constraints such as the consistency be-

tween predicted depth maps [3] or normals [52], adversar-

ial losses [58] and uncertainty modeling [34] result in good

cues to ease the learning process. Prior work [22] already

shows how Structure-from-Motion can improve the learn-

ing process on videos, yet we will show how it cannot be

exploited seamlessly in the indoor setting. On an orthogonal

dimension, the development of new architectures also plays

a crucial role in boosting the accuracy of self-supervised

depth estimation. Among them, PackNet [15] and HRDepth

[30] proved consistent improvements over UNet-like archi-

tectures using vanilla encoders such as VGG and ResNet.

More recently, vision transformers [59] yielded further im-

provements thanks to joint local and global reasoning, al-

lowing for predicting more detailed depth maps on outdoor

scenes compared to established CNNs.

Indoor Self-Supervised Methods. Unlike the out-

door setting considered by early approaches, monocular

sequences collected in indoor environments expose much

more complex motions between frames, with much larger

rotational components. Because of Euler angle represen-

tation of 3D rotation hampering the learning process of the

PoseNet [65], the self-supervised framework being effective

in outdoor environments cannot achieve satisfactory results

on indoor scenes. To soften this problem, Zhao et al. [60]

recover relative pose from dense optical flow to fully re-

place the PoseNet. Bian et al. [2, 3] demonstrate the role

of rotation in unsupervised training, and they propose an

Auto-Rectify Network to estimate and eliminate the rota-

tion in advance. MonoIndoor series [20, 27] consider the

depth range changes between different indoor scenes and

design a transformer for depth factorization. Moreover, a

residual pose estimation module is proposed in [20, 27] to

iteratively optimize the relative pose predicted by networks.

A second challenge when dealing with indoor scenes con-

sist of the much lower texture present in images, making

the image reconstruction loss often ineffective. To tackle

this, Li et al. [25] use Manhattan normal constraint, while,

Zhou et al. [62] propose to use optical flow to both obtain

stronger supervision in low-textured regions, as well as to
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assist the training of the PoseNet.

Our framework faces both challenges, respectively 1) by

exploiting geometry by means of structure-from-motion al-

gorithms [41] to ease the pose estimation process and 2) by

deploying vision transformers. However, these two strate-

gies alone are ineffective: although being a good initial-

ization, coarse poses [41] are noisy and scale-inconsistent

across different sequences. Thus, they need to be properly

refined and further optimized.

Self-Distillation. Different from the knowledge distil-

lation methods, self-distillation approaches treat the model

as its own teacher and distill labels by itself. This strat-

egy is widely used in the classification task [19] and, more

recently, has been introduced for self-supervised depth es-

timation as well [33] by exploiting stereo images dur-

ing training. Inspired by this latter work, we introduce

self-distillation into the monocular sequence-based self-

supervised framework and prove that this approach alone

yields sub-optimal improvements. Indeed, we cast self-

distillation as an iterative approach by generating and se-

lecting more and more accurate pseudo-labels.

3. GasMono Framework

We now introduce the key component of our framework,

sketched in Fig. 2.

3.1. GeometryAided Pose Estimation

The standard supervision protocol for self-supervised

monocular depth estimation frameworks trained on video

sequences consists of reprojecting pixels from a source im-

age Is into the target It according to estimated depth Dt

and relative camera pose Et→s = Rt→s|tt→s. This means

that, for pixel pt in the target view, its coordinates ps in the

source view can be obtained as follows:

ps ∼ K[Rt→sDt(pt)K
−1pt + tt→s] (1)

Given the challenges of learning an accurate relative

pose between images in presence of large rotations, we pro-

pose to get rid of the commonly used PoseNet and replace

it with a traditional pose estimation algorithm. For this pur-

pose, we leverage COLMAP [41] to obtain camera poses

ECP
i = RCP

i |tCP
i for images Ii in every single indoor se-

quence in the training set. Then, for a given image pair It,
Is, respectively the target and source frames, we can obtain

the relative pose between the two as ECP
t→s = RCP

t→s|tCP
t→s =

ECP
s ECP

t

−1
. Differently from two-frame pose estimation,

a structure-from-motion pipeline such as COLMAP reasons

globally over the entire sequence. We argue that, since

pose estimation represents a side task for learning monocu-

lar depth, it is worth exploiting sequences as a whole.

