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Abstract

We propose a method to estimate 3D human poses from

substantially blurred images. The key idea is to tackle the

inverse problem of image deblurring by modeling the for-

ward problem with a 3D human model, a texture map, and

a sequence of poses to describe human motion. The blur-

ring process is then modeled by a temporal image aggre-

gation step. Using a differentiable renderer, we can solve

the inverse problem by backpropagating the pixel-wise re-

projection error to recover the best human motion repre-

sentation that explains a single or multiple input images.

Since the image reconstruction loss alone is insufficient, we

present additional regularization terms. To the best of our

knowledge, we present the first method to tackle this prob-

lem. Our method consistently outperforms other methods

on significantly blurry inputs since they lack one or mul-

tiple key functionalities that our method unifies, i.e. image

deblurring with sub-frame accuracy and explicit 3D model-

ing of non-rigid human motion.

1. Introduction

Accurate tracking of human motion is often crucial for

understanding dynamic scenes from images. Human mo-

tion estimation has a wide field of applications such as im-

proving human-robot collaboration [2], human-machine in-

teraction in general [12], better safety for autonomous driv-

ing [20], markerless human motion capture [36, 35, 27],

sports analysis, and the movie and entertainment indus-

try. A particular difficulty occurs when the human motion

is fast, or low light conditions demand longer camera ex-

posure times, which can both lead to blurry images from

which it is significantly harder to estimate the human pose.

The main goal of our method is accurate 3D human

pose tracking from substantially blurred images or videos.

Hence, it is related to both human pose estimation and im-

age deblurring methods. On the one hand, while there is a

variety of methods that address 3D human pose estimation

from RGB or RGB-D images, there is no method that is de-
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Figure 1. Human from Blur (HfB) on a real-world sequence.

Given a blurry image with human motion and the corresponding

background, HfB recovers the human shape and sub-frame mo-

tion. We visualize sub-frame human pose and show the recon-

structed mesh from a novel view.

signed to handle substantially blurred images. Moreover,

none of the human pose estimation methods is able to esti-

mate human pose at sub-frame accuracy. On the other hand,

there is a large amount of methods that aim at deblurring

images and videos, but they mostly only assume simplified

scenarios, e.g. without out-of-image-plane object rotations,

or only for rigidly moving objects [45, 46]. So far, human

pose estimation and image deblurring has not been studied

jointly. Also, there is no public dataset to evaluate such task

since none of standard datasets for human pose estimation

include significant amounts of motion blur.

We propose the first method that recovers human pose at

sub-frame accuracy from blurry inputs, even from a single

blurry image (Fig. 1). We make the following contributions:

(1) We present the first method for human pose estimation

from substantially blurred images that recovers sub-

frame accurate poses as well as texture and body shape.

(2) We generate a synthetic dataset and collected real-

world motion-blurred data of humans for evaluation

purposes. We further propose corresponding evaluation

metrics to assess and compare to future methods.

(3) The proposed method only relies on test-time optimiza-

tion and is learning-free, apart from the initialization

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
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14905



Generated Frames

Human Pose Estimation

Cropped Input Frames

Averaging

+Matting

… …

Foreground

Subframes

Silhouette

Subframes

Loss function

DR Differentiable renderer

DR

DR

DR

Averaging

+Matting

Human Motion Representation

Polynomal for

Subframe Poses

SMPL Shape

SMPL Texture
Regularization

Surface Texture

Pose Prior

Polynomial

Minimize

Matting 

Loss

Reconstruction Loss

Image 

Formation Loss… … …

… …

…

… … …

Avgerage

Silhouettes

SMPL Parameter

Regressor for Initialization

…

Input Frames

Clean Background

…

Image Matting

…

Motion Prior
(single frame input only)

SMPL Shape

Background

Avgerage 

Composition

DR

DR

…

…

DR

…

Figure 2. Method overview. The input to our method are a single or multiple blurry frames of a human (left), and the output is a 3D repre-

sentation of a human and its sub-frame motion over time (right). From Right to Left: Starting from the human motion representation, our

model can be seen as generative model. For a desired set of frames and sub-frames, we can render sub-frame appearances and correspond-

ing silhouettes. Then, the sub-frames are averaged to generate blurry frames and blurry silhouettes (alpha channel), which are composed

with the known background to generate the input image according to (2). The central part of our method is the image reconstruction loss

which compares the generated images with the actual input images. In order to solve for the human motion estimation, the reconstruction

loss is backpropagated through the entire differentiable pipeline. The human pose estimation uses a traditional method [27] to initialize the

optimization, and the image matting is precomputated [28] for the matting loss.

and the motion prior, which is only needed for the

single-frame case. Hence, our method does not require

large amounts of annotated training data.

