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Abstract

Boundary localization is a challenging problem in Tem-
poral Action Detection (TAD), in which there are two main
issues. First, the submergence of movement feature, i.e. the
movement information in a snippet is covered by the scene
information. Second, the scale of action, that is, the propor-
tion of action segments in the entire video, is considerably
variable. In this work, we first design a Movement Enhance
Module (MEM) to highlight movement feature for better ac-
tion location, and then, we propose a Scale Feature Pyra-
mid Network (SFPN) to detect multi-scale actions in videos.
For Movement Enhance Module, firstly, Movement Feature
Extractor (MFE) is designed to get the movement feature.
Secondly, we propose a Multi-Relation Enhance Module
(MREM) to grasp valuable information correlation both lo-
cally and temporally. For Scale Feature Pyramid Network,
we design a U-Shape Module to model different scale ac-
tions, moreover, we design the training and inference strat-
egy of different scales, ensuring that each pyramid layer
is only responsible for actions at a specific scale. These
two innovations are integrated as the Movement Enhance
Network (MENet), and extensive experiments conducted on
two challenging benchmarks demonstrate its effectiveness.
MENet outperforms other representative TAD methods on
ActivityNet-1.3 and THUMOS-14.

1. Introduction
Temporal Action Detection (TAD) is a significant video

understanding task, which aims to extract video segments
with specific action labels from untrimmed long videos. It
remains a challenging problem because action boundaries
are difficult to determine precisely, which adversely affects
the performance in most works.

Two critical issues stand in the way of detecting action
boundaries robustly from untrimmed videos. The first issue,
which could be called as movement feature submergence,
exists in where either context but not movement itself dom-
inate feature expression, or movement is small in pixel size.
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Figure 1. Movement feature submergence and multi-scale actions.
(a) Strong class-specific context of the accordion leads to video
feature generated by TAC lacking the difference between action
and background. (b) Small movement of Futsal results in less
difference between action area and background area. (c) Multi-
scale actions have different feature richness and action pattern.

For the first case, as shown in Fig 1(a), the action of Play-
ing Accordion can be easily judged by Accordion, while
this strong class-specific context causes the real movement
information in action area to be submerged. For the second
case, as shown in Fig 1(b), for Futsal, the stadium scene
takes up a large proportion of pixels in the frame, while
the movement information is ignored. This movement fea-
ture submergence leads to the feature in background to be
similar with the feature in action area, which blues the ac-
tion boundaries. If the movement information can be high-
lighted, the boundary will be easier to be located. However,
this problem has been ignored by prior works [12, 29, 22].

The second issue is the multi-scale of actions in an
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untrimmed video. As shown in Fig 1(c), the feature rich-
ness varies greatly with the scale. There are rare features
for action segments that account for a small proportion of
the entire video, that is the small-scale action, and abundant
features for those segments that account for a higher propor-
tion, that is the large-scale action. We contend that there are
different action patterns between different scales. Specifi-
cally, compared with small-scale action, large-scale action
contains more obviously action process (i.e. start phase, ac-
tion phase and end phase). Some researches [13, 7, 11] re-
sort feature pyramid network (FPN) to solve the problem.
However, there are two aspects that are ignored. Firstly,
these works detect actions at different feature scales, but,
they do not adaptively learn action features of different
scales. Secondly, the information flow in FPN is insuffi-
cient, lacking interactions between different pyramid layers.

In this paper, as an effort to overcome the above chal-
lenges, we investigate the feature of TAD. (1) In order to
overcome the movement feature submergence, and high-
light the difference between foreground and background
snippets. We design the Movement Enhance Module
(MEM) to enhance the movement information in a video
snippet, which includes two crucial parts. First, we propose
a siamese network named Movement Feature Extractor
(MFE), which uses the dynamic information of the frame
sequence and the static information of the frame to extract
movement feature from video snippets. And then, we pro-
pose the Multi-Relation Enhance Module (MREM) to es-
tablish temporal and local correlations between video snip-
pets. (2) In order to learn specific representations for differ-
ent scale actions, we propose the Scale FPN (SFPN), which
uses a U-shaped network to produce multi-scale video fea-
tures and facilitate the information flow between different
layers. Moreover, for each layer in SFPN to take charge
of detecting action segments of the corresponding scale, we
design a two-stage learning strategy. In the former General-
ization stage, each layer is trained with all action segments;
in the latter Specialization stage, each layer is biased to-
ward actions in a specific scale range. During inference,
every layer takes charge of detecting action segments of the
corresponding scale.