Nonetheless, poses estimated by COLMAP, which we

will refer to as coarse from now on, suffers from some prob-

lems, specifically 1) scale inconsistency across different se-

quences and scale drift within the very same scene because

of monocular ambiguity, 2) noise in estimated rotation and

translation due to the lack of texture. This makes COLMAP

alone ineffective at seamlessly replacing the PoseNet to

train a monocular depth network.

3.1.1 Translation Rescaling and Refinement

To solve the former issue, we deploy a shallow network,

AlignNet, to refine the coarse translation and to rescale it

during training, allowing to overcome scale inconsistency

across the many sequences in the training set.

Accordingly, AlignNet processes the target and source

images and predicts a scale factor sNN and a residual shift

∆tNN applied to the translation component tCP
t→s estimated

by COLMAP. Then, estimated translation tt→s from target

to source views is obtained as

t∗t→s = sNN
t→st

CP
t→s +∆tNN

t→s (2)

This refined translation vector is then used in Eq. 1, lead-

ing to scale adjustment when learning to estimate monoc-

ular depth maps by exploiting RCP
t→s|t∗t→s, both within the

same sequence as well as across all the scenes in the training

dataset, shown as “Optim t” in Fig. 2.

We can consider AlignNet as a training optimization

tool, refining coarse poses to make them scale-consistent

as a whole. As such, it loses its utility once the training

procedure is completed.

3.1.2 Rotation Optimization

Bian et al. [2] has proved that the rotation in self-supervised

training is independent of depth learning. Nonetheless, in

case of inaccurate rotations being estimated between target

and source frames, noisy gradients will arise and affect the

training of the depth network as well. However, we argue

that such an error is a small residual rotation, largely smaller

compared to the original rotation between the two frames,

and thus a deep network could learn such a correction.

Inspired by the rotation and pose rectify methods in re-

cent works [2, 20], we re-introduce the PoseNet to solely

estimate the residual pose Rr
t→s|trt→s between the image

being reconstructed from RCP
t→s|t∗t→s and the target one, by

computing an additional reprojection loss using the same,

estimated depth and the newly computed, residual pose –

“Optim R” in Fig. 2. Although the PoseNet cannot deal

properly with large rotations, it can effectively estimate the

small, residual rotations result of the COLMAP errors.

3.2. LowTexture Regions

In self-supervised training, back-propagation behavior

replies to the photometric gradient changes on RGB images.
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Figure 2. GasMono: a geometry-aided self-supervised monocular depth estimation framework for indoor scenes. Note that no

ground truth labels are used in the training process. With the monocular image sequences selected by the camera from several indoor

scenes, the structure-from-motion package COLMAP is used to estimate the coarse poses for the camera on each sequence. Then, the

image sequences and coarse poses are used to train the depth model. To improve the coarse translation, an AlignNet is designed to estimate

the scale sNN and residual translation ∆t. Moreover, a PoseNet is also designed to further improve the pose, especially the coarse rotation,

based on the reconstructed and target images. AlignNet and PoseNet are only used during training.

Those regions with effective photometric changes provide

strong gradients for depth learning, while regions with low-

texture regions, like walls and floors, cannot provide effec-

tive supervisory signals, because multiple depth hypothe-

ses lead to photometric errors being close to zero [62], thus

driving the network into local minima. Therefore, the depth

estimation process mainly relies on the inferring ability of

the network itself for low-texture regions. The use of some

additional constraints, coming from cues such as optical

flow or plane normals [25,62], might help. Nonetheless, this

requires additional supervision and can suffer the same is-

sues due to low texture, as in the case of optical flow. Thus,

we choose to tackle it on the architectural side, in particular

by overcoming the limited receptive fields of CNNs with a

vision transformer. Moreover, previous works proved the

effectiveness of label distillation [33,34] to improve the ac-

curacy of the depth network. Therefore, we propose a more

effective solution for obtaining more accurate distilled la-

bels in order to provide stronger supervision to GasMono.