2. Related work

The proposed method is at the intersection of human

pose tracking and image/video deblurring.

3D Human pose estimation. The 3D pose of a hu-

man is usually represented as a skeleton of 3D joints

[34, 36, 35, 65, 51]. In order to obtain more fine-grained

representations of the human body, parametric body mod-

els such as SCAPE [3] or the SMPL family [41, 42, 38]

have been introduced to capture the 3D body pose. Itera-

tive optimization-based approaches have been leveraged for

model-based human pose estimation. [9, 48, 11, 4, 42] pro-

posed to estimate the parameters of the human model by

leveraging silhouettes or 2D keypoints. On the other hand,

direct parameter regression via neural networks has been

explored [15, 53, 56, 37, 10, 54, 58, 61, 24, 52, 27, 18].

Given a single RGB image, a deep network is used to

regress the human model parameters. There is another line

of work that combines the advantages of both optimization

and regression to fit the SMPL body [19, 49]. Although

there have been significant advances of human pose estima-

tion from monocular images or videos, a method which is

able to deal with blurry input is still missing.

Image and video deblurring. A large amount of meth-

ods have studied generic image [21, 22] and video deblur-

ring, e.g. [14, 39, 62, 47, 64, 7, 23, 60, 50, 16, 43, 44].

Some attempts to specialize on deblurring depicted humans

have already been made. For instance, [8] focuses only on

deblurring human faces. Closely related to our problem

setting, [31] addresses deblurring of human motion using

an adversarial approach, which focuses on image deblur-

ring rather than pose estimation, and it does not recover at

sub-frame accuracy. The follow-up method [30] generalizes

to joint human motion and scene deblurring with a similar

methodology, but the sub-frame poses are never recovered.

The proposed method is partially inspired by Shape from

Blur (SfB) [45], which uses a similar test-time optimization

to recover 3D shape and sub-frame motion of simple rigid

objects with spherical topology from a single blurry image

with a given background. Motion from Blur (MfB) [46]

extends SfB to multiple video frames. There is also a related

Animation from Blur method [63], but it assumes a motion

guidance is provided as an additional input.

3. Method

The inputs to our method are an image I with the blurred

human and the corresponding clean background image B.

The desired output is a human shape parameter β, texture

image T , and three functions representing sub-frame hu-

man motion that depend on a timestamp i. This timestamp

represents the sub-frame time interval and is defined be-

tween 1 and N , where N is the desired number of sub-

frames. Effectively, it means that we generate a temporal

super-resolution or a short video with N frames out of each

single input frame. Those three functions are human body

translation Ti, rotation Ri, and sub-frame human pose θi
that represents joint rotation. They are all represented by a

set of low-degree polynomials, where translations and ro-

tations have each four degrees of freedom (direction with
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distance and axis with angle). This polynomial representa-

tion generates poses in a strict chronological order and is

continuous, differentiable, and can be easily initialized with

a given initial pose (Sec. 3.3). Human pose and shape repre-

sentations follow the SMPL human model [41]. The texture

image T is mapped using a fixed UV mapping from SMPL.

As the first step, we generate the human SMPL mesh

Θ
i

at timestamp i with a given pose, shape, and texture pa-

rameters (Fig. 2). Then, we move the whole mesh Θ
i

by

translation Ti and rotation Ri given by motion function M:

Θ
i
= M

(
SMPL(θi, β, T ), Ti, Ri

)
. (1)

To render the sub-frame silhouette and appearance of the

mesh, we use Differentiable Interpolation-based Renderer

(DIB-R) [6]. This differentiable rendering provides two

outputs. The first one is appearance rendering RF (Θi
) that

outputs projected human appearance. The second one is

silhouette rendering RS(Θi
) that outputs projected human

silhouette. In this work, we assume a static camera.

Image formation model. Given all previously defined pa-

rameters, we can finally define the image formation model.

It follows a standard alpha matting approach:

Î =
(

1−
1

N

N∑

i=1

RS(Θi
)
)

︸ ︷︷ ︸

Inverse alpha channel

·B
x


Background

+
1

N

N∑

i=1

RS(Θi
)·RF (Θi

)

︸ ︷︷ ︸

Blurred foreground (human)

.

