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Figure 1: We resolve a challenging problem of video inpainting with the one-and-only target annotation in the first frame. Our
method is completely plug-and-play that allows converting existing inpainting models to the one-shot setting with significant
performance improvements.

Abstract

Video inpainting aims at filling in missing regions of a
video. However, when dealing with dynamic scenes with
camera or object movements, annotating the inpainting
target becomes laborious and impractical. In this paper,
we resolve the one-shot video inpainting problem in which
only one annotated first frame is provided. A naive solu-
tion is to propagate the initial target to the other frames
with techniques like object tracking. In this context, the
main obstacles are the unreliable propagation and the par-
tially inpainted artifacts due to the inaccurate mask. For
the former problem, we propose curricular inactivation to
replace the hard masking mechanism for indicating the in-
painting target, which is robust to erroneous predictions
in long-term video inpainting. For the latter, we explore
the properties of inpainting residue and present an on-
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line residue removal method in an iterative detect-and-
refine manner. Extensive experiments on several real-world
datasets demonstrate the quantitative and qualitative supe-
riorities of our proposed method in one-shot video inpaint-
ing. More importantly, our method is extremely flexible
that can be integrated with arbitrary traditional inpaint-
ing models, activating them to perform the reliable one-
shot video inpainting task. Video demonstrations can be
found in our supplement, and our code can be found at
https://github.com/Arise-zwy/CIRI.

1. Introduction
Video inpainting aims at filling holes with plausible con-

tent that is spatially and temporally consistent with the orig-
inal video. It serves as an essential and fundamental func-
tion in numerous video editing applications, such as scratch
restoration [14, 36], video retargeting [1, 20], and object
removal [18].

Existing methods have a strong assumption that the in-
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painting targets are well-defined across all the frames, and
thus their research focus lies on connecting individual in-
painting results with coherency [16, 19, 21, 22, 44]. How-
ever, this problem definition is too ideal that cannot be real-
ized in practical scenarios. A short video with a few seconds
can contain hundreds of frames, and annotating all of them
for every editing task is obviously laborious and infeasible.

In this paper, we aim to resolve a challenging video in-
painting problem that only the annotation of the first frame
is available. This practical setting has not been studied in
more depth, but it is explored from an object segmenta-
tion perspective. For instance, existing one-shot inpainting
models [18, 28] focus only on improving the mask prop-
agation quality. However, they neglect the fact that the
predicted/propagated masks cannot be always perfect.

Here we address this dilemma from a pure inpainting
aspect. We embrace the truth that predicted masks are
erroneous, and therefore concentrate on coping with
these inaccuracies in the inpainting framework. To this
end, we propose a Curricular Inactivation framework for
Residue-aware one-shot video Inpainting (CIRI). First, we
observe that the main source of inpainting errors comes from
the hard masking mechanism. It assumes all target pixels are
included in the mask and no others are left outside, which is
obviously false in the one-shot setting. We therefore, tailor
a new target indication mechanism, curricular inactivation,
to tolerate inaccurate target masks. Specifically, instead
of masking out the target regions in the image space that
might ruin good image content, we propose to inactivate
multi-scale feature responses of the predicted areas. More
importantly, we introduce a dual-curriculum learning
strategy into our inactivation to gradually transfer the depen-
dency from the perfect ground truth to the inaccurate mask.
Second, it is inevitable to have partial regions unsuccessfully
inpainted when using an incomplete mask, and these regions
are shown in different data distributions to either foreground
or background. We therefore design an online residue
removal scheme to actively detect these artifacts and remove
them iteratively during the inference stage. Fig. 1 shows our
overall pipeline of one-shot video inpainting.

To quantitatively evaluate the proposed method, we con-
struct a synthetic object removal dataset based on Youtube-
VOS [41], DAVIS [29], and OVID [30]. Extensive experi-
ments on this synthetic dataset as well as other real-world
datasets demonstrate superior performance over state-of-
the-art traditional and one-shot video inpainting methods.
Another important feature of our method is that the pro-
posed two main modules are completely plug-and-play that
can convert traditional methods to one-shot inpainting and
significantly boost their performances.