3.2.1 Network Architecture

Our framework consists of three networks, a Depth Net-

work for monocular depth estimation, an Alignment Net-

work (AlignNet) for scale correction and residual transla-

tion prediction, and a PoseNet for residual pose estimation.

The overall training architecture is shown in Fig. 2.

Considering the outstanding performance of the trans-

former in long-range relationship modeling between fea-

tures, in order to enhance the global feature extraction for

the depth inferring of low-texture regions, we introduce a

transformer encoder, MPViT [24], as the depth encoder by

following [59]. The self-attention mechanism in the en-

coder is implemented in an efficient factorized way [24]:

FactorAtt(Q,K,V) =
Q√
C
(softmax(K)TV) (3)

where C refers to the embedding dimension. Query (Q),

key (K), and value (V ∈ R
N×C) vectors are projected from

vision tokens. Moreover, for the depth decoder, we replace

the standard upsampling implemented by Monodepth2 [11]

and others with convex upsampling [45], bringing the 4

scale disparity maps to full resolution, at which they are

used for the iterative self-distillation operations described in

the remainder. To build both the AlignNet and PoseNet, we

use the same architecture used to implement the PoseNet in

previous works [11, 59], which is based on ResNet-18 [18].

3.2.2 Iterative Self-Distillation Method

Inspired by [33], we propose an overfitting-driven Iterative

Self-Distillation procedure (ISD) to obtain the depth map

with the lowest per-pixel minimum reprojection error, yield-

ing more accurate labels for any specific training sample.

The key steps of ISD are listed in Algorithm 1. For each

single training image, we iterate this process multiple times

(row 4). At the first iteration, we select the per-pixel mini-

mum reprojection error across all scales and its correspond-

ing predicted depth (rows 6-14). Then, we update the net-

work by minimizing a depth loss between the current best

depth map and predictions at each scale (rows 15-16). This

procedure is repeated for a number of iterations.

We will show in our experiments how this allows for im-

proving the supervision provided by naı̈ve distillation [33].
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Algorithm 1: Iterative Self-Distillation ISD

Input:

Target image: I ∈ Rb×3×H×W ;

Reconstructed target image: Ĩs ∈ Rb×3×H×W ;

Disparity map: Ds ∈ Rb×1×H×W ;

Output: Self-distillation loss (LISD)

1 total iterations = n > 0;

2 curr iterations = 0;

3 Dict = {};

4 for curr iteration < total iterations do

5 curr iterations += 1;

6 for s in range(4) do

7 Rec error = F(Ĩs, I) ∈ Rb×1×H×W ;

8 if Dict is empty then

9 Dict[‘disp best’] = D0;

10 Dict[‘error min’] = Rec error;

11 end

12 Dict[‘disp best’] = torch.where( Rec error<
Dict[‘error min’], Ds, Dict[‘disp best’]);

13 Dict[‘error min’] = torch.min( torch.cat(

[Rec error, Dict[‘error min’]] ));

14 end
15 LISD =

∑
4

s=1
(log(|Dict[‘disp best′] − Ds| + 1));

16 Ltot.backward()

17 end

3.3. Training Losses

Different from competitors [2, 27], we follow outdoor

methods [11], the key term of our training loss consists of

the minimum view reconstruction loss, accompanied by a

smoothness term.

View Reconstruction Loss. Having obtained a recon-

structed image Ĩ, its error with respect to the target image I
is measured by means of Structured Similarity Index Mea-

sure (SSIM) and L1 difference, combined as in [11]:

F(Ĩ, I) = α · 1− SSIM(Ĩ, I)
2

+ (1− α) · |Ĩ − I| (4)

with α commonly set to 0.85 [11]. Besides, to soften the ef-

fect of occlusions between two views, the minimum among

losses obtained with respect to forward and backward adja-

cent frames being warped is computed:

Lrec(p) = min
i∈[1,−1]

F(Ĩi(p), I(p)) (5)

with ‘1’ and ‘-1’ referring to the forward and backward ad-

jacent frames, respectively.