(2)

The generated image Î consists of the background image,

scaled down by the inverse alpha channel, and the blurred

foreground human body. The alpha channel is modeled by

averaging all projected sub-frame silhouettes.

3.1. Loss terms

The key components of our method are the image for-

mation loss and the matting loss. The image formation loss

forces the reconstructed image to be as close as possible to

the input image. The matting loss favors silhouettes that are

consistent with the initially estimated alpha channel. The

other losses are auxiliary and regularization terms that make

the optimization easier and refine the final results.

Image formation loss. This loss measures the input image

reconstruction according to the image formation model (2).

We compute the mean squared error between the observed

input image and our reconstruction as:

LI = |I − Î|2 . (3)

Matting loss. If the image formation loss (3) is the sole

loss to be minimized, the optimization becomes extremely

difficult. Experimentally, such optimization is ambiguous

and mostly results in an undesired local minimum. There-

fore, we further impose a loss on our approximated rendered

alpha channel, which is computed as the average of sub-

frame silhouettes, αtarget =
1
N

∑N

i=1 RS(Θi
), according to

the image formation model (2). The initial alpha channel

αin is estimated using a pre-trained Background-Matting-

V2 [28] model, based on the input blurry image and the

corresponding background. Finally, the matting loss com-

putes the intersection over union between our rendered al-

pha channel from averaging and the one from [28]:

Lα = 1−
|min(αin, αtarget)|1
|max(αin, αtarget)|1

, (4)

where the intersection over union for non-binary inputs is a

ratio between the sum of pixel-wise min and max operators.

Surface texture smoothness. The UV texture map from

SMPL contains many non-overlapping regions (see Fig. 3,

HfB row), and the correct neighborhoods are not properly

defined. Therefore, the commonly used total variation loss

for texture smoothness [46] cannot be directly applied in

this case since it will propagate the color of the void area. To

address this issue, we propose a surface texture smoothness

term that accounts for the mesh faces neighborhood. For

a given texture pixel pk and its 8 surrounding neighboring

pixels pj ∈ N (pk), we pick those ones that are neighbors in

the mesh (ck,j = 1), i.e. they belong to adjacent triangular

faces, and that are visible in at least one of the sub-frames

(vj = 1). Then, we compute the cosine value between the

face normal nk of the current pixel and the face normal nj

of its chosen neighbors. The introduction of the cosine of

face normals takes into account the mesh geometry, i.e. the

texture should be smoother on flat surfaces. Then, the sur-

face texture smoothness is expressed as a weighted sum of

absolute differences in RGB pixels:

LS =
1

8|T |

∑

pk∈T

∑

pj∈N (pk)

ck,jvj cos∠(nk, nj)|pk − pj |1 .

(5)

Pose prior loss. We import the pose prior loss from

SMPLify-X [42]. This prior scores how feasible are the

estimated pose parameters θi:

LP =
1

N

N∑

i=1

prior(θi) . (6)

SMPL shape regularization. We add norm regularization

on the SMPL shape parameter β to avoid irregular human

body shape as used in SMPL [41]:

Lβ = |β|22 . (7)

Polynomial regularization. The polynomial coefficients

of the pose, translation, and rotation could be serialized into

a matrix C ∈ R
4d×(J+2), where d is the degree of the poly-

nomial, and J is the number of joints in the SMPL model.
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Figure 3. Results on real data that we captured. The proposed method significantly outperforms SfB [45] and provides plausible human

shape and pose reconstructions. Left: initialization of human pose from METRO [27] (top) and alpha channel from [28] (bottom).

The whole body translation and rotation are already incor-

porated into matrix C, thus we have 4(J+2) polynomials of

d degree. Since rotations, translations, and joint poses have

4 degrees of freedom each, we have a separate polynomial

for each degree of freedom. We apply both the L1-norm

and the Frobenius norm on the polynomial coefficients:

LC = |C|1 + |C|F . (8)

The intention of adding this regularization is to avoid ex-

treme joint movement.

Background regularization. We assume that the human

texture is sufficiently distinct from the background. This

is enforced by the difference between the projected object

appearance and the background:

LB =
1

N

∑

i=1

1

|B −RF (Θi
)|+ ϵ

with ϵ = 10−6 . (9)

Adversarial short motion prior. Since the human body

consists of multiple joints, there exists a significant amount

of ambiguity in case of a single input blurry image. The

ambiguity comes mainly from the unknown motion direc-

tion. In fact, both the forward and the backward directions

provides the same blurry image according to the image for-

mation model (2). Potentially, there are exponentially many

motion directions for each joint that lead to the same input.

