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Abstract

Current 6D pose estimation methods focus on handling
objects that are previously trained, which limits their ap-
plications in real dynamic world. To this end, we pro-
pose a geometry correspondence-based framework, termed
GCPose, to estimate 6D pose of arbitrary unseen objects
without any re-training. Specifically, the proposed method
draws the idea from point cloud registration and resorts
to object-agnostic geometry features to establish the 3D-
3D correspondences between the object-scene point cloud
and object-model point cloud. Then the 6D pose param-
eters are solved by a least-squares fitting algorithm. Tak-
ing the symmetry properties of objects into consideration,
we design a symmetry-aware matching loss to facilitate
the learning of dense point-wise geometry features and im-
prove the performance considerably. Moreover, we intro-
duce an online training data generation with special data
augmentation and normalization to empower the network
to learn diverse geometry prior. With training on syn-
thetic objects from ShapeNet, our method outperforms pre-
vious approaches for unseen object pose estimation by a
large margin on T-LESS, LINEMOD, Occluded-LINEMOD,
and TUD-L datasets. Code is available at https://
github.com/hikvision-research/GCPose.

1. Introduction

The 6D pose of an object represents a geometry trans-
formation between the object coordinate system and cam-
era coordinate system, which consists of 3D rotation and
3D translation. Estimating object pose plays an important
role in many real-world applications, such as robotic grasp-
ing [8] and augmented reality [38].
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Figure 1: Comparison of different open-set pose estima-
tion frameworks. Unlike previous methods that rely on
category-specific network training (a) or struggle to esti-
mate precise poses (b), our GCPose can perform well on
arbitrary unseen objects (c).

Driven by the recent developments in deep learning, var-
ious methods have been proposed to explore the instance-
level 6D pose estimation problem. Some existing works
[43, 15] employ CNNs to detect a set of keypoints pre-
defined on the 3D object model. Then the 6D pose can be
solved by Perspective-n-Points (PnP) [31] or least-squares
fitting algorithm. Since the detected keypoints serve as
sparse correspondences, these methods often struggle when
objects have view-point changes, occlusions, or lack of tex-
ture. Another alternative is to predict pixel-wise 3D co-
ordinates for building dense 2D-3D correspondence maps
[42, 59, 51, 36, 22]. They allow for significantly better
treatment of occlusions and lead to more precise poses. Al-
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though instance-level methods can obtain impressive results
on existing benchmarks, they are still under the close-set as-
sumption that the object space is identical in both training
and testing phases. As a result, laborious data collection and
re-training are required when unseen objects appear, which
does not adhere to application in the real dynamic world.

To loosen the restriction with generalizability to unseen
objects, category-level pose estimation paradigm [60, 33,
7, 35, 62] is proposed, as shown in Figure 1a. These ap-
proaches predict the object pose for previously seen or un-
seen objects from a known set of categories, but can not
generalize to new instances having significantly different
appearances or shapes [17, 53]. Another way to address the
open-set problem is to resort to the template-based mecha-
nism [55, 40, 5, 49, 30], which matches the input image to a
series of templates generated from their 3D object models,
as shown in Figure 1b. Obviously, these methods strug-
gle to estimate precise poses due to occlusions and the lim-
ited number of viewpoints. To remedy this disadvantage,
OVE6D [5] presents an in-plane orientation regression net-
work and OSOP [49] introduces an extra network estimat-
ing dense 2D-2D correspondences between the input image
and the matched template for pose refinement. In general,
these methods have cascade pipelines and result in less ac-
curate pose estimation for unseen objects.

As is known, point cloud registration methods have
demonstrated excellent generalization to previously unseen
point clouds as the geometry features of the point cloud
are generic and object-agnostic. Inspired by this idea, we
present an unseen object 6D pose estimation framework
based on dense geometry correspondences, termed GCPose.
Specifically, given the object-scene point cloud and object-
model point cloud as input, GCPose can establish dense
3D-3D correspondences between them through the geom-
etry features. Finding correspondences across two scene-
level point clouds is well-studied in point cloud registra-
tion [1, 23, 65, 64, 45] field. However, it is challenging to
learn 3D-3D matching for object-level point clouds due to
ambiguous correspondences caused by symmetric proper-
ties in many object models. For instance, a 3D location in
the object-scene point cloud may correspond to multiple 3D
locations on the surface of the symmetric object, and vice
versa. Therefore, exploiting the off-the-shelf point cloud
registration method is sub-optimal to building correspon-
dences for object pose estimation. To this end, we design a
symmetry-aware matching loss to let the network learn the
object symmetries explicitly.