Smoothness Loss. The edge-aware smoothness loss is

used to further improve the inverse depth map d:

Lsmooth = |∂xd∗|e∂xI + |∂yd∗|e∂yI , (6)

where d∗ = d/d̂ represents the mean-normalized inverse

depth. Besides, following [11], an auto-mask µ is calculated

to filter static frames and some repeated texture regions.

Iterative Self-Distillation Loss. As described before,

GasMono self-distills proxy labels to be used as additional

supervision. Given proxy labels dbest obtained according

to Algo. 1, we minimize the log-error of predicted depth d
with respect to it:

LISD = log(|dbest − d|+ 1) (7)

Total Loss. Finally, the view reconstruction loss Lrec,

the smoothness loss Lsmooth and the distillation term LISD

are computed on outputs at any given scale – brought to full

resolution – to obtain the total loss term Ltot. More specif-

ically, two reconstruction losses are computed, respectively

LOptim t
rec and LOptim R

rec :

Ltot = LOptim t
rec + β · LOptim R

rec

+ λ · Lsmooth + µ · LISD

(8)

with LOptim t
rec and LOptim R

rec being computed with recon-

structed images based on the poses obtained after transla-

tion and rotation optimizations respectively, and with β, λ
and µ being set to 0.2, 0.001 and 0.1. Finally, total losses

are averaged across scales.

4. Experimental Results

We now evaluate the performance of GasMono with re-

spect to existing methods from the literature. We first de-

scribe the datasets and protocol used for our experiments,

then conduct an exhaustive study on GasMono behavior

when trained with COLMAP poses and our pose optimiza-

tion strategies, followed by an ablation study on our model

and a final, comparison with state-of-the-art approaches.

4.1. Implementation Details

We start by describing the datasets involved in our eval-

uation and the implementation details of our method.

4.1.1 Datasets

We conduct our experiments on three popular indoor

datasets: NYUv2 [32], 7scenes [42], and ScanNet [4]. To

validate our iterative-self distillation strategy, we also eval-

uate on the outdoor KITTI [10] dataset.

Indoor Datasets: NYUv2 contains 464 indoor se-

quences with dense depth ground truth captured by a hand-

held RGB-D camera at 640×480 resolution. Following pre-

vious works [2], we use the officially provided 654 densely

labeled images for testing and the remaining 335 sequences

for training and validation. Since COLMAP failed in some

short training sequences, these have been excluded. Differ-

ently from the MonoIndoor series [20, 27], which rectifies
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Details scale std
lower is better higher is better

Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑

(a) T(RNN , tNN ) – Monodepth2 [11] 0.259 0.167 0.137 0.603 0.208 0.754 0.944 0.985

(b) T‡(RCP , tCP ) 0.597 0.298 0.521 1.079 0.346 0.534 0.808 0.925

(c) T(RCP , tNN ) 0.215 0.160 0.131 0.584 0.203 0.771 0.945 0.985

(d) T‡(RNN , tCP ) - 0.311 0.460 0.999 0.369 0.511 0.779 0.904

(e) T(RCP , tCP ∗ sNN ) 0.237 0.183 0.169 0.661 0.231 0.718 0.920 0.978

(f) T‡(RCP , tCP +∆tNN ) 0.501 0.255 0.326 0.888 0.309 0.583 0.845 0.946

(g) T(RCP , tCP ∗ sNN +∆tNN ) 0.240 0.159 0.132 0.590 0.203 0.775 0.945 0.986

(h) Monodepth2 [11] * 0.167 0.137 0.603 0.208 0.754 0.944 0.985

(i) + MPViT * 0.145 0.109 0.546 0.186 0.804 0.959 0.991

(j) + MPViT + CP * 0.311 0.460 0.999 0.369 0.511 0.779 0.904

(k) + MPViT + CP + Optim t * 0.124 0.090 0.490 0.165 0.850 0.968 0.991

(l) + MPViT + CP + Optim t + Optim R * 0.114 0.085 0.469 0.155 0.867 0.972 0.992

(m) + MPViT + ISD * 0.137 0.100 0.523 0.177 0.821 0.964 0.991

(n) + MPViT + CP + Optim t + ISD * 0.122 0.091 0.486 0.162 0.857 0.969 0.991

(o) + MPViT + CP + Optim t + Optim R + ISD * 0.113 0.083 0.459 0.153 0.871 0.973 0.992