In summary, this work explores feature representation
and action segment representation that are more suitable for
TAD task. Its contributions are summarized as follows.

1. To alleviate the movement feature submergence, we
design the Movement Enhance Module (MEM) to
highlight the movement feature in a video snippet, and
explore local and temporal relations between snippets.

2. For the multi-scale actions in an untrimmed video with
different feature patterns, we design the Scale FPN
(SFPN) to learn different scale actions respectively,
where targeted training and inference strategies are

adopted. Consequently, each layer in the SFPN spe-
cializes in actions at a certain scale range.

3. Extensive experiments conducted on two datasets ver-
ify the effectiveness of our proposed method. On Ac-
tivityNet1.3, MENet promotes the best average mAP
from 36.6% to 37.7%, and boosts the mAP@0.7 from
31.8% to 34.0% on THUMOS-14.

2. Related Work
Video Feature for TAD. The pre-trained TAC model is

often used as the feature extractor for Temporal Action De-
tection which receives several frames as a snippet to distill
both appearance and motion information from raw video
frames. TSN [26], I3D [3], and SlowFast [6] are the most
common feature extractors. However, they only focus on
the action categories, which results in some actions that are
strongly related to the scene having quite similar representa-
tions to background segments. To overcome the drawback,
TSP [1] adds additional background supervision in the pre-
training model to generate the background-sensitive feature.
BSP [28] artificially synthesizes different video boundaries
and conducts boundary learning in the pretraining model to
generate boundary-sensitive feature. However, these works
cannot address the problem of movement feature submer-
gence fundamentally. In this paper, MENet uses the Move-
ment Enhance Module (MEM) to magnify the movement
feature and the difference between action and background.

Multi-scale Action Detection. The scale of the action
varies dramatically in a video. Compared with the large ac-
tions, those small action segments have fewer samples and
insufficient features. Some works [13, 7, 11] focus on fea-
ture pyramid network (FPN) to generate different tempo-
ral resolution features. However, the FPN structure does
not learn specific feature representation for a certain action
scale, and also lacks sufficient information flow intrinsi-
cally. TSI [15] proposes a scale-invariant loss, which bal-
ances large and small actions in quantity, but fails to fun-
damentally solve the scarce feature of small actions. In this
work, we propose SFPN to cope with these problems, which
establishes associations between different scale features and
learns scale-specific feature representations.

Temporal Action Detection. Benefiting from the suc-
cessful practice of image object detection and trimmed
video action recognition, the two-stage pipeline prevails in
TAD task. Specifically, the first stage is to locate candi-
date action segments in the video, and the second stage
uses an action classifier to classify these proposals. The
first stage has three main paradigms. (1) Anchor-Based
method: Methods [5, 13, 21] put anchors of various scales
on the video feature, and then give the final confidence of
anchors. However, they cannot produce flexible bound-
aries. (2) Boundary-Base method: Methods [14, 31, 16]
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predict boundary scores on the video feature, which are
combined to generate proposals. However, the confidence
of the proposal lacks global information. (3) Combined
method: Methods [12, 10, 4] combine these two methods
to generate precise confidence and flexible boundaries. In
this work, we follow the combined method to integrate the
start point and end point as a proposal and generate multi-
scale anchor maps to predict anchor confidence.

3. Method
3.1. Overview

Problem Definition. Input of the Movement Enhance Net-
work (MENet) is an untrimmed video denoted as V =
{vi}Lv

i=1, where vi represents the i-th frame of the video
and Lv is the total frames. The duration of the video is
Tv . Due to redundancy between video frames, several con-
secutive frames are usually regarded as a snippet. With
the sampling interval σ, the whole video can be defined
as snippet sequence S = {si}Ls

i=1, Ls = Lv/σ represent-
ing the number of total snippets. The output of the MENet
is {ψi|ψi = (ti,s, ti,e, ci, scorei)} where ti,s, ti,e,ci and
scorei are start time, end time, action category and con-
fidence score, respectively. The annotations of untrimmed
video are action instances {Ψi|Ψi = (t∗i,s, t

∗
i,e, c

∗
i )}.

Framework Architecture. The framework architecture
of MENet is shown in Fig 2. MENet is mainly com-
posed of two parts: Movement Enhance Module (MEM)
and Scale FPN (SFPN). MEM is used to extract movement
enhanced feature and explore different video relations be-
tween snippets. SFPN is proposed to generate feature pyra-
mid and learn specific expression patterns of different ac-
tion scales. Finally, SFPN gives action boundaries and con-
fidence scores of different scale actions, separately.