Following the practice in OVE6D [5], we train the net-
work using a large number of synthetic 3D object models
from the ShapeNet [6] dataset. Specifically, we introduce
a simple yet effective online training data generation with
special data augmentation and normalization to empower
the network to learn diverse geometry prior. After train-

ing on synthetic objects with varied shapes, our method is
capable of generalizing to an arbitrary unseen object with-
out any re-training. At inference time, the proposed method
requires a depth image with a target object mask and the as-
sociated object CAD model, which are utilized to generate
object-scene and object-model point clouds.

Our contribution can be summarized as follows:

1) We employ the point cloud registration framework and
adapt it to work well for unseen object pose estimation.

2) A symmetry-aware matching loss is proposed for
building unambiguous and robust 3D-3D correspon-
dences, which improves the performance significantly.

3) GCPose achieves state-of-the-art performance on T-
LESS, LineMOD, Occluded-LineMOD, and TUD-L
datasets under an open-set pose estimation setting. Be-
sides, the performance of GCPose can be further im-
proved by scaling up the training data.

2. Related Work
2.1. 6D Object Pose Estimation

Direct Pose Regression Approaches. Some meth-
ods directly regress the 6D pose with deep neural networks,
such as [63, 25]. Despite these approaches seeming sim-
ple, the non-linearity of the rotation space limits their gen-
eralization. Some post-refinement methods [58, 29, 24] are
generally utilized to refine the pose iteratively.

Correspondence-Based Approaches. Another pop-
ular line to estimate the 6D pose relies on pre-defined key-
points on the object model. For instance, PVNet [43] selects
K 3D keypoints from the object surface. Then it employs
a CNN to predict the offset to the projection of 3D key-
points in 2D images and the 6D pose is calculated by PnP
[31]. PVN3D [16] and FFB6D [15] extract the per-point
feature from an RGBD image to predict more precise offset
to 3D keypoints and improve the performance. Since the
keypoints serve as sparse correspondences, above methods
often struggle in occluded scenes. An alternative is to gen-
erate dense correspondences. Some of the representative
works include CDPN [34], EPOS [19], GDR-Net [59], and
SO-Pose [11]. Recently, OnePose [53] and FS6D [17] fo-
cus on 6D pose estimation under a few-shot setting, which
is more challenging.

Template-Based Approaches. To estimate the 6D
pose of previously-unseen objects, the template-based
mechanism [2, 41, 40, 5, 49] is proposed. These methods
compare the input image to a series of templates, which are
rendered images of objects associated with the correspond-
ing 6D poses. And the pose of the best-matched template is
selected as the final estimation result. Nevertheless, due to
the discretization error of the limited number of viewpoints,
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Figure 2: The training pipeline of GCPose. Firstly, the object-scene point cloud is obtained from the rendered depth image
from ShapeNet [6] and the object-model point cloud is generated by uniform sampling on the surface of the object model.
Then, a shared backbone network (i.e., KPConv) is utilized to extract multi-level features of the input point clouds. The
interleaved self- and cross-attention layers are adopted to enhance the geometry features of both coarse-level superpoints and
fine-level points. Finally, a symmetry-aware matching loss is employed to supervise the learning of geometry features for
establishing unambiguous and robust 3D-3D correspondences.

template-based approaches result in inaccurate pose estima-
tion. OVE6D [5] presents an in-plane orientation regres-
sion network for rotation refinement. And OSOP [49] pro-
poses an extra network estimating 2D-2D correspondences
between the input image and the matched template for pose
refinement.