In summary, our main contributions are threefold:

• We propose a curricular inactivation strategy to substi-
tute hard masking for indicating inpainting targets in an

unreliable input scenario. On one hand, it inactivates
multi-scale feature responses to prevent destroying orig-
inal good image content. On the other hand, we use
curriculum learning to progressively tolerate imperfect
input masks.

• We explore the property of inpainting artifacts, and
present an online learning strategy for iteratively detect-
ing and removing inpainting residues in the inference
phase.

• The proposed method not only demonstrates superior
performances over state-of-the-art inpainting methods,
but also enables converting arbitrary inpainting models
to the one-shot setting with a significant performance
improvement.

2. Related Work
Traditional Video Inpainting. Traditional video inpaint-

ing seeks to fill the corrupted regions in each frame while
maintaining spatial-temporal consistency across frames.
Early works tackle this problem via patch matching between
frames [9, 11]. Recently, deep learning-based methods have
dominated this field. They mainly focus on exploiting the
spatial-temporal cues from neighboring frames by either
using dense correspondences [10, 16, 19, 21, 42, 40], atten-
tions [22, 23, 27, 44], or 3D convolutions [5, 47]. Several
methods [28, 31, 45] also resort to internal learning for prop-
agating information of known regions to unknown parts in
a single video. However, traditional video inpainting meth-
ods assume ground truth target masks of each frame are
accessible during the testing, and may suffer from significant
performance degradation once the provided target masks are
inaccurate. This largely limits their real-world applications.

Low-shot Video Inpainting. To sidestep the need for
ground truth masks, low-shot video inpainting endeavors
to inpaint the target regions with the annotations of only a
few frames. Trinh et al. [18] first predicts target masks with
a few user strokes as guidance, and then propagates these
masks to all remaining frames, allowing for automatic video
inpainting. IIVI [28] adopts an internal learning scheme
to achieve mask propagations with a single frame mask.
Wu et al. [38] jointly learn a mask prediction network and
another completion network by applying a cycle-consistency
regularization. Although ground truth masks are no more
required, the above methods tend to yield inferior results due
to inaccurate mask predictions or propagations. In contrast,
we make the first attempt to introduce the spirit of curriculum
learning to solve the one-shot video inpainting problem. We
propose a novel curricular target inactivation mechanism to
achieve considerable tolerance to inaccurate target masks,
leading to more faithful and accurate inpainting results.

Low-shot Video Object Segmentation. Predicting ac-
curate target masks of each frame with limited annotations
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Figure 2: Our framework consists of two modules: the curricular target inactivation module for error-tolerant inpainting with
inaccurate masks, and the online residue removal module to suppress inpainting artifacts during testing. Notably, during
testing, only the SVOS network is trainable, while both the video inpainting network and residue detection network are frozen.
Conversely, during training, only the video inpainting network is trainable.

is a critical step to realizing low-shot video inpainting. Ex-
isting methods mainly explore spatial-temporal relations to
assist the segmentation of different frames. For example,
several works [3, 4, 15, 35] achieve this goal by fine-tuning a
pretrained model with limited image-mask paired data from
target domains. There are also other attempts to use fea-
ture matching [7, 13, 34] and memory mechanisms [8, 26]
to facilitate the segmentation across frames. Various meth-
ods [6, 25, 43] borrow the information from neighboring
frames by utilizing the optical flow, which effectively boosts
the low-shot segmentation performance. Differently, we
propose an online residue removal scheme by iteratively
fine-tuning the pretrained semi-supervised video object seg-
mentation (SVOS) model with the awareness of minimizing
the residues, which effectively improves segmentation per-
formance and suppresses the inpainting artifacts.

3. Method

3.1. Overview

Problem Formulation. Given a video sequence X :={
Xt ∈ RH×W×3|t = 1, 2, ..., T

}
with length T , and a mask

M1 ∈ RH×W×1 indicating the target region in the first
frame, our goal is to synthesize the inpainted video Ŷ :={
Ŷt ∈ RH×W×3|t = 1, 2, ..., T

}
with faithful content in

the target region with spatial and temporal consistency across
all frames, by using the one-and-only target annotation in the
first frame. For training, the model requires the corrupted
video sequences X , the ground truth masks of each frame
M , and the ground truth inpainted video Y .