3.2. Movement Enhance Module
To obtain the feature that contains action category infor-

mation and is sensitive to foreground and background, si-
multaneously, we propose the Movement Enhance Module,
which contains two vital stages: Movement Feature Extrac-
tor (MFE) and Multi-Relation Enhance Module (MREM).
Movement Feature Extractor. In order to amplify the
movement information, MFE is proposed. As shown in
Fig 3, MFE uses a siamese network to highlight the move-
ment information in a video snippet. We select R(2+1)D-
34 [24] as backbone with the TAC pretrained weight on
Kinetics-400 [9], and two networks share the weight. MFE
has two input paths. One path is video snippet path com-
posed of consecutive frames, and the other is frame duplica-
tion path, which selects a frame from the snippet and copies
it to the length of the snippet. Here, the middle frame is
selected for duplication. The feature from the video snip-
pet path contains both static scene and dynamic movement
information, which is FTotal ∈ RC′×T , but feature from

the frame duplication path only contains static scene infor-
mation, which is FStatic ∈ RC′×T . And then, MFE ex-
tracts the movement information in the snippet using the
difference between the two features, which is defined as
FMovement ∈ RC′×T . Finally, FMovement and FTotal are
concatenated as FMT ∈ R2C′×T .
Multi-Relation Enhance Module. To establish relations
between snippets and fuse the information at semantic di-
mension, the Multi-Relation Enhance Module is proposed.
As shown in Fig 2, firstly, we use a 1D convolution to
fuse information at semantic dimension. Secondly, there
are three information paths in MREM. (1) Local Path: 1D
convolution can directly establish relations in a local scale
k, where k is the kernel size. However, it is difficult for
1D convolutions to establish temporal relationship between
snippet features. (2) Forward Path: The LSTM processes
each snippet successively according to the input order, with
an outstanding ability to model the temporal relation. In for-
ward path, we use LSTM to establish forward information.
(3) Backward Path: In backward path, we flip the video se-
quence, and establish backward information. Finally, the
three paths are integrated.

3.3. Scale Feature Pyramid Network

We contend different scale actions have different pat-
terns. Therefor, the SFPN is designed to learn patterns of
specific scales. SFPN contains U-Shape Module and De-
tector Head, which aims to generate feature pyramid and
final detection results, respectively.
U-Shape Module. For feature pyramid generating, as
shown in Fig 2, SFPN uses a U-shaped architecture inspired
by [20] to generate feature sequences in different temporal
resolution. From top to down, SFPN uses multiple temporal
convolution layers followed by AvgPooling to downsample
the temporal resolution. From bottom to up, to restore the
lower layer information, SFPN uses several 1D transpose
convolution to restore the feature resolution and features in
the same resolution are concatenated.
Detector Head. As demonstrated in Fig 2, each detector
head consists of a Boundary Predictor, an Anchor Feature
Align Layer and two Anchor Score Predictor (ASP). The
output of the Boundary Predictor and Anchor Score Predic-
tor is used to generate proposals and confidence scores, and
the Anchor Feature Align Layer is to generate the feature
representation for each anchor.
Boundary Predictor. Boundary Predictor aims at predict-
ing boundary probabilities Ps = {pis}

Li
i=1, Pe = {pie}

Li
i=1 of

each snippet by recognizing the boundary pattern.
Anchor Feature Align Layer. The area between any two
snippets can form an anchor, and each anchor consists of
several consecutive snippets. Supposing Ni anchors are
randomly sampled to participate in the forward. The An-
chor Feature Align Layer adopts SGAlign designed in [29]
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Figure 2. Overview of our MENet and the structure of some sub-modules. There are two crucial parts in the framework (Top) of MENet:
Movement Enhance Module (MEM) and Scale FPN (SFPN). MEM is designed to generate movement enhanced feature. SFPN is designed
to generate multi-scale feature pyramid, and learn action expressions in different layers. The structure of the sub-modules is shown below
(Bottom) with the same color in the framework.
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Figure 3. Illustration of MFE. This module constructs the move-
ment feature in a snippet by the difference between dynamic video
snippet and static picture.

to generate feature expressions F i
A ∈ RC×S×Ni for anchors

from the video feature F i
v , where S is the sampling number

of snippets within an anchor.
Anchor Score Predictor. IoU-ASP and Offset-ASP have
the same structure to recognize the action pattern within
an anchor. For the i-th layer in SFPN, IoU-ASP gener-

ates two maps M i
cls ∈ RDi×Li ,M i

reg ∈ RDi×Li , where
Di is predefined maximum anchor duration. In Offset-ASP,
two output maps are denoted asM i

cent ∈ RDi×Li ,M i
dura ∈

RDi×Li . These two maps indicate each anchor’s center off-
set and duration offset respectively.