2.2. Point Cloud Registration

Point cloud registration aims to align the two input point
clouds by estimating a 3D rigid transformation. The typical
pipeline contains detecting keypoints [32, 1], extracting fea-
ture descriptors [44, 10, 23], and estimating the transforma-
tion. Recently, detection-free methods[65, 64, 45] achieve
state-of-the-art performance on several point cloud registra-
tion benchmarks. These methods generally assume a one-
to-one relationship for two input point clouds, which goes
against the nature of symmetry existing in object pose esti-
mation. Specially, we propose a symmetry-aware matching
loss to supervise the many-to-many relationship for object
pose estimation and eliminate the ambiguity of correspon-
dences.

2.3. Symmetries in Pose Estimation

Multiple poses can be inferred under a specific appear-
ance for symmetric objects, which leads to the problem of
pose ambiguity. To relieve this problem, PoseCNN [63],
DenseFusion [58], and GDR-Net [59] adopt the ADD-S
[63] metric as the loss during training. ES6D [39] designs
a symmetry-invariant pose distance metric to make the net-
work converge to the correct state. [37] predicts multiple

poses for the object to estimate the specific pose distribu-
tion generated by symmetries. EPOS [19] and SurfEmb
[13] learn the 2D-3D correspondence distributions over sur-
face fragments or the entire surface and let the network learn
the object symmetries implicitly. These methods focus on
memorizing the symmetry information of specific objects
and the trained network only performs well on a fixed set of
objects. In this paper, we leverage the symmetries of objects
and supervise the network with many-to-many correspon-
dences in two input point clouds during training. Therefore,
our network learns the object symmetries explicitly, which
is proven effective for unseen object pose estimation.

3. Methodology
In this section, we first present the overall architecture of

our GCPose. Next, the training data generation and feature
extraction module are introduced. Then, we elaborate on
the proposed symmetry-aware matching loss. At last, the
inference pipeline of our framework is summarized.

3.1. Overview

Recent GeoTransformer [45] achieves outstanding per-
formance in point cloud registration field and shows strong
capabilities for finding correspondences. In this paper, we
renovate the GeoTransformer [45] pipeline and adapt it for
object pose estimation. Specifically, we design a symmetry-
aware matching loss to eliminate the ambiguity of cor-
respondences (Section 3.4). To make features more dis-
criminative for establishing correspondence, we enrich fine-
level point features with global structural cues (Section 3.3).
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Augmentation Hyper-parameter

Downscale scale range s ∈ [0.1, 0.3]
Laplace Noise scale param. b ∈ [0, 0.004m]
Median Blur kernel size k = 3, 5
Upscale scale range s ∈ [3.3, 10]
Dropout area ratio r ∈ [0.01, 0.1]

Table 1: Data augmentation strategies. We adopt these
strategies to bridge the domain gap between the synthetic
and real-world depth images.

Moreover, an online training data generation with special
data augmentation and normalization is devised to empower
the network to learn diverse geometry priors (Section 3.2).

The training pipeline of GCPose is illustrated in Fig-
ure 2. Following OVE6D [5], our network is trained us-
ing rendered depth images based on 3D object models from
ShapeNet [6]. The object-scene point cloud is obtained
from the depth image within the object mask and the object-
model point cloud is generated by uniform sampling on the
surface of the object model. Given the object-scene and
object-model point clouds as input, our goal is to estimate
the rigid transformation T from the object coordinate sys-
tem to the camera coordinate system, consisting of a 3D
rotation R ∈ SO(3) and a translation vector t ∈ R3.

Concretely, the KPConv-FPN [56] is employed as the
backbone network to extract the multi-level features of the
input point clouds. We refer to the coarsest level downsam-
pled points ( 18 resolution of original point cloud) from the
backbone as superpoints, denoted as Ŝ, M̂ for object-scene
and object-model point clouds. The first level downsam-
pled points ( 12 resolution of original point cloud), denoted
as S,M for object-scene and object-model point clouds, are
treated as fine-level points. Besides, we also adopt inter-
leaved self- and cross-attention layers [47, 66, 61, 48] to
enhance the geometry features of both coarse-level super-
points and fine-level points. In the end, a symmetry-aware
matching loss is proposed to supervise the learning of ge-
ometry features for establishing robust 3D-3D correspon-
dences.