Network Design. The pipeline of our CIRI framework
is shown in Fig. 2. Built upon an arbitrary traditional video
inpainting backbone, our framework consists of two mod-
ules, including a curricular target inactivation module and a
residue removal module, which cope with target feature in-
activation and residue artifacts removal, respectively. Taking
X and M1 as input, the encoder of the inpainting network
first extracts the features of each frame from X . These fea-
tures are then sent to the curricular inactivation module for
selectively inactivating multi-scale feature responses of the
targets, by combining the reciprocal strengths of ground truth
masks and learned masks. Afterwards, the target-inactivated
features are fed to the decoder to render a faithful inpainted
video. During the testing phase, the residue removal module
actively detects the inpainting artifacts in the inpainted video
and removes them iteratively. We discuss each component
of our method in the following sections.

3.2. Curricular Inactivation for Video Inpainting

Target Inactivation. Earlier works [18, 28] mainly adopt
a hard masking mechanism for video inpainting. They as-
sume that all target pixels are included in the mask and no
others are left outside. However, as the predicted masks can-
not be always perfect, this assumption obviously does not
hold in the one-shot setting, leading to unsatisfactory inpaint-
ing results. Thus, instead of directly applying a hard mask
to mask out the target in the image space that may ruin the
image content, we propose a target inactivation mechanism
by selectively inactivating the multi-scale feature responses
of the predicted target regions. The rationale behind this is
that high-level features capture long-range and multi-scale
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spatial correlations among the pixels of the input image due
to their large receptive fields. For this reason, substantial
information of the target region can remain in the pixels out-
side the target mask. This feature-level multi-scale masking
strategy allows the model to fully exploit the meaningful
target information to assist error-tolerant inpainting.

As shown in the bottom part of Fig. 2, given the input
frame features Finput produced by the encoder of the inpaint-
ing network and an inactivation map Miac with pixel values
ranging from [0, 1], we can obtain the target-inactivated out-
put features Fout by operating as follows:

Fout = (1−Miac)⊙ Finput, (1)

where ⊙ denotes the element-wise multiplication operation.
By selectively inactivating the target feature responses, Fout

not only well preserves the background features, but also
retains meaningful responses that are beneficial for the sub-
sequent target inpainting.

Dual-Curriculum Learning. To precisely inactivate the
target responses, an ideal way is to use the ground truth
masks of each frame as the inactivation maps. However, this
may result in the overdependence of the model on ground
truth masks. To alleviate this problem and boost the learning
performance on inaccurate masks, we propose to equip the
target inactivation mechanism with a dual-curriculum learn-
ing scheme (Fig. 3). This scheme shares a similar spirit to
curriculum learning [2, 32, 46, 12], which allows the model
to start with learning simple tasks and then gradually transfer
to difficult tasks for better optimization.

In particular, our dual-curriculum learning scheme com-
prises two curriculum tasks by initially learning from the
ground truth masks and then gradually transferring the learn-
ing focus to the inaccurate masks. To be more specific, each
curriculum task includes three training stages. In the first
stage, the model is trained with the inactivation maps learned
from the ground truth masks only, which offers precise guid-
ance to grant the model an initial capability of faithful target
inpainting. However, over-reliance on ground truth masks
can lead to significant performance degradation during the
inference phase, where the ground truth masks are not avail-
able. We thus gradually replace the ground truth masks with
inaccurate masks by interpolating the two for training in the
second stage. By this means, our model can gain increasing
robustness to the perturbations from the inaccurate masks.
To fully evade the need for ground truth masks and enable the
model to adapt to inaccurate masks, we only utilize the inac-
curate masks for the third stage of training. The curriculum
learning process can be formulated as follows:

Mc =


Mgt 0 < e ≤ n1

α⊙Mgt + (1− α)⊙Merr n1 < e ≤ n2

Merr e > n2,

(2)

where Mgt, Merr, and Mc denote the ground truth mask,
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Figure 3: Illustration of our curricular target inactivation
module. It gradually shifts learning focus from ground truth
masks to predicted masks and complementary attention maps
for better tolerance to inaccurate masks.

inaccurate mask, and candidate inactivation mask, respec-
tively. α is a curriculum learning rate decreasing from 1 to
0 for controlling the tradeoff between the ground truth and
the inaccurate masks during training. e is the training epoch
number of each stage controlled by two fixed parameters n1

and n2. Note that we only use the inaccurate mask as the
candidate inactivation map during testing.