3.4. Specific action pattern Learning

Actions of different scales have different feature rep-
resentations. Correspondingly, different layers in SFPN
have different feature granularity and temporal resolution.
Therefore, we advocate applying a targeted training strat-
egy for actions at different scales, assuring that each layer
in SFPN is only responsible for actions at a specific scale
range. Specifically, define the scale S ∈ [0, 1] as the ratio
of action length to video length. Then the first layer (the top
layer of the pyramid) with the longest sequence is respon-
sible for small-scale actions whose scale in [S1

min, S
1
max],

and the second layer (the middle layer of the pyramid) with
a moderate sequence length is responsible for medium-scale
actions whose scale in [S2

min, S
2
max]. The remaining third

layer with the shortest sequence is responsible for large-
scale actions whose scale belongs to [S3

min, S
3
max]. To im-

plement this idea, a two-stage training strategy is designed.
Two-stage training strategy. The two-stages of training
ASP are Generalization and Specialization, respectively.
Due to the different lengths of feature sequences, the to-
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0%, ri, 2ri and 100% respectively.

tal number of dense anchors contained in each layer varies.
In order to ensure that each layer is trained equally and re-
duce the computational cost, different anchor sampling ra-
tios r1, r2, r3 are set for the three layers, where 0% <
r1 ≤ r2 ≤ r3 ≤ 100%. (1) In the former Generaliza-
tion stage, given the sampling ratio ri, randomly sample
Ni =

(
Li

2

)
· ri anchors from valid region to train the IoU-

ASP and Offset-ASP of i-th layer, as shown in the left col-
umn of Fig 4. The purpose of this stage is to let ASP learn
a general pattern of all actions. (2) In the latter Specializa-
tion stage, for the i-th layer in SFPN, the training samples
come from two parts, as shown in the middle column in
Fig 4. The first part are randomly sampled according to
the sampling rate of min(100%, 2 · ri) from anchors whose
scale in [Si

min, S
i
max] (yellow area in Fig 4). The second

part are sampled from the remaining anchors whose scale
in (0, Si

min) or (Si
max, 100%], with the sampling rate of ri

(green area in Fig 4). This Specialization stage highlights
the effect of anchors at the certain scale range, making the
detection head of each layer more specialized.

3.5. Training & Inference

Label Assignment. Assuming the video duration is Lv ,
each snippet corresponds to a video period. In annotation,
a ground-truth action which starts at t∗s and ends at t∗e . Ex-
panding boundary from moment to region, the start region
is defined as Rs = [t∗s − 1.5Tv

Li
, t∗s + 1.5Tv

Li
] and end region

is defined as Re = [t∗e − 1.5Tv

Li
, t∗e + 1.5Tv

Li
]. For Boundary

Predictor, compute the overlap between each snippet pe-
riod and Rs as the label of start probabilities Gi

s ∈ RLi .
Similarly, compute the overlap between snippet period and
Re as the label of end probabilities Gi

e. For IoU-ASP, fol-
lowing [12], tIoU between each anchor and all actions are

calculated and then arranged into a map Gi
IoU ∈ RDi×Li .

Anchors with tIoU score greater than 0.9 participate in the
training of Offset-ASP. For anchor start at ts and end at te,
assuming its corresponding ground-truth action is [t∗s, t

∗
e],

the center offset ∆c and duration offset ∆d are calculated
as Eq. (1)- (2), and arranged into maps Gi

cent ∈ RDi×Li

and Gi
dura ∈ RDi×Li .

c =
ts + te

2
, d = te − ts, c

∗ =
t∗s + t∗e

2
, d∗ = t∗e − t∗s (1)

∆c =
c∗ − c

d
,∆d = log

d∗

d
(2)

Basic Loss. (1) For the i-th layer, the loss of Boundary-
Predictor is the re-weighted binary cross-entropy loss LB