3.2. Training Data Generation

Our network is optimized using synthetic depth images
rendered from 3D object models. Specifically, for each 3D
object model, the ModernGL library is employed to syn-
thesize the depth images under random poses. After that,
we apply a set of data augmentation strategies to bridge the
domain gap between the synthetic and real-world depth im-
ages. The depth image is first cropped based on the object
mask and then resized to a fixed size (224 × 224 in this
paper) for later preprocessing pipeline. Specifically, 1) the
depth image is downsampled at a random scale, 2) Median

90°
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270°
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n2°

n3°

(a) Discrete Symmetry (b) Continuous Symmetry

Figure 3: Examples of symmetric objects. (a) The object
has finite ambiguity poses (4 in the case). (b) The object has
infinite ambiguity poses.

blur is conducted on it to weaken high-frequency informa-
tion of synthetic depth image, 3) random Laplace noise is
added to simulate salt and pepper noise, 4) the depth image
is zoomed into their original size, 5) random square areas
are dropped from the image. The detailed hyper-parameters
of these data augmentations can be found in Table 1. The
resulting depth image with the object mask is converted into
the object-scene point cloud using the camera intrinsic ma-
trix. And the object-model point cloud is obtained by uni-
form surface sampling from the 3D object model.

In contrast with the training dataset where the set of
objects’ size is finite, the size of different objects in the
real world varies widely. To improve generalization abil-
ity of our GCPose, the object-scene and object-model point
clouds are normalized before being fed into the network.
The normalization scale is calculated as the largest distance
between any pair of the object-model point cloud, i.e., the
diameter of the smallest circumscribed sphere of the object-
model point cloud.

3.3. Feature Extraction

The KPConv-FPN [56] only encodes local geometry fea-
tures which are less distinctive for correspondence search.
To capture the global geometry structures and strengthen
superpoint features, a self-attention layer is applied to the
coarse-level superpoint features extracted from the last
downsample stage of KPConv-FPN. Then a cross-attention
layer is adopted to enable the bidirectional communica-
tion between object-scene and object-model point clouds,
which aims to model the inter-point-cloud geometry con-
sistency. In contrast to GeoTransformer [45], to enrich fine-
level point features, we inject coarse-level superpoint fea-
tures with global structural cues into the upsampling stage
of KPConv-FPN.
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3.4. Symmetry-Aware Matching Loss

3.4.1 Symmetries

Discrete and continuous symmetries are two types of sym-
metries. As shown in Figure 3, discrete symmetries can
be described by a finite transformation set while continu-
ous symmetries are described by an infinite transformation
set. The symmetry property of an object can lead to multi-
ple poses with the same visual appearance. In other words,
there exist repeated geometry structures on the surface of
a symmetry object. Therefore, the extracted geometry fea-
ture of a point in the object-scene point cloud should be
similar to multiple points features in the symmetric object-
model point cloud, and vice versa. To this end, we design
a symmetry-aware matching loss to supervise the many-to-
many relationship and let the network learn the object sym-
metries explicitly.

Specifically, we first use the method described in [39] to
calculate the symmetry axes and angles for each object from
ShapeNet. After that, we can obtain a set of transforma-
tion T̂ = {T0,T1, ...,Tn},Ti ∈ SE(3) for each object.
The visual appearance of an object remains unchanged un-
der each transformation of T̂. Here we use T0 to represent
the identity transformation and the set only containing T0

indicates a non-symmetrical object. For continuous symme-
tries objects, we discretize the rotation angle for obtaining
a finite transformation set. Finally, the ground truth pose T
of an object-scene point cloud can be extended to a pose set,
which can be formulated as

T = {TTi | Ti ∈ T̂}. (1)

T is then used to calculate the following matching loss.