To obtain more reasonable inactivation maps, we intro-
duce two kinds of inaccurate masks to inject rich and di-
verse target mask information for learning. The first is the
mask Mpred predicted by a pretrained SVOS network on a
frame, it provides an initial target mask which may contain
undesired prediction errors. To provide complements and
rectifications to the erroneously predicted masks, we further
introduce the complementary attention map Mattn that indi-
cates the possible target pixels, as the second source of the
inaccurate masks. Specifically, to obtain the complementary
attention map of a current frame, we first perform a mask
region pooling on the first frame X1 with its corresponding
ground truth mask M1 to get the feature vector of the target
region. Then we compute the cosine similarity between the
target feature vector and the feature vector in each feature
pixel of the current frame. The resulting similarity map ex-
hibit higher responses in the regions that share higher feature
similarity with the target of the first frame. This can be thus
used as a reasonable indicator of possible target regions. To
further suppress the distractions from the background while
capturing the potential target regions to the greatest extent,
we perform a dilation operation on Mpred and use the dilated
Mpred to mask out the background pixels in the similarity
map, yielding the final complementary attention map.
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The predicted mask and complementary attention map
are respectively sent to two different curriculum branches
for learning. The candidate inactivation masks of the two
branches are finally combined via a learnable parameter β
to deliver the final inactivation map Miac as follows:

Miac = β ⊙Mpred
c + (1− β)⊙Mattn

c , (3)

where Mpred
c and Mattn

c represent the candidate inactivation
masks from the predicted mask and complementary attention
map curriculum branches, respectively. By adaptively fusing
target regions from the above two complementary kinds of
inaccurate masks, the final inactivation map Miac provides
more comprehensive guidance for the subsequent target in-
activation. Thanks to the dual-curriculum learning scheme,
our model gains considerable tolerance to inaccurate masks,
and this is the key to achieving reliable one-shot inpainting.

Losses for Curricular-Inactivation Inpainting. The
curricular target inactivation module can be integrated into
arbitrary video inpainting backbones and optimized simul-
taneously by the supervision signals from the backbones.
Taking the FuseFormer [22] as an example, two losses are
applied on the inpainted videos for optimizing the entire
curricular-inactivation inpainting framework. Specifically, a
reconstruction loss Lrec is used to ensure the content of the
inpainted video Ŷ are consistent with the ground truth video
Y , which can be formulated as a L1 loss:

Lrec =
∥∥∥Y − Ŷ

∥∥∥
1
. (4)

To guarantee the visual realism and temporal consistency
of the inpainted video, a temporal PatchGAN discrimina-
tor [21] is adopted to provide the adversarial supervision:

Ladv = Ex∼PY
[logD(x)]

+ Ez∼PŶ
[log(1−D(z))] ,

(5)

where PY and PŶ denote the distributions of real and in-
painted videos, respectively.

The total loss for optimizing the network is as follows:

Linpainting = λrec · Lrec + λadv · Ladv, (6)

where λrec and λadv are weighting parameters to balance
the two losses, which are set to 1 and 0.01, respectively.

3.3. Online Residue Removal

Although the curricular inactivation mechanism enables
considerable tolerance to inaccurate masks and greatly im-
proves the inpainting performance, there may still exist par-
tial pixels unsuccessfully inpainted due to the imperfect pre-
diction of the inactivation map. To alleviate such inpainted
residues and elevate inpainting performance, we present an
online residue removal scheme to actively detect and remove
them iteratively during the testing phase.