Eq. 3, where P = {pt}Li
t=1 and G = {gt}Li

t=1 represent the
predicted boundary probabilities and its label of all snip-
pets, respectively. Snippets with gt > 0.5 serve as positive
samples (i.e., δ{gt > 0.5} = 1) and others are negative
samples. T+

i and T−
i are the number of positive and nega-

tive samples in this layer respectively. (2) The loss of IoU-
ASP is the re-weighted binary cross-entropy loss Lasp Eq. 4
and L2 loss L2, where M = {mj}Ni

j=1 and G = {gj}Ni
j=1

represent the predicted value and ground-truth value of each
sampled anchor in the i-th layer. Ni, N

+
i , N

−
i represent the

number of sampled anchors, positive anchors whose tIoU
greater than 0.9 and negative anchors of this layer, respec-
tively. (3) The loss of Offset-ASP is Smooth L1 loss L1.
Note that only those sampled anchors with tIoU greater than
0.9 participate in the training of Offset-ASP. The re-weights
in LB and Lasp are used to balance the number between
positive and negative samples.

LB(P,G) = − 1

Li

Li∑
t=1

(
Li

T+
i

· δ{gt > 0.5} · log pt

+
Li

T−
i

(1− δ{gt > 0.5} · log(1− pt))

(3)

Lasp(M,G) = − 1

Ni

Ni∑
j=1

(
Ni

N+
i

· δ{gj > 0.9} · logmj

+
Ni

N−
i

(1− δ{gj > 0.9} · log(1−mj))

(4)

Total Loss. The loss of the i-th layer is composed of three
parts: boundary loss, IoU loss and offset loss, as shown in
Eq.( 5) ( 6) ( 7) respectively. The total training objective is
the sum of all three layers, formulated as Eq. 8. Besides,
in order to balance the value between different terms, the
coefficient λ1 and λ2 are set as 5 and 10.

Li
bound = LB(P

i
s , G

i
s) + LB(P

i
e , G

i
e) (5)

Li
IoU = Lasp(M

i
cls, G

i
IoU ) + λ1 · L2(M

i
reg, G

i
IoU ) (6)

Li
off = L1(M

i
cent, G

i
cent) + L1(M

i
dura, G

i
dura) (7)
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Ltotal =

3∑
i=1

(Li
B + Li

IoU + λ2 · Li
off ) (8)

Inference. Each layer outputs P i
s , P i

e , M i
cls, M i

reg, M i
cent

and M i
dura from the detector head in inference. Following

[14, 12, 15], snippet in boundary probability Ps is screened
out as candidate start point if it is local peak or its probabil-
ity is greater than 0.5 · max(Ps). And snippets can be se-
lected as candidate end point fromPe in the same way. Then
the candidate start and end points are combined into propos-
als. In order to produce the more reasonable proposals, as
shown in Fig 4, each layer of SFPN only outputs anchors
in the corresponding scale range. Specifically, for the i-th
layer, its responsible scale range is [Si

min, S
i
max]. Further-

more, in the proposals set, for any start snippet whose index
is sdx and centered at time t1, and the end snippet whose in-
dex is edx and centered at time t2, we can get its start proba-
bility ps = P i

s [sdx], end probability pe = P i
e [edx] and tIoU

score pIoU =M i
cls[edx−sdx, sdx]·M i

reg[edx−sdx, sdx].
Its center is c = (sdx + edx)/2Li and duration is d =
(edx − sdx)/Li. Subsequently, to refine the boundary, we
can obtain center offset ∆c = M i

cent[edx − sdx, sdx] and
duration offset ∆d = M i

dura[edx − sdx, sdx], and adjust
the boundary to (t′1, t

′
2) as Eq. 9:

c′ = d ·∆c+ c, d′ = d · e∆d

t′1 = c′ − d′

2
, t′2 = c′ +

d′

2

(9)

Finally, proposals generated by each layer are merged to-
gether, and the action classifier assigns every proposal with
a certain label and a classification score Plabel. The final
score for the proposal (t′1, t

′
2) is shown as Eq. 10. Then

Soft-NMS [32] is adopted to remove redundant segments.

scoret′1,t′2 = ps · pe · pIoU · plabel (10)

4. Experiments
4.1. Dataset and Settings
Dataset. In order to verify the effectiveness of MENet, we
experiment on two challenging datasets. ActivityNet-1.3
[2] contains 200 categories of daily life, sports, etc. We
use the training set for model training and report the perfor-
mance on the validation set. THUMOS-14 [8] consists of
413 videos with 20 action classes which is almost sports. In
THUMOS-14, the validation set contains 200 long videos,
including 3007 action segments, and the test set contains
213 videos, including 3358 action segments. Following the
standard practice of THUMOS-14, we train MENet on the
validation set and valid it on the test set.
Metric. In order to fully demonstrate the advantages of
our proposed method, we use two main evaluation metrics:
mAP under a certain temporal tIoU threshold (mAP@tIoU)
and average recall at a specified average number of propos-
als (AR@AN). Besides, on ActivityNet, the area under the
AR-AN curve (AUC) also serves as a metric.