3.4.2 Matching Loss

Given the ground truth pose set T and superpoints Ŝ, M̂ ,
we calculate the overlap ratio for constructing positive and
negative superpoint pairs between object-scene and object-
model point clouds. For each superpoint pair (Ŝi, M̂j), the
overlap ratio oij is computed:

oij =
oi→j + oj→i

2
(2)

oi→j=
|{p∈PS

i |∃q∈PM
j ,Ti∈T s.t.∥T−1

i (p)−q∥<τ}|
|PS

i | (3)

oj→i=
|{q∈PM

j |∃p∈PS
i ,Ti∈T s.t.∥Ti(q)−p∥<τ}|

|PM
j | (4)

where PS
i , PM

j are the set of fine points allocated to Ŝi, M̂j

by point-to-node strategy [65], respectively. τ is the dis-
tance threshold. ∥ · ∥ is the Euclidean norm. | · | is the set
cardinality. T

−1
i is inverse transformation of Ti. The posi-

tive set εp consists of all superpoint pairs with overlap ratio

greater 0.1. Similarly, all superpoint pairs without overlap
form the set of negatives εn. Taking εp, εn, and the asso-
ciated overlap ratio as input, an overlap-aware circle loss
[54, 45] is adopted as coarse supervision, denoted as Lc.

Given a positive superpoint pair ⟨Ŝk, M̂k⟩, an optimal
transport layer is utilized to extract fine point correspon-
dences. The set of their associated fine points ⟨PS

k ∈
Rm×3, PM

k ∈ Rn×3⟩ are allocated by point-to-node strat-
egy.. Taking their features ⟨FS

k ∈ Rm×d, FM
k ∈ Rn×d⟩ as

input, we firstly compute cost matrix Ck ∈ Rm×n by inner
product. Then Sinkhorn algorithm [50] is employed to ob-
tain a refined cost matrix Zk ∈ Rm×n. Each entry (i, j) in
the matrix represents the matching confidence between the
point i and point j from PS

k and PM
k , respectively. If (i, j)

is a positive correspondence, the distance of the point i and
point j under one pose of T less than a matching threshold,
and (i, j) is a negative correspondence otherwise. Finally,
the fine matching loss Lk

f is obtained by minimizing the
negative log-likelihood of the cost matrix Zk as in [46, 45].

We randomly sample Nc superpoint pairs from εp for
fine matching loss. Formally, the overall loss function can
be formulated as:

L = Lc +
1

Nc

Nc∑
k=1

Lk
f . (5)

3.5. Inference

Following the setting of OVE6D [5], we obtain the class
labels and segmentation masks of objects by the MaskR-
CNN [14]. Given a depth image with mask and object
model as input, the object-scene and object-model point
clouds are first generated. After feature extraction, the
coarse similarity matrix Ĉ is computed using the coarse fea-
tures F̂S , F̂M .

ĉi,j = e−∥f̂S
i −f̂M

j ∥. (6)

where ĉi,j ∈ Ĉ, f̂S
i ∈ F̂S , f̂M

j ∈ F̂M . The largest K en-
tries in Ĉ are selected as potential coarse correspondence
candidates.

For each selected superpoint pair ⟨Ŝk, M̂k⟩, the cost ma-
trix Zk ∈ Rm×n is computed as described in 3.4.2. To
filter outlier matches, point correspondence candidates are
selected by mutual nearest neighbor criteria as described
in [52]. These selected dense point pairs are denoted as
Mk = {⟨pSu , pMv ⟩ | pSu ∈ PS

k , pMv ∈ PM
k }. A hypothesis

pose set {Rk, tk | k ∈ [1,K]} is computed:

Rk, tk = argmin
R,t

∑
pS
u ,pM

v ∈Mk

zku,v∥RpMv + t− pSu∥. (7)

where zku,v is the score from cost matrix Zk. The Eq. 7
can be solved by a weighted least-squares fitting algorithm
[3]. Then, each hypothesis pose is verified by voting among
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the entire point correspondences set M =
⋃K

k=1 Mk. The
hypothesis with the largest number of inlier points will be
selected as the final estimation result:

R, t = argmax
Rk,tk

∑
pS
u ,pM

v ∈M

I( ∥Rkp
M
v + tk − pSu∥ < δ ).

(8)
where I represents the indicator function, δ is the voting
threshold.

4. Experiment
4.1. Datasets and Metrics

Datasets. We evaluate our method on four pub-
lic benchmark datasets: T-LESS [20], LINEMOD [18],
Occluded-LINEMOD [4], and TUD-L [21].