Residue Detection. To remove the residues, we propose
to first detect them by modifying an offline-trained visual ob-
ject tracking model SiamMask [37] as the residue detection
network, which compares a template image and a (larger)
search image to yield a dense response map. In particular,
considering the residues mainly reside inside/around the tar-
get regions, we perform a w × h crop centered on the target
object of the first frame X1 and a larger (2w × 2h) crop
centered on the target region of the t-th inpainted frame Ŷt to
avoid the interference from the background. Here, w and h
denote the width and height of the minimum bounding rect-
angle of the target object/region. The two cropped patches
are then resized to 127 × 127 and 255 × 255 respectively,
which are later sent to the same feature extractor fθ, yielding
two feature maps. Finally, the cross-correlation map between
the two feature maps is computed as follows:

Mcorr = fθ(X
crop
1 )∗fθ(Ŷ crop

t ), (7)

where Xcrop
1 and Ŷ crop

t are the cropped target regions of X1

and Ŷt, respectively. ∗ denotes the cross-correlation operator.
Mcorr is the obtained cross-correlation map, which holds
the similarities between the target features in the first frame
fθ(X

crop
1 ) with each spatial element of the target features

in the t-th inpainted frame fθ(Ŷ
crop
t ). The cross-correlation

map is then sent to the decoder to deliver the final residue
response map Mres. The residue response map exhibits
higher responses in the residue artifacts pixels, which is a
good guide for the subsequent residue removal.

Residue Removal. With the residues detected, we then
propose two simple yet effective losses to fine-tune the
SVOS network for encouraging more accurate predicted
target masks, which can effectively suppress the undesired
residues. Specifically, considering that the target in the first
frame shares high semantic similarity with the targets in
the remaining frames, we apply a contextual loss [24] be-
tween the cropped target object in the first frame Xcrop

1 and
the cropped predicted target region of the t-th frame Xpred

t .
The contextual loss aims to maximize the feature similarity
between the targets from two frames in terms of the local
semantics and global context, which is computed as follows:

Lcx = −
T∑

t=2

(logCX(Φ(Xcrop
1 ), Φ(Xpred

t ))), (8)

where CX represents cosine similarity computation between
the context features Φ (·) extracted from the “conv3 2” layer
of a pretrained VGG-19 [33]. By encouraging higher feature
similarity between the groud truth target in the first frame
and the predicted targets in the current frames, the contextual
loss urges the SVOS network to predict more accurate target
masks, thus relieving the inpainting residues.

Moreover, we also propose a residue loss to explicitly
alleviate the inpainting residues by minimizing the sum of
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Figure 5: Qualitative comparison of different traditional
backbones integrated with our framework on YouTube-VOS.
Our framework effectively grants the traditional models con-
siderable robustness to inaccurate target masks, leading to
error-tolerant and convincing inpainting.

all the pixel values in the residue response map:

Lres =

W∑
i=1

H∑
j=1

Mres(i, j). (9)

With the residue loss, the SVOS network produces more
complete masks to ensure fewer target pixels remain outside
the predicted masks. This further suppresses the residues.

In summary, the total loss for the online residue removal
is a weighted sum of two losses:

Lremoval = λcx · Lcx + λres · Lres, (10)

where λcx and λres are weighting parameters for loss terms,
which are set to 0.1 and 1, respectively.

4. Experiments
4.1. Settings

Implementation details. To train the curricular inacti-
vation framework, we choose a frozen pretrained STCN [8]
as our SVOS network for target prediction. Following pre-
vious works [21, 22, 44, 39], we first pretrain the inpainting
backbone with random masks on the training set of YouTube-
VOS [41] for 150 epochs, ensuring initial inpainting capa-
bility. Next, we plug the curricular inactivation framework
into the initialized backbone and train the entire network
with our synthetic data for another 30 epochs. To mitigate
the learning difficulty and achieve better convergence, n1 of
both curriculum branches are empirically set to 5, n2 to 15
and 20 for the predicted mask branch and the complemen-
tary attention map branch, respectively. The learning rate is
initialized as 2e-5 and decayed by 0.1 every 20 epochs.

During the online residue removal phase, we use a mod-
ified video object tracking model SiamMask [37] as the
residue detection network and train it with our synthetic
residue video sequences for 80k iterations. Then we freeze
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Figure 6: Examples of foreground/background images and
their corresponding synthesized images for data synthesis.