Table 1. Ablation Studies. The upper part is based on the monodepth2 [11], which explores the utilization and optimization methods for

the coarse pose from COLMAP. “(R/t)CP/NN” refers to the (R/t) generated by COLMAP/NeuralNetwork. “scale std” stands for

the std. error of the scale alignment factor on the testset. “‡” denotes that the training process has a high probability of not converging, and

we only record the results of the converged case here. The other part is ablation experiments to prove the effectiveness of each module in

this paper. CP refers to the model trained by using coarse pose [RCP , tCP ].

the image distortion with provided camera intrinsics, we di-

rectly use raw images for training. 7-Scenes consists of 7

indoor scenes, each containing several image sequences at

640×480 resolution. We follow the official train/test split

for each scene. Following [2], we extract the first image

from every 10 frames for each scene for testing. ScanNet

provides 1513 indoor RGB-D videos, captured by handheld

devices. To evaluate the generalization performance of our

depth model trained on NYUv2, we use the officially re-

leased test set following [2, 27]. On these datasets, images

are resized to 320×256 during both training and testing.

Outdoor Dataset: KITTI contains 61 scenes, with a

typical image size of 1242×375, captured using a stereo rig

mounted on a moving car equipped with a LiDAR sensor.

Following the literature [12, 64], we use the image split of

Eigen et al. [8] for training and validation. To compare with

the existing solutions, we evaluate the model on the test split

of [8] with the same evaluation metrics. Images are resized

to 640×192 during both training and testing.

4.1.2 Settings

We implement GasMono in PyTorch, training it for 40

epochs on the NYUv2 dataset and 20 epochs on the KITTI

dataset by using AdamW [29] optimizer. The batch size

is set to 12 and the number of iterations for ISD to 2. The

translation, pose encoder and depth encoders are pre-trained

on ImageNet [5]. For training, we use a single NVIDIA

Tesla P40 GPU. Source code and generated coarse poses

will be open-sourced in case of acceptance.

4.2. Ablation Studies

We start by inquiring about the impact of any component

in GasMono, to assess their effectiveness at dealing with the

challenges of indoor monocular depth estimation.

4.2.1 Coarse Poses and Network Convergence

To analyze the difficulties as well as improvements yielded

by employing geometry-based pose estimation algorithms

such as COLMAP, we build a set of experiments based over

the Monodepth2 baseline [11] on the NYUv2 dataset [32],

collected in Tab. 1. For training, only photometric and

smoothness losses from [11] are used in any setting.

Row (a) contains the results achieved by the baseline –

i.e., Monodepth2 using a PoseNet to estimate poses. Then,

rotation RCP and translation tCP estimated by COLMAP

are directly used to replace the pose network in (b), showing

that this approach does not yield satisfactory accuracy.

Then, we select only one among rotation RNN and trans-

lation tNN components estimated by the PoseNet to respec-

tively replace the COLMAP counterpart. From the results,

we can notice that using only translation tNN estimated by

the network, while keeping the rotation component being

estimated by COLMAP (c), allows for outperforming the

baseline. Besides, using the RNN and tCP (d) yields to

the worst results observed so far. These two experiments

confirm that 1) the translation component tCP is the main

cause of failure when using COLMAP poses – indeed, re-

placing it with tNN is sufficient to boost performance – and

2) COLMAP estimated rotations results largely better than

those learned through a PoseNet. Concerning tCP , we as-
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Figure 3. Effects of different encoders on low-texture depth estimation. The transformer-based encoder, MPViT, can effectively

improve the depth inferring on low-texture regions.

cribe two main factors preventing it from making the learn-

ing process work properly: scale and shift components.