Metrics. We follow the evaluation metric used in the
BOP Challenge [21]. The performance of pose estimation
is evaluated using three errors, i.e., Visible Surface Discrep-
ancy (VSD), Maximum Symmetry-aware Surface Distance
(MSSD), and Maximum Symmetry-aware Projection Dis-
tance (MSPD). For each of the pose errors, an average re-
call is computed, i.e., ARVSD, ARMSSD, ARMSPD, based on
a set of error thresholds. The AR refers to the average of
the three recalls.

4.2. Implementation Details

We use a KPConv-FPN [56] backbone for feature ex-
traction. Adam optimizer [26] is employed to optimize the
network with the learning rate of 5× 10−5. The weight de-
cay is set to 1×10−6. GCPose is trained for 80 epochs with
a batch size of 16 and the learning rate is decayed by 0.95
every 5 epochs. The network is trained on NVIDIA Tesla
V100 GPUs.

Following the practice in OVE6D [5], our GCPose is
trained using the synthetic 3D objects from ShapeNet [6].
During the test, we first obtain the class labels and segmen-
tation masks of objects by the MaskRCNN [14]. Taking a
depth image with mask and object model as input, GCPose
is applied to estimate the 6D pose for the object. In addi-
tion, the performance using ground truth class labels and
segmentation masks is also reported in this paper.

4.3. Comparison with the State-of-the-Art Methods

4.3.1 T-LESS Results

We firstly report pose estimation results on T-LESS dataset
in Table 2 in terms of the AR metric. To facilitate compar-
ison to previous works, we re-evaluate the pose estimation
results of OVE6D [5] in AR metric using the official trained
model. Our method achieves state-of-the-art performance
under an open-set pose estimation setting. GCPose out-
performs the recent learning-based OVE6D [5] by 15.6%
without ICP refinement [67] and is also 13.3% higher than

Method ARVSD ARMSSD ARMSPD AR

DrostPPF† [12] 0.375 0.478 0.480 0.444
VidalPPF† [57] 0.464 0.575 0.574 0.538
HybridPPF† [28] 0.580 0.689 0.696 0.655
MegaPose [30] - - - 0.543
OVE6D [5] 0.521 0.511 0.538 0.523
OVE6D† [5] 0.513 0.561 0.565 0.546
GCPose (Ours) 0.643 0.691 0.702 0.679

OVE6D∗ [5] 0.624 0.592 0.626 0.614
OVE6D∗† [5] 0.601 0.637 0.637 0.625
GCPose∗ (Ours) 0.714 0.739 0.762 0.738

Table 2: Comparisons on T-LESS dataset. †: the results
are further refined by the ICP algorithm. ∗: using the ground
truth label and mask of the object.

Method ARVSD ARMSSD ARMSPD AR

DrostPPF† [12] 0.678 0.786 0.789 0.751
OVE6D [5] 0.560 0.751 0.762 0.701
OVE6D† [5] 0.736 0.882 0.886 0.835
GCPose (Ours) 0.749 0.885 0.887 0.841

MatchNorm∗ [9] 0.319 0.490 0.529 0.446
MatchNorm∗† [9] 0.616 0.680 0.737 0.678
OVE6D∗ [5] 0.794 0.886 0.902 0.860
OVE6D∗† [5] 0.806 0.952 0.956 0.905
GCPose∗ (Ours) 0.869 0.965 0.974 0.936

Table 3: Comparisons on LINEMOD dataset. †: the results
are further refined by the ICP algorithm. ∗: using the ground
truth label and mask of the object.

its ICP refinement counterpart. And GCPose also outper-
forms traditional HybridPPF [28] with ICP refinement by
2.4%. These results indicate that GCPose performs well
on symmetric and texture-less objects. Moreover, given the
ground truth masks, GCPose achieves 73.8% AR, which
reveals great potential for performance improvement with
better segmentation masks.