Table 1: Quantitative comparison on the synthetic dataset.

Methods Local Global
PSNR↑ SSIM↑ VFID↓ PSNR↑ SSIM↑ VFID↓

VINet [16] 21.30 0.600 0.966 29.25 0.958 0.221
CAP [19] 24.81 0.749 0.917 31.21 0.972 0.172

LGTSM [5] 26.79 0.838 0.820 32.06 0.977 0.137
STTN [44] 26.02 0.791 0.839 35.13 0.986 0.120
IIVI* [28] 27.82 0.843 0.743 34.31 0.986 0.125
IIVI [28] 19.26 0.541 1.168 28.65 0.941 0.455

DSTT [23] 26.34 0.811 0.863 35.37 0.987 0.125
DSTT+Ours 27.48 0.851 0.826 36.11 0.989 0.116

FuseFormer [22] 27.21 0.842 0.838 35.93 0.989 0.107
FuseFormer+Ours 28.26 0.870 0.777 36.52 0.990 0.096

E2FGVI [21] 28.11 0.865 0.764 36.45 0.990 0.089
E2FGVI+Ours 29.01 0.888 0.719 36.84 0.991 0.084

* IIVI directly uses the masks predicted by STCN [8] as target guidance.

the inpainting network and the residue detection network,
and fine-tune the SVOS network for 2 epochs on the input
testing video with a learning rate of 1e-6. All the above
networks are optimized by the Adam optimizer [17].

Datasets. Since there is no publicly available dataset for
our setting, we synthesize the training/testing data from
the existing datasets for video object segmentation, i.e.,
YouTube-VOS [41], OVID [30], and DAVIS [29]. YouTube-
VOS/OVID contains 3417/604, 474/140, and 508/154 videos
used for training, validation, and testing, respectively.
DAVIS is composed of 150 high-quality videos. Specifically,
our training set begins by filtering out videos in YouTube-
VOS where the annotated objects are extremely small or
have brief appearances. We then randomly resize targets that
occupy more than half of the image size and insert them into
randomly chosen background video sequences. This process
allows us to synthesize a total of 3417 training videos for
experimentation. As for testing, we randomly select 90 fore-
ground videos from OVID and paste them into 90 different
background videos from DAVIS. Finally, we have 90 syn-
thetic videos for quantitative evaluations. We also use 508
and 30 videos from the testing sets of YouTube-VOS and
DAVIS respectively for qualitative evaluations. In Fig. 6, we
showcase several examples of foreground/background im-
ages from the YouTube-VOS dataset and their corresponding
synthesized images.
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Figure 7: User study results. Our method significantly out-
performs the other methods by producing more faithful and
temporally consistent results.

Metrics. For quantitative evaluations, we consider three
metrics including structure similarity measure (SSIM), peak
signal-to-noise ratio (PSNR), and video-based Frechet incep-
tion distance (VFID). SSIM and PSNR are used for assessing
the quality of overall reconstruction. VFID measures the
spatial-temporal consistency and perceptual quality of the
inpainting results. Additionally, we also measure the mean
of region similarity and the contour accuracy J&F between
the predicted masks and the corresponding ground truths to
evaluate the mask prediction quality of the SVOS network
in the ablation study.

4.2. Comparison with Existing Methods

Since very few existing works have explored the one-shot
video inpainting problem, we compare our method to the
one and only open-source one-shot video inpainting method,
IIVI [28]. Furthermore, we also directly concatenate the
state-of-the-art SVOS model STCN [8] with several state-of-
the-art fully supervised video inpainting methods for compar-
ison in the one-shot setting, including VInet [16], CAP [19],
LGTSM [5], STTN [44], DSTT [23], FuseFormer [22], and
E2FGVI [21]. Specifically, we first use STCN to predict
target mask of each frame in the videos except for the first
frame, and then feed the predicted masks to traditional meth-
ods as target guidance. For a fair comparison, these predicted
masks also undergo dilation operations before sending to
the inpainting models following [44, 23, 22, 21]. There-
fore, all the above compared methods in our experiments are
evaluated in the same one-shot setting as ours.