And it is infeasible to estimate the correct direction directly

from a single image without any additional priors. Other-

wise, the choice of motion direction will be arbitrary. Many

prior studies [42, 18] offer motion priors, but they are not

suitable for our setting.

To address this problem we propose the adversarial mo-

tion prior to recognize wrong (reversed) motion of joints.

Based on our polynomial motion representation, we pro-

pose an adversarial model that could supervise on the poly-

nomial coefficients C. The model is inspired by the image

in-painting methods [40, 29].

Our adversarial model consists of two components: a

discriminator D that generates a binary indicator function

to identify unrealistic entries in the coefficients C, and

a correction-generator G that predicts realistic polynomial

coefficients from the given polynomial coefficients C and

the indicator function Ic.

The training data are sampled from the AMASS

dataset [33] (CMU [5] and ACCAD [1]). The training is

supervised jointly by four loss terms. The discriminator

loss is the binary cross entropy loss, which is applied to the

indicator function predicted by the discriminator and com-

pared to the ground truth. The generator loss, specifically
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Figure 4. Comparison on synthetic data. Given a blurry image with human motion, sub-frame human poses generated by HfB are

consistent, whereas for learning-based temporal super-resolution methods [13, 63] (with METRO [27] human poses on sub-frames) the

poses are not consistent, e.g. motion of the right arm. We also visualize the raw METRO [27] pose prediction on the input blurry image.

the reconstruction loss, comprises three terms. The first

one is L1 loss between the coefficient matrix predicted by

the correction- generator and the ground truth. The second

is L2 loss between the reconstructed pose and the ground

truth pose. The last one is the mean per joint position error

(MPJPE) [49] between the reconstructed joint positions and

the ground truth SMPL joint positions.

This adversarial model is pre-trained as mentioned above

and is fixed during optimization. In case of a single input

blurry image, the adversarial motion prior is incorporated

into the optimization as the L1 loss between the generator

output and the polynomial coefficients C:

LA = |G(D(C),C)−C|1 . (10)

Joint loss. The final loss is a weighted sum of all previ-

ously defined losses:

L =wILI + wαLα + wSLS + wPLP+

wβLβ + wCLC + wBLB + wALA .
(11)

3.2. Multiple blurry images

Our approach can be extended to multiple consecutive

blurry images in a video. In this case, the human body shape

β and texture T are assumed to be the same for all input im-

ages, while the other parameters, e.g. poses, are separate for

each frame. In general, this setting is simpler since there are

more constraints from more images. Also, there is no more

ambiguity in the motion direction of each joint. Therefore,

the adversarial motion prior LA is not needed anymore.

For smooth joint motion in consecutive frames, we add

a boundary restriction on the joints rotation and position.

For instance, in case of two input blurry images, we add

a boundary restriction at the end timestamp i = N of the

first image and the start timestamp i = 1 of the second

image. The boundary restriction forces the joints rotation

and position and their first order derivatives to be equal at

the boundary to preserve the motion continuity, and it is

implemented by the L1 loss with a unit weight. For images

with exposure gap, we extend the end timestamp of first

image with exposure time τ (measured in sub-frames) and

then apply boundary restriction at N + τ .

3.3. Optimization

The joint loss (11) is minimized using the ADAM op-

timizer [17] for 200 iterations with learning rate 0.01 on a

single 12 GB RTX 2080 Ti graphics card.

Initialization. To initialize our method, we use the

METRO [27] human pose estimation method, which recon-

structs a single human pose from a blurry image reasonably

well, albeit without sub-frame accuracy. We fit the initial

body translation, rotation, pose, and shape parameters to
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blur rate int.