4.3.2 LINEMOD and Occluded-LINEMOD Results

We report pose estimation results on LINEMOD and
Occluded-LINEMOD, as shown in Table 3, 4. GCPose
still achieves state-of-the-art performance under an open-
set pose estimation setting. Specifically, GCPose surpasses
OVE6D [5] by 14.0% on LINEMOD dataset and 15.6%
on Occluded-LINEMOD dataset, respectively. GCPose
outperforms the recent MatchNorm [9] by a large margin
of 49.0% on LINEMOD dataset and 37.6% on Occluded-
LINEMOD dataset, respectively. Moreover, our method is
superior to OVE6D and MatchNorm, which both use ICP
refinement. In contrast to previous works using handcrafted
geometry features, GCPose also outperforms DrostPPF
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Method ARVSD ARMSSD ARMSPD AR

DrostPPF† [12] 0.437 0.563 0.581 0.527
VidalPPF† [57] 0.473 0.625 0.647 0.582
HybridPPF† [28] 0.517 0.675 0.703 0.631
MegaPose [30] - - - 0.583
OVE6D [5] 0.373 0.540 0.575 0.496
OVE6D† [5] 0.526 0.658 0.697 0.627
GCPose (Ours) 0.543 0.691 0.721 0.652

MatchNorm∗ [9] 0.263 0.384 0.450 0.365
MatchNorm∗† [9] 0.478 0.542 0.612 0.544
OVE6D∗ [5] 0.539 0.640 0.703 0.627
OVE6D∗† [5] 0.633 0.755 0.798 0.728
GCPose∗ (Ours) 0.656 0.768 0.799 0.741

Table 4: Comparisons on Occluded-LINEMOD dataset.
†: the results are further refined by the ICP algorithm. ∗:
using the ground truth label and mask of the object.

Method ARVSD ARMSSD ARMSPD AR

DrostPPF† [12] 0.741 0.793 0.791 0.775
VidalPPF† [57] 0.811 0.910 0.907 0.876
HybridPPF† [28] 0.872 0.945 0.944 0.920
MegaPose [30] - - - 0.712
GCPose (Ours) 0.871 0.960 0.947 0.926

MatchNorm∗ [9] 0.700 0.853 0.852 0.801
MatchNorm∗† [9] 0.859 0.914 0.935 0.903
GCPose∗ (Ours) 0.888 0.979 0.980 0.949

Table 5: Comparisons on TUD-L dataset. †: the results
are further refined by the ICP algorithm. ∗: using the ground
truth label and mask of the object.

[12] and HybridPPF [28] on LINDEMOD and Occluded-
LINEMOD datasets. These results further demonstrate that
GCPose has a strong generalization ability to unseen ob-
jects.

4.3.3 TUD-L Results

The pose estimation results on TUD-L dataset are summa-
rized in Table 5. GCPose outperforms the recent Match-
Norm [9] by 14.8% without ICP refinement and is also 4.6%
higher than its ICP refinement counterpart. Besides, GC-
Pose is also superior to traditional HybridPPF [28] with ICP
refinement, which further indicates the superiority of our
learning-based geometry features.

4.3.4 Scaling of Training Data

To investigate the potential of GCPose with more CAD
models for training, we scale up the training set to both
ShapeNet [6] and ABC [27]. ABC dataset consists of one
million CAD models and each model is a collection of ex-

Dataset Method w/ ABC ARVSD ARMSSD ARMSPD AR

T-LESS [20]
GCPose 0.643 0.691 0.702 0.679

✓ 0.681 0.735 0.757 0.724

GCPose∗ 0.714 0.739 0.762 0.738
✓ 0.760 0.801 0.828 0.796

LM [18]
GCPose 0.749 0.885 0.887 0.841

✓ 0.763 0.907 0.908 0.859

GCPose∗ 0.869 0.965 0.974 0.936
✓ 0.870 0.971 0.978 0.940

O-LM [4]
GCPose 0.543 0.691 0.721 0.652

✓ 0.557 0.731 0.764 0.684

GCPose∗ 0.656 0.768 0.799 0.741
✓ 0.657 0.793 0.827 0.760

TUD-L [21]
GCPose 0.871 0.960 0.947 0.926

✓ 0.875 0.978 0.974 0.942

GCPose∗ 0.888 0.979 0.980 0.949
✓ 0.904 0.981 0.985 0.957

Table 6: Comparisons on T-LESS, LINEMOD (LM),
Occluded-LINEMOD (O-LM), and TUD-L datasets
by scaling up training datasets. ∗: using the ground truth
label and mask of the object.

plicitly parametrized curves and surfaces. For training effi-
ciency, we only pick the first 100k out of 1000k CAD mod-
els from ABC. The pose estimation results are reported in
Table 6. GCPose achieves consistent performance improve-
ment on four datasets after being trained with more CAD
models.