Scale Factor: since the training set contains hundreds

of monocular sequences, the scale ambiguity and scale drift

caused by monocular SfM result in scale inconsistency of

poses between different training samples, which affects the

depth network during training as well. In the table, we re-

port the standard deviation of the scale alignment factor on

the test set (scale std), to reflect how depth scale is affected.

We can notice how using COLMAP coarse poses (b) greatly

increases the standard deviation, pointing out scale incon-

sistency across the scenes. By means of estimating a rescal-

ing factor sNN (e), we can significantly reduce it, making it

even lower with respect to the baseline and, consequently,

improving the accuracy of the estimated depth map.

Shift Factor: although poses are generated by

COLMAP, they can be noisy and inaccurate. Therefore,

we use a neural network to regress the residual translation

∆tNN to be applied to tCP . Estimating this alone (f) results

ineffective because of the scale ambiguity issue discussed

so far. However, when both scale and shift are estimated

(g), we achieve the best results in terms of depth accuracy.

Methods
lower is better higher is better

Abs Rel↓ RMSE↓ RMSE log ↓ δ1 ↑ δ2 ↑ δ3 ↑
MonoUncertainty [34] 0.111 4.756 0.188 0.881 0.961 0.982

HR-Depth [30] 0.109 4.632 0.185 0.884 0.962 0.983

CADepth [50] 0.105 4.535 0.181 0.892 0.964 0.983

DIFFNet [61] 0.102 4.445 0.179 0.897 0.965 0.983

DevNet [63] 0.100 4.412 0.174 0.893 0.966 0.985

BRNet [16] 0.105 4.462 0.179 0.890 0.965 0.984

SC-Depthv2 [2] 0.118 4.803 0.193 0.866 0.958 0.981

Monodepth2 [11] 0.115 4.863 0.193 0.877 0.959 0.981

+ SD 0.112 4.814 0.191 0.879 0.860 0.981

+ ISD 0.111 4.732 0.189 0.880 0.961 0.982

MonoViT [59] 0.099 4.372 0.175 0.900 0.967 0.984

+ SD 0.099 4.359 0.174 0.902 0.967 0.984

+ ISD 0.098 4.303 0.173 0.903 0.968 0.984

Table 2. Testing our ISD with different baselines on the out-

door KITTI Dataset [10]; The depth network is trained by out-

door monocular image sequences in a self-supervised manner.

4.2.2 From Monodepth2 to GasMono

Having assessed the impact of coarse poses and how to

use them effectively, we now measure the improvements

yielded by any single component differentiating GasMono

from Monodepth2, by sequentially adding one component

at a time. Results are collected in the bottom part of Tab. 1.

Transformer Encoder. One of the main challenges in
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Methods Supervision
Error Metric Accuracy Metric