Qualitative comparison. We first compare our method
with four representative methods qualitatively. Here, we
choose E2FGVI [21] as the backbone of our method. Fig. 4
illustrates the qualitative results of different methods. We
can see that all the traditional methods (Fig. 4(c)-(e)) suffer
from severe residue artifacts. The reason behind this is that
these methods are all trained with a hard masking mechanism
on the ground truth masks, which gives rise to unsatisfac-
tory results when the predicted target masks are inaccurate
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Figure 8: Qualitative comparison of ablations on the YouTube-VOS dataset. Best viewed with zooming in digital version.

during testing. Even worse, the residues of an inpainted
frame may propagate to the subsequent frames, which fur-
ther aggravates the residues issue. In addition, although
IIVI [28] supports one-shot setting, it relies on a mask prop-
agation mechanism that is sensitive to non-rigid deformation
of the target, and thus it fails to capture the targets across
frames with deformations (Fig. 4(h)). Even we modify IIVI
to directly use the predicted masks by STCN [8] as a more
accurate target guidance, the results are still not satisfactory
(Fig. 4(f)). Unlike all the competitors, our method can create
faithful and temporal consistent results due to the superior
tolerance to inaccurate masks and delicate residue removal
capability. Since our framework can be easily plugged into
the existing video inpainting models. We also depict the
qualitative results of different backbones integrated with our
framework in Fig. 5. As can be observed, our framework ren-
ders consistent improvements in the performances of all the
compared backbones. This demonstrates the huge potential
of our method for practical applications.

Quantitative comparison. We also conduct a quantita-
tive comparison with seven methods and report the results
of our method based on different representative backbones,
including DSTT [23], FuseFormer [22], and E2FGVI [21].
In addition to comparing global metrics on the entire regions
of images, we also report the local metrics by only comput-
ing the corresponding statistics of the target regions. The
local metrics focus on measuring the inpainting quality of
the target regions only, which facilitates a more intuitive
comparison of the inpainting quality of different methods.
As shown in Table 1, our method can effectively convert the
traditional video inpainting methods to the one-shot setting,
such that the predicted inaccurate masks can be properly
tackled to achieve compelling inpainting results. This con-
tributes to consistent improvements in all three quantitative
metrics. The advantages of our method become more appar-
ent on the local metrics, indicating the effectiveness of our
method in producing plausible content in the target regions.

User study. We also conduct a user study to demonstrate
the superiority of our method. Here, E2FGVI [21] is chosen
as our backbone. We select CAPnet [19], FuseFormer [22],
and E2FGVI [21] for comparison. In total, 20 real videos
are selected for evaluation and 30 volunteers participate in

Table 2: Ablations on the synthetic dataset. Inference time
is measured on a 36-frame video with resolution 432 × 240.
Online components are underlined.

Methods Local Inference
Time (s)PSNR↑ SSIM↑ VFID↓ J&F↑

Baseline 28.11 0.865 0.764 94.84 9.18
w/ T. I. 28.77 0.879 0.755 94.84 9.22

w/ T. I. + D. C. 28.89 0.883 0.730 94.84 9.22
w/ T. I. + D. C. + C. L. 28.96 0.886 0.722 95.19 37.55

w/ T. I. + D. C. + C. L. + R. L. (Ours) 29.01 0.888 0.719 95.32 40.67

the study. For each selected video, the volunteers are asked
to choose the one with the best inpainting quality and tem-
poral coherence among the results from different methods.
The results are reported in Fig. 7, demonstrating the signif-
icant advantages of our method over the other methods in
performing faithful and temporal-consistent inpainting.

4.3. Ablation Study

In this section, we present an in-depth analysis of the
effectiveness of our proposals, including the target inactiva-
tion module, dual-curriculum learning scheme, and residue
removal module. We also report the time statistics of each
model variant. E2FGVI [21] is used as our backbone.