Network Details. We use R(2+1)D-34 as backbone with
the TAC pretrained weight on Kinetics-400 serving as the
primary feature extractor. The sampling interval σ set as
16 frames and 5 frames for ActivityNet-1.3 and THUMOS-
14, respectively. In this way, for the input video with Lv

frames, video snippet length Ls = Lv/σ. For ActivityNet-
1.3, we use linear interpolation to resize the length of video
features T = 200. For a long video in THUMOS-14, a slid-
ing window with a length of 256 and an overlap of 50% is
used to truncate the original video feature. Each window
is detected independently, and finally the results of all win-
dows are concatenated as the total result of the entire long
video. The scale ranges of each layer in the pyramid are set
as: [S1

min, S
1
max] = [0, 15%], [S2

min, S
2
max] = [10%, 75%]

and [S3
min, S

3
max] = [50%, 100%]. As for the action classi-

fier, following the routine of most two-stage TAD methods,
Untrimmed Net [25] serves as the classifier for THUMOS-
14, and the recognition model by [32] for ActivityNet-1.3.
Implementation Details. MENet is trained by Adam algo-
rithm with batch size 8 and learning rate 10−3. The sam-
pling ratio of each layer r1, r2, r3 are set as 50%, 40%,
90%, respectively. For ActivityNet-1.3, the training process
takes 10 epochs, where the first 7 epochs is the General-
ization stage and the rest is the Specialization stage. As for
THUMOS-14, the total training epoch is 7, and only the first
epoch is the Generalization stage. Besides, the learning rate
is decayed to 10−4 after 5 epochs on THUMOS-14 and 7
epochs on ActivityNet-1.3.

4.2. Performance Evaluation On Detection
We compare MENet with other state-of-the-art methods

on ActivityNet-1.3 and THUMOS-14. Table 1 shows the
comparison on the validation set of ActivityNet-1.3. The
mAP at tIoU thresholds of {0.5, 0.75, 0.95} are reported, as
well as the Avg.mAP which is calculated at tIoU thresholds
between 0.5 and 0.95 with the step of 0.05. Impressively,
MENet outperforms other representative methods at tIoU
thresholds 0.75 and 0.95. MENet promotes the Avg.mAP
from 36.6% to 37.7%, with an increase of more than 1.1%.
Comparing the methods of different backbones, MENet ex-
ceeds others.

Table 2 presents the detection performance comparison
on the test set of THUMOS-14. MENet achieves compa-
rable performance with the best method [30] at low tIoU
thresholds. But, MENet outperforms other representative
methods at tIoU thresholds 0.6 and 0.7. MENet improves
the mAP@0.7 from the current best 31.8% to 34.0%. To
locate the boundaries more accurately, a higher threshold
is usually used to separate the positive and negative sam-
ples in training. Therefore MENet has a better response at
high tIoU thresholds. Higher tIoU means more precise ac-
tion boundaries, which is more difficult and more impor-
tant for action localization. Meanwhile, it is noteworthy
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that MENet shows obvious superiority compared with other
FPN-based methods like [11], which substantiates the effec-
tiveness of the SFPN proposed in MENet.

Method Backbone mAP@tIoU (%)
0.5 0.75 0.95 Avg.

GTAN [16] P3D 52.6 34.1 8.9 34.3
BSN [14] TSN 46.5 30.0 8.0 30.0
BMN [12] TSN 50.1 34.8 8.3 33.9

G-TAD [29] TSN 50.4 34.6 9.0 34.1
PCMNet [18] TSN 51.4 36.1 9.5 35.3
TCA-Net [19] TSN 52.3 36.7 6.9 35.5
RTD-Net [23] I3D 47.2 30.7 8.6 30.8

ContextLoc [33] I3D 56.0 35.2 3.6 34.2
AFSD [11] I3D 52.4 35.3 6.5 34.4
TAGS [17] I3D 56.3 36.8 9.6 36.5
STPT [27] STPT 51.4 33.7 6.8 33.4

ActionFormer [30] R(2+1)D 54.7 37.8 8.4 36.6
MENet(ours) R(2+1)D 54.7 38.4 10.5 37.7

Table 1. The temporal action detection performance comparison
with state-of-art methods on ActivityNet-1.3. Bold text indicates
the best results.