Abs Rel↓ RMSE↓ δ1 ↑ δ2 ↑ δ3 ↑
Make3D [40] Sup. 0.349 1.214 44.7 74.5 89.7

Li et al. [26] Sup. 0.143 0.635 78.8 95.8 99.1

Eigen et al. [6] Sup. 0.158 0.641 76.9 95.0 98.8

Laina et al. [23] Sup. 0.127 0.573 81.1 95.3 98.8

DORN [9] Sup. 0.115 0.509 82.8 86.5 99.2

AdaBins [1] Sup. 0.103 0.364 90.3 98.4 99.7

DPT [38] Sup. 0.110 0.357 90.4 98.8 99.8

Zhou et al. [62] Self-Sup. 0.208 0.712 67.4 90.0 96.8

Zhao et al. [60] Self-Sup. 0.189 0.686 70.1 91.2 97.8

SC-Depthv1 [3] Self-Sup. 0.157 0.593 78.0 94.0 98.4

P2Net+PP [55] Self-Sup. 0.147 0.553 80.4 95.2 98.7

StructDepth [25] Self-Sup. 0.142 0.540 81.3 95.4 98.8

MonoIndoor [20] Self-Sup. 0.134 0.526 82.3 95.8 98.9

SC-Depthv2 [2] Self-Sup. 0.138 0.532 82.0 95.6 98.9

MonoIndoor++ [27] Self-Sup. 0.132 0.517 83.4 96.1 99.0

DistDepth [49] Self-Sup. 0.130 0.517 83.2 96.3 99.0

GasMono (Ours) Self-Sup. + Pose 0.113 0.459 87.1 97.3 99.2

Table 3. Evaluation on NYUv2 [32]. Sup.: trained with

ground truth; Self-Sup.: trained on image sequences; Pose: uses

COLMAP poses at training time.

Methods Supervision
Error Metric Accuracy Metric

Abs Rel↓ RMSE↓ δ1 ↑ δ2 ↑ δ3 ↑
Laina et al. [23] Sup. 0.141 0.339 0.811 .958 0.990

VNL [53] Sup. 0.123 0.306 0.848 0.964 0.991

DPT [38] Sup. 0.089 0.220 0.917 0.985 0.997

TrainFlow [60] Self-Sup. 0.179 0.415 0.726 0.927 0.980

SC-Depthv1 [3] Self-Sup. 0.169 0.392 0.749 0.938 0.983

SC-Depthv2 [2] Self-Sup. 0.156 0.361 0.781 0.947 0.987

Monodepth2 [11] Self-Sup. 0.170 0.401 0.730 0.948 0.991

MonoIndoor [20] Self-Sup. 0.154 0.373 0.779 0.951 0.988

MonoIndoor++ [27] Self-Sup. 0.138 0.347 0.810 0.967 0.993

GasMono (Ours) Self-Sup. + Pose 0.120 0.301 0.856 0.972 0.993

Table 4. Zero-shot generalization results on ScanNet [4]. Sup:

trained with ground truth, Self-Sup.: trained on image sequences;

Pose: uses COLMAP poses at training time.

indoor environments concerns the lack of texture and the

global receptive field of a transformer can help deal with

it. By replacing the ResNet18 encoder in Monodepth2 (h)

with a state-of-the-art vision transformer (i) – MPViT [24]

– allows for much more accurate depth predictions. Fig. 3

shows some qualitative examples: the ResNet-based depth

network cannot infer a reasonable disparity for large regions

having low texture, whereas the transformer-based depth

network benefits from the long-range feature and global fea-

ture modeling and yields much better predictions. More ab-

lation studies on the transformer encoder – and the depth

decoder – are reported in the supplementary material.

Geometry-Aided Pose Estimation. We now introduce

coarse poses estimated by COLMAP. As previously dis-

cussed, using such poses seamlessly (j) leads to instability

during training, while optimizing the translation component

(k) greatly improves the results over (i). However, the rota-

tion component estimated by COLMAP is still sub-optimal,

preventing GasMono from unleashing its full potential. In-

deed, by both optimizing translation and rotation compo-

Scenes
SC-Depthv2 [2] GasMono (Ours) Monoindoor++∗ [27]

AbsRel↓ δ1↑ AbsRel↓ δ1↑ AbsRel↓ δ1 ↑
Chess 0.179 0.689 0.148 0.791 0.157 0.750

Fire 0.163 0.751 0.131 0.844 0.150 0.768

Heads 0.171 0.746 0.151 0.802 0.171 0.727

Office 0.146 0.799 0.112 0.878 0.130 0.837

Pumpkin 0.120 0.841 0.136 0.852 0.102 0.895

RedKitchen 0.136 0.822 0.130 0.827 0.144 0.795

Stairs 0.143 0.794 0.151 0.782 0.155 0.753

Average 0.151 0.778 0.137 0.825 0.144 0.789

Table 5. Zero-shot generalization results on on RGB-D 7-

Scenes [42]. Note that Monoindoor++∗ [27] extracts one image

every 30 frames in each video sequence for testset, while we fol-

low SC-Depthv2 [2] that extracts the first image every 10 frames.