Effectiveness of Target Inactivation. To verify the ef-
ficacy of the target inactivation, we compare the inpainting
results of the backbone (Baseline) and the backbone inte-
grated with our target inactivation mechanism (w/ T. I.). As
shown in Fig. 8(c), the results of the Baseline contain notice-
able artifacts since it directly applies a hard predicted target
mask to mask out the corresponding region of the input im-
age, which inevitably ruins the meaningful image content
and degrades the inpainting quality (Table 2). By contrast,
our target inactivation mechanism allows better exploitation
of the rich information in the target regions, by selectively
inactivating the target responses in the latent space. This
effectively benefits the overall learning and improves the
inpainting results (Fig. 8(d) and Table 2).

Effectiveness of Dual-Curriculum Learning. We also
explore the effectiveness of the dual-curriculum learning
scheme (D. C.) by converting the target inactivation mech-
anism to a curricular one. As observed in Fig. 8(e), some
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Figure 9: Results on long-form (973 frames) and high-
resolution (1920 × 1080) videos. The first column denotes
the first frames & GT masks and the rest columns denote the
inpainted results. The red boxes represent the current frames
& predicted masks.

undesired pixels outside the incompletely predicted target
mask (e.g., the legs of the spider in the first row) can be
largely erased when the D. C. is adopted. This is because
the D. C. effectively prevents the inpainting network from
overly relying on the ground truth masks. This grants the
model the capability to yield reasonable results even with
erroneously predicted target masks, which is vital for reli-
able one-shot inpainting. Table 2 also verifies quantitative
improvements contributed by the D. C., which are consistent
with our observations in the qualitative results.

Effectiveness of Online Residue Removal. To investi-
gate the significance of the online residue removal scheme,
we analyze the gains brought by the contextual loss (C. L.)
and the residue loss (R. L.) for fine-tuning the SVOS network
during the inference phase. As can be seen in Fig. 8(f), the
residues can be alleviated to some extent by adding the C. L.,
compared to the variant with no residue removal (Fig. 8(e)).
After further incorporating the R. L., our full model finally
produces visually appealing results with artifacts effectively
removed (Fig. 8(g)). Table 2 also verifies both C. L. and
R. L. boost the inpainting performance in terms of both in-
painting quality and temporal coherence. It is also worth
noting that the J&F metric gains prominent improvements
(from 94.84 to 95.32) by adopting the two losses. This in-
dicates that both losses can indeed improve prediction of
target masks by the SVOS network, contributing to the final
inpainting performance.

Time Statistics. Here we analyze the inference time of
different variants of our method. As reported in Table 2,
compared to the baseline, incorporating target inactivation
or dual-curriculum learning incurs only negligible extra time
costs. Due to the testing-time optimization, there is a notice-
able increase in inference time when involving the online
residue removal. However, our method can still bring signifi-
cant performance improvements and achieve state-of-the-art
even if the online reside removal is omitted.
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Figure 10: Failure cases of our framework.

4.4. Applicability Analysis of CIRI

To further verify the applicability of our CIRI to different
scenarios, we also analyze its performance on long-form and
high-resolution videos, respectively. As shown in Fig. 9(a),
our framework can deliver consistently satisfactory results on
long-form videos. Moreover, benefiting from the plug-and-
plug design, our method also performs fairly well on high-
resolution videos by simply equipping with a high-resolution
backbone network, e.g., E2FGVI-HQ [21](Fig. 9(b)). All
the above results demonstrate the superior scalability and
applicability of our method.

5. Limitations
Although our framework offers a simple yet effective

solution to one-shot video inpainting problem. It may fail
when the appearance of the target changes drastically across
frames. As observed in Fig. 10, both the monkey and the
pilot exhibit substantial appearance changes from the initial
frame to the current frame. Consequently, the SVOS model
produces inadequate segmentation masks, leading to incor-
rect target inactivation and ultimately resulting in inferior
inpainting results.

6. Conclusion
In this paper, we propose a curricular inactivation frame-

work for residue-aware one-shot video inpainting. Specifi-
cally, a curricular target inactivation module is first proposed
to enhance the tolerance of the model to inaccurate target
masks. Furthermore, we present an online residue removal
scheme to effectively erase the residue artifacts during the
testing phase. Extensive experiments demonstrate that our
method can be readily plugged into the existing traditional in-
painting methods to support one-shot setting with significant
performance improvements.
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