#images

[0.05, 0.1]

123

[0.1, 0.2]

206

[0.2, 0.3]

154

[0.3, 0.4]

139

[0.4, 0.5]

106

[0.5, 0.6]

108

[0.6, 0.7]

81

[0.7, 0.8]

79

[0.8, 0.9]

76

[0.9, 1.1]

52

Method MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑

SfB[45] N.A. 0.498 N.A. 0.487 N.A. 0.493 N.A. 0.455 N.A. 0.428 N.A. 0.408 N.A. 0.409 N.A. 0.397 N.A. 0.378 N.A. 0.363

METRO [27] 70.0 0.632 71.9 0.637 84.1 0.615 101.2 0.590 121.3 0.540 121.4 0.500 132.8 0.489 143.4 0.428 147.1 0.421 146.4 0.423

HfB w/o AMP 65.1 0.829 65.7 0.813 68.7 0.803 80.6 0.785 98.5 0.763 107.2 0.739 115.1 0.731 129.0 0.685 121.7 0.670 138.9 0.645

HfB (ours) 56.3 0.859 59.4 0.837 66.4 0.820 78.3 0.805 89.0 0.775 101.1 0.743 110.8 0.734 128.7 0.682 124.6 0.659 140.5 0.633

Table 1. Single-frame evaluation for different blur rates on BT-AMASS dataset. The proposed method outperforms SfB [45] (no

human pose output) and METRO [27], which we also use for initialization. Our method improves significantly over the initialization. The

proposed AMP prior (Sec. 3.1) improves results only slightly, and even becomes harmful for higher blur rates due to more ambiguity.

blur rate int.

#videos

[0.05, 0.1]

35

[0.1, 0.2]

39

[0.2, 0.3]

47

[0.3, 0.4]

42

[0.4, 0.5]

38

[0.5, 0.6]

32

[0.6, 0.7]

25

[0.7, 0.8]

19

[0.8, 0.9]

13

[0.9, 1.1]

15

Method MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑ MPJPE↓ IoU↑

MfB [46] N.A. 0.513 N.A. 0.547 N.A. 0.528 N.A. 0.509 N.A. 0.384 N.A. 0.356 N.A. 0.342 N.A. 0.281 N.A. 0.268 N.A. 0.229

METRO [27] 68.9 0.645 69.6 0.689 71.6 0.653 67.0 0.601 98.6 0.598 99.6 0.508 108.5 0.477 111.3 0.399 116.8 0.408 121.1 0.388

HfB (ours) 65.4 0.819 64.4 0.828 69.4 0.823 56.2 0.787 77.2 0.779 83.4 0.738 102.4 0.766 101.4 0.695 109.4 0.671 112.0 0.656

Table 2. Two-frame evaluation for different blur rates on BT-AMASS dataset. Similarly to Table 1, HfB outperforms other methods

even when there are two input blurry frames. We compare to MfB [46] (multi-frame method) and interpolated poses from METRO [27].

the mesh generated from METRO using a SMPL registra-

tion model [57]. In case of sub-frame translation, rotation,

and poses, we initialize the polynomial coefficients at times-

tamp i = 1 and all other coefficients to zero.

4. Experiments

Among the chosen baselines, we selected SfB [45] and

MfB [46], designed for simple objects sub-frame deblur-

ring and 3D reconstruction. Then, we compare our method

to general temporal super-resolution methods, i.e. Jin et

al. [13] and Animation-from-Blur (AfB) [63] for single

frame experiments and Blurry Video Frame Interpolation

(BIN) [47] for multi-frame experiments. To make them

competitive, we also apply 3D human pose estimation

METRO [27] on top of their deblurred sub-frames (tempo-

ral super-resolution), except for SfB and MfB, where the

output sub-frames are of low quality, and human pose esti-

mation methods do not detect anything.

Blur rate. In general, motion blur is determined by many

factors. However, the main factors are the camera exposure

time and the speed of the object motion. Even with those

two factors, it is still a challenging task to quantify the exact

amount of motion blur. In order to measure the approximate

blur level, we define blur rate as:

blur rate =
|
⋃N

i=1 RS(Θi
)|1

|RS(Θ1)|1
− 1 . (12)

Here, we compute the union of all projected sub-frame sil-

houettes and divide it by the first silhouette. When the hu-

man stays still, the blur rate value is zero. When the human

moves over a distance larger than its size within one blurry

frame, i.e. there is no overlap between the rendered silhou-

ettes at the first and last timestamps, the blur rate is larger

than one. We use this blur rate to classify the experiments.

original 2 avg. frames 3 avg. frames

avg. blur rate 0.27 0.36 0.45

Method PA-MPJPE(mm)↓ PA-MPJPE(mm)↓ PA-MPJPE(mm)↓

HfB (ours) 69.1 77.3 81.4

AfB [63] 52.3 63.3 87.3

Jin et al. [13] 55.3 81.6 96.1

Table 3. Results on B-AIST++ [63] dataset. We average 2 and

3 original blurry frames to increase the blur amount. We apply

METRO [27] on top of the output of two baselines [14, 63].