Scenes
Fine-tuned

SC-Depthv2 [2] GasMono (Ours)

AbsRel↓ δ1↑ AbsRel↓ δ1↑
Chess 0.150 0.780 0.124 0.867

Fire 0.105 0.918 0.090 0.928

Heads 0.143 0.833 0.111 0.887

Office 0.128 0.855 0.102 0.914

Pumpkin 0.097 0.922 0.110 0.908

RedKitchen 0.124 0.853 0.111 0.894

Stairs 0.134 0.823 0.114 0.846

Average 0.126 0.854 0.108 0.892

Table 6. Fine-tuned results on on RGB-D 7-Scenes [42].

nents (l) allows to further reduce the errors.

Iterative Self-Distillation. To conclude, we verify the

impact of ISD. By simply enabling it (m), the accuracy of

our architecture starts improving. Moreover, it results effec-

tive also when combined with translation optimization (n).

Eventually, enabling ISD to supervise GasMono while opti-

mizing both translation and rotation components (o) yields

the overall best results. To further validate the effective-

ness of ISD, we run additional experiments on the KITTI

dataset. Tab. 2 shows results obtained by plugging distil-

lation strategies – SD [33] and our ISD – into Monodepth2

and MonoViT. We can notice how both frameworks are im-

proved, with our method resulting more effective than SD.

4.3. Comparison with Stateoftheart

We conclude our experiments by evaluating GasMono

with respect to state-of-the-art approaches.

In-Domain Evaluation. Tab. 3 collects results con-

cerning training and testing on the NYUv2 splits. Gas-

Mono outperforms existing self-supervised indoor meth-

ods [2, 27, 49] by a large margin, achieving the best results

across all metrics. Especially, compared with our baseline

Monodepth2 [11], our method improves the AbsRel error

from 0.167 to 0.113 and δ1 from 75.4% to 87.1%. More-

over, GasMono outperforms the previous top-performing

method DistDepth [49], by 3.9% on δ1, despite this latter is

first trained on SimSIN [49] and then fine-tuned on NYUv2,
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Figure 4. Qualitative comparison on NYUv2 [32]. GasMono outperforms the baseline [11] and the recent SC-Depthv2 [2].

thus exploiting much more training data. This allows Gas-

Mono for halving the gap between the best self-supervised

method and the best supervised one – DistDepth vs DPT –

on δ1, reducing it from 6% to 3%.

Generalization. We further test GasMono on ScanNet

and 7scenes datasets without retraining. Tabs. 4 and 5 col-

lect the outcome of these experiments. On ScanNet, Gas-

Mono consistently outperforms any existing self-supervised

and supervised framework. On 7scenes, it achieves the best

results on 5 out of 7 sets, being the absolute best on average.

For the sake of completeness, we also report the results

achieved by fine-tuning GasMono on the 7-scenes dataset.

Specifically, we follow [2] and train for 3 epochs an instance

of GasMono for each scene alone, starting from weights

pre-trained on NYUv2 dataset [32]. Table 6 shows that

our method outperforms SC-Depthv2 [2], highlighting that

a short fine-tuning process can already improve the perfor-

mance of our model significantly, with important implica-

tions in terms of deployment in real-world applications.

Qualitative Results. Fig. 4 shows a qualitative com-

parison between existing approaches and GasMono. Depth

maps predicted by our framework (last column) are more

precise, especially in the flat regions and fine-grained de-

tails. More examples in the supplementary material.

5. Conclusions

This paper proposed GasMono, a geometry-aided self-

supervised monocular depth estimation framework for chal-

lenging indoor scenes. With the rescale and refine methods

proposed in this paper, our method tackles the problem of

using coarse poses in self-supervised training, like scale in-

consistency between poses, and makes full use of coarse

poses from geometry methods. Therefore, our proposal

vastly and consistently outperforms any existing approach

on the NYUv2 and KITTI datasets. Moreover, experiments

on ScanNet and 7Scenes datasets show that GasMono also

achieves superior generalization performance.
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