Method Backbone mAP@tIoU (%)
0.3 0.4 0.5 0.6 0.7

GTAN [16] P3D 57.8 47.2 38.8 - -
BSN [14] TSN 53.5 45.0 36.9 28.4 20.0
BMN [12] TSN 56.0 47.4 38.8 29.7 20.5

G-TAD [12] TSN 54.5 47.6 40.2 30.8 23.4
PCMNet [18] TSN 61.5 55.4 47.2 37.5 27.3
TCA-Net [19] TSN 60.6 53.2 44.6 36.8 26.7
RTD-Net [23] I3D 68.3 62.3 51.9 38.8 23.7

ContextLoc [33] I3D 68.3 63.8 54.3 41.8 26.2
AFSD [11] I3D 67.3 62.4 55.5 43.7 31.1
TAGS [17] I3D 68.6 63.8 57.0 46.3 31.8
STPT [27] STPT 70.6 65.7 56.4 44.6 30.5

ActionFormer [30] R(2+1)D 73.4 67.4 59.1 46.7 31.5
MENet(ours) R(2+1)D 70.7 65.3 58.8 49.1 34.0

Table 2. The temporal action detection performance comparison
with state-of-art methods on THUMOS-14. Bold text indicates
the best results.

4.3. Performance Evaluation On Proposal
To further verify the advantages of MENet, we do not

consider action classes of action segments to evaluate its
performance on temporal action proposal (TAP) task.

Through Table 3, we can further discover the perfor-
mance improvement of AR@100 and the area under the
AR-AN curve (AUC) on ActivityNet-1.3. For instance,
MENet boosts the AUC from 68.1% to 70.2%. As for
THUMOS-14, MENet outperforms other methods in all
metrics are reported in Table 4, which certifies the effec-
tiveness of MENet once again.

4.4. Ablation Study
Ablation studies are performed thoroughly to verify the

role of each module in MENet, as well as the impact of
different training strategies.

Method AR@100 AUC
BSN [14] 74.2 66.2

GTAN [16] 74.8 67.1
BMN [12] 75.0 67.1

RTD-Net [23] 73.2 65.8
TCA-Net [19] 76.1 68.1
MENet(ours) 77.0 70.2

Table 3. Temporal action proposal performance comparison with
other representative methods on ActivityNet-1.3. Bold text indi-
cates the best results.

Method AR@50 AR@100 AR@200 AR@500
BSN [14] 37.5 46.1 53.2 60.6
BMN [12] 39.4 47.7 54.7 62.1

RTD-Net [23] 41.5 49.32 56.41 62.91
TCA-Net [19] 42.1 50.5 57.1 63.6
MENet(ours) 44.2 52.3 58.6 66.0

Table 4. Temporal action proposal performance comparison with
other representative methods on THUMOS-14, measured by
AR@AN. Bold text indicates the best results.

1). Effectiveness of the MEM: As discussed before,
when constructing the movement enhance feature, MFE and
MREM are the crucial designs in MEM. To certify the func-
tion of these two modules, we design a Base model for com-
parison, in which the Movement Feature is removed and
MREM is replaced by temporal 1D convolution. As shown
in Table 5, we can find that compared with the Base model,
Movement Feature and MREM both can promote the per-
formance. Besides, the best results emerge when combining
them together as the intact MEM.

Construction mAP@tIoU (%)
0.5 0.75 0.95 Avg.

Base 54.2 37.3 10.4 37.0
Base + Movement Feature 54.5 37.8 10.6 37.3

Base + MREM 54.4 37.9 10.4 37.3
MEM 54.7 38.4 10.5 37.7

Table 5. Ablation study on the MEM. The Detection perfor-
mance is reported on ActivityNet-1.3. And The best result can
be achieved with these two modules are integrated.

2). Effectiveness of the U-shape Module: As discussed
before, when constructing the feature pyramid, U-shape
Module is designed to establish interactions between dif-
ferent layers. To reveal the validity of this idea, we use 1D
convolution with the step of 2 and AvgPooling to down-
sample the feature sequence respectively. From Table 6, the
U-shape Module can promote the performance, which sub-
stantiates the importance of this design.

3). Effectiveness of feature pyramid structure: For bet-
ter detection accuracy, MENet makes use of the feature
pyramid. To verify the impact of this structure, we only
use a single layer feature sequence to conduct experiments
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Construction mAP@tIoU (%)
0.5 0.75 0.95 Avg.