4.1. Synthetic datasets

We generated two datasets: BC-CAPE (Blur-

Clothed CAPE [32]) and BT-AMASS (Blur-Textured

AMASS [33]). The BT-AMASS is sampled on real-world

human poses θi, rotations Ri, and translations Ti from the

ACCAD [1] and CMU [5] dataset of the AMASS [33]

database with 120 fps. The UV textures T are sampled

from the SURREAL [55] dataset. Finally, the background

images are randomly selected from a set of random images

from the BG-20K [25] database, capturing both indoors

and outdoors scenes. We take random motion captures with

length of 5 to 60 frames. This covers blur rates in the range

between 0.05 and 1.1. We utilize the SMPL-X plugin [42]

in Blender to generate dataset images.

The BC-CAPE is based on the CAPE dataset [32], which

contains SMPL human models with poses for each frame

with 60 fps. For BC-CAPE, we interpolate human poses to

render higher speed footage. The camera position is ran-

domly selected facing the human model. Then, we render

sub-frame silhouettes RS(Θi
) and appearances RF (Θi

).
In the end, we average these rendered silhouettes and ap-

pearances to acquire blurry images according to the im-

age formation model (2). The jittering effect is eliminated
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Figure 5. Comparison on real data. We evaluate our method on the real B-AIST++ [63] dataset. This example shows an average of 3

frames (see Table 3). Our method produces more consistent and accurate sub-frame human poses compared to carefully selected baselines.

by up-sampling and interpolation at a high frame rate of

600 fps. In total, we generated 1861 blurry images for a sin-

gle frame experiment and 305 short videos with two video

frames to evaluate our multi-frame setting.

Evaluation metrics. We evaluate HfB on the joint po-

sition error in millimeters: Mean Per Joint Position Er-

ror (MPJPE) and Procrustes Analysis MPJPE (PA-MPJPE)

as in [49]. For MPJPE, we initially align the coordinate

axis orientation of the predicted motion sequence with the

ground truth. For comparison to SfB and MfB, we also

measure the intersection-over-union (IoU) between the gen-

erated silhouette and the ground truth one.

4.2. Results on BT­AMASS

First, we compare our method on the generated BT-

AMASS dataset to the following baselines: SfB [45],

MfB [46], and static interpolated METRO [27] (1124 single

frames and 305 two-frames). The single-frame results with

1124 images are shown in Table 1, whereas multi-frame re-

sults in Table 2. Our method outperforms all baselines by

a wide margin, especially for higher blur rate intervals. As

excepted, the performance steadily decreases with the in-

creased blur rate. Additionally, we evaluate the influence of

the Adversarial Motion Prior (AMP), which is only used for

single-frame experiment. This prior improves results only

for higher blur raters, whereas for lower blur raters, where

there is less ambiguity, it is harmful.

4.3. Results on BC­CAPE

Next, we evaluate the proposed method on the generated

BC-CAPE dataset, which contains 609 single frames and

205 short sequences with 4-frames. In this case, we com-

pare to three temporal super-resolution methods: AfB [63],

Jin et al. [13], and BIN [47]. For fair comparison, we aug-

mented their sub-frame output with human pose estimation

metods, either METRO [27] or HybrIK [24]. As shown

in Tables 5 and 4, the proposed Human from Blur (HfB)

method outperforms these baselines by a large margin, es-

pecially on larger blur rates. The performance gain is even

higher for the multi-frame experiment (Table 5).

4.4. Real dataset B­AIST++

Finally, we evaluate on the real-world dataset with var-

ious human motion and garments: B-AIST++ [63]. They

use frame interpolation to generate high-speed frames from

original dancing dataset AIST++ [26]. B-AIST++ pro-

vides significantly blurred images with human motion. We

generate ground-truth sub-frame human pose by running

METRO [27] on top of the ground-truth sub-frames. Ta-

ble 3 shows that our method outperforms other baselines

when 3 consecutive frames are averaged, which translates to

blur rate 0.45. Note that AfB [63] is trained on this dataset,
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Figure 6. Multi-frame evaluation. We compared to BIN [47], with METRO [27] human poses on top of their sub-frames. The visual

results show that BIN fails, however METRO is still robust to some amount of blur and detects human poses, which are not consistent over

time. The proposed method generates motion which is more consistent with the ground truth.