4.3.5 Visualization

To visualize the learned symmetry-aware geometry fea-
tures, we reduce the dimension of point-wise features ex-
tracted by our backbone network using the t-SNE algorithm.
Then the object-model point cloud is colorized according
to the low-dimension features. As shown in Figure 5, the
geometry feature embeddings among different parts of an
object surface are distinguishable clearly and show mean-
ingful similarity among the local structure of symmetry. It
demonstrates that our method can predict reasonable geom-
etry representations for unseen objects, which are employed
to solve the 6D poses in this paper. We also give some
qualitative results of GCPose on T-LESS and LINEMOD
datasets, as shown in Figure 4. Compared to OVE6D [5],
our method can generate more precise poses.

4.4. Ablation Study

We conduct several ablation experiments on the T-LESS
dataset. To eliminate the effect of inaccurate segmentation,
we use ground truth labels and masks.

Data Augmentation and Normalization. Our method
is trained on synthetic data and tested on real-world data.
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GT OVE6D

T-LESS LINEMOD

 Raw GCPose GCPoseOVE6DGT Raw

Figure 4: Qualitative results. We visualize the results of OVE6D [5] and the proposed GCPose on the T-LESS (left) and
the LINEMOD (right) datasets. Raw indicates the original images and GT means the visualization of ground truth poses.
GCPose performs well on a wide range of objects, containing view-point changes, and occlusions.

Data Aug Norm GA Feat SA Loss AR

0.635
✓ 0.669 (+3.4%)
✓ ✓ 0.698 (+6.3%)
✓ ✓ ✓ 0.708 (+7.3%)
✓ ✓ ✓ ✓ 0.738 (+10.3%)

Table 7: Ablation experiments: the impact of the pro-
posed special data augmentation (Data Aug), normalization
(Norm), global-aware fine-level features (GA Feat), and
symmetry-aware matching loss (SA Loss).

So special data augmentation strategies are necessary to im-
prove the generalization to real-world scenes. Besides, we
standardize the scale of the input point clouds to facilitate
the learning of geometry features. As shown in Table 7, spe-
cial data augmentation and normalization bring 3.4% and
2.9% AR improvement, respectively.

Global-Aware Fine-level Features. As described in
Section 3.3, we enhance fine-level point features with global
structural cues to make features more discriminative for es-
tablishing correspondence. As shown in Table 7, the perfor-
mance of GCPose is improved from 69.8% to 70.8% using
global-aware fine-level features.

Symmetry-Aware Matching Loss. To eliminate the
ambiguity of the learning of geometry features, as described
in Section 3.4, we design a symmetry-aware matching loss
to supervise the many-to-many correspondences. The ge-
ometry features output by GCPose are meaningful and the
features of symmetric structures are visually similar (Figure
5). As shown in Table 7, the symmetry-aware matching loss

Figure 5: t-SNE visualization of learned symmetry-
aware geometry features on several unseen objects from
T-LESS. The geometry features are distinguishable among
different parts within an object and show meaningful simi-
larity among the local structure of symmetry.

provides 3.0% AR improvement.

5. Conclusion

In this paper, we propose a pose estimation framework
based on object-agnostic geometry features, which can
generalize to arbitrary unseen objects without re-training.
Compared with previous methods, GCPose achieves state-
of-the-art performance on four benchmarks. We hope that
our simple yet effective framework could serve as a strong
baseline for unseen object 6D pose estimation and motivate
researchers to explore more in this direction.
Acknowledgments. This work is supported by Na-
tional Key R&D Program of China under Grant No.
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