DownSampling (AvgPooling) 54.5 38.2 10.2 37.4
DownSampling (Convolution) 54.4 38.1 10.8 37.3

U-shape Module 54.7 38.4 10.5 37.7
Table 6. Ablation study on the U-shape Module. The Detection
performance is reported on ActivityNet-1.3.

and compare it with the SFPN, keeping other components
unchanged. On ActivityNet-1.3, single-layer feature with
lengths of 200, 100 and 50 are used. Corresponding results
are shown in Table 7. The experimental results exhibit that
SFPN performs better than any other single-layer structure,
thus justifying the feature pyramid structure is indeed ben-
eficial to the performance.

Length mAP@tIoU (%)
0.5 0.75 0.95 Avg.

50 53.0 37.1 10.8 36.8
100 54.1 38.1 10.4 37.1
200 54.2 38.3 10.5 37.3

SFPN 54.7 38.4 10.5 37.7
Table 7. Ablation study on the SFPN. “Length” means the tempo-
ral length of single layer feature sequence. The Detection perfor-
mance is reported on ActivityNet-1.3.

4). Effectiveness of two-stage training: For efficient
training of MENet and ensuring that the i-th layer in
SFPN is specialized in actions at a specific scale range
[Si

min, S
i
max], the two-stage training strategy is applied.

When training ASP of the i-th layer, in the first General-
ization stage, the anchors are randomly selected from all
scales according to the sampling ratio ri, in the second Spe-
cialization stage, the sampling ratio inside and outside the
range [Si

min, S
i
max] are 2 · ri and ri, respectively. In this

ablation study, we train MENet using the fully Generaliza-
tion stage, the fully Specialization stage and the complete
two-stage strategy, respectively. In addition, to demonstrate
the effectiveness of this training method, we also test a
new Bias training strategy that only samples from the range
[Si

min, S
i
max] with the sampling ratio of ri.

As shown in Table 8, the performance of the Bias strat-
egy is the worst, indicating that in addition to those samples
in the specific scale range, other samples outside this range
also play an important role for a better understanding of ac-
tions. Further, the training effect is impeded when removing
either the Generalization or the Specialization stage, which
verifies the effectiveness of the two-stage training strategy.

5). Qualitative Comparison: To illustrate the edge of
MENet more intuitively, we select videos of Javelin Throw
and High Jump from ActivityNet-1.3 and compare our re-
sults qualitatively with the Base, in which we remove the
movement enhanced feature and SFPN. Results with the

Training Strategy mAP@tIoU (%)
0.5 0.75 0.95 Avg.

only Bias 45.8 29.1 7.4 29.4
only Generalization 54.3 38.2 11.0 37.4
only Specialization 54.6 38.0 10.8 37.4

two-stage 54.7 38.4 10.5 37.7

Table 8. Ablation study on the two-stage training strategy. The
proposed two-stage training leads to better performance than the
single stage method or the Bias method.

highest confidence score are visualized in Fig 5. Firstly,
Compared with the Base method, MENet uses the move-
ment feature, which enlarges the difference between action
and background, making the model more accurate in bound-
ary localization. Secondly, it can be seen the High Jump ac-
tion contains a large-scale action and a small-scale action.
Due to the SFPN in MENet, MENet can better capture ac-
tions at different scales. Results of qualitative comparison
once again prove the superiority of MENet.

62.4-115.937.3-40.713.3-21.2 31.1-41.8

Time Time

Javelin throw High jump

GT GT

Base Base

MENet MENet

Figure 5. Qualitative Comparison. MENet generates more accu-
rate action segments.

5. Conclusion
Temporal action detection (TAD) is aimed at localizing

the action segment and classifying the action class. Despite
the considerable attention and rapid development, TAD is
hindered by two critical problems: the movement feature
submergence and multi-scale action detection. In an effort
to overcome these two challenges, we propose the Move-
ment Enhance Network (MENet) with two crucial designs.
Firstly, we propose the Movement Enhance Module (MEM)
to extract the movement feature in video snippets and ex-
plore the multi-relations between the snippets. Secondly,
we propose the Scale FPN (SFPN) to handle the different
scale actions, we design the U-shape Module to facilitate
the information flow between different scale features. For
better performance, we design the training and inference
stage, ensuring that each layer in MENet is specialized at
a specific scale range. Extensive experiments demonstrate
that MENet considerably outperforms other representative
TAD methods on ActivityNet-1.3 and THUMOS-14.
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