blur rate <0.2 [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.6] [0.6,0.8]

Method PA-MPJPE ↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓

HfB (ours) 75.2 81.2 76.4 83.0 84.6 94.2 89.7 100.5 96.2 110.6 98.5 114.6

AfB [63] + METRO [27] 82.4 89.1 84.1 89.2 90.6 100.8 105.3 119.9 107.5 133.3 112.8 135.2

Jin et al. [14] + METRO [27] 74.4 77.2 76.2 82.0 82.6 90.8 100.1 112.8 99.5 119.2 105.6 124.6

Jin et al. [14]+PyMaF [59] 79.9 83.6 80.3 85.5 93.4 106.1 115.6 123.3 119.5 137.9 125.2 142.5

AfB [63]+PyMaF [59] 83.5 87.0 86.7 91.42 93.7 109.8 113.1 124.6 117.1 141.8 127.4 147.4

Table 4. Results on Blurred-Clothed CAPE dataset. Our method outpeforms competitive baselines on larger blur rates.

blur rate <0.2 [0.2,0.3] [0.3,0.4] [0.4,0.5] [0.5,0.7] [0.7,0.9]

Method PA-MPJPE ↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPJPE↓

Hfb (ours) 83.7 85.3 86.1 91.3 90.5 96.4 92.6 99.3 104.2 114.4 110.5 117.4

BIN [47] + HybrIK [24] 76.6 78.8 86.7 96.5 93.5 106.9 107.0 122.9 116.3 134.5 120.2 150.0

AfB [63] + HybrIK [24] 82.4 84.6 96.8 105.3 100.8 111.1 103.6 120.1 119.1 137.9 120.9 156.2

BIN [47] + METRO [27] 84.0 85.9 88.5 97.5 94.0 106.8 100.1 118.4 112.8 133.7 117.4 146.4

AfB [63] + METRO [27] 87.7 90.2 90.8 98.1 97.7 108.9 109.0 126.2 113.0 133.3 121.8 151.2

PyMaF [59] 97.7 119.5 118.7 152.5 128.8 172.0 138.3 202.0 152.7 231.4 157.9 252.9

BIN [47]+PyMaF [59] 78.29 98.04 95.05 126.2 105.2 151.2 110.7 147.6 121.7 168.4 124.0 187.7

Table 5. Results on Blurred-Clothed CAPE dataset with 4 consecutive frames. We also combine both METRO [27] and HybrIK [24]

with two baselines (BIN [47] and AfB [63]) to show the impact of different human pose estimation methods. We also show results of

BIN [47] with PyMaF [59], which include the interpolation of the joint positions by directly applying on blur frames. With multiple input

frames, HfB outpeforms other baselines for almost all blur rates (0.2 and higher).

whereas our method is purely optimization based.

4.5. Captured data

We captured 21 real-world sequences with significant

amounts of motion blur, including four male and one fe-

male subjects. The used cameras are the IDS camera and a

GoPro 7, which were deliberately set at a low frame rate of

30 fps with exposure time of 30 ms to 50 ms. The recorded

humans were asked to move fast. Background images are

captured as well. As shown in Fig. 3 and Fig. 1, the final

reconstructions are plausible. When compared to SfB [45],

our method achieves significantly better results.
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5. Conclusion

We proposed the first method to reconstruct sub-

frame human motion and textured shape from substantially

blurred images. The key idea is to approach the problem

from a generative viewpoint and describe a fully differen-

tiable forward process to generate blurry images from a

given 3D human motion model. The core of our method is

an image reconstruction loss that allows to solve the inverse

problem with standard gradient descent methods. Experi-

ments showed that the proposed method achieves the best

results on both synthetic and real blurry data.
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Darrell, and Alexei Efros. Context encoders: Feature learn-

ing by inpainting. In Computer Vision and Pattern Recogni-

tion (CVPR), 2016. 4

[41] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,

Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and

Michael J. Black. Expressive body capture: 3d hands, face,

and body from a single image. In Proceedings IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), 2019.

2, 3

[42] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,

Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and

Michael J. Black. Expressive body capture: 3D hands, face,

and body from a single image. In Proceedings IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages

10975–10985, 2019. 2, 3, 4, 6

[43] D. Rozumnyi, J. Kotera, F. Šroubek, and J. Matas. Sub-frame
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