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Abstract

We propose a distributed bundle adjustment (DBA)
method using the exact Levenberg-Marquardt (LM) algo-
rithm for super large-scale datasets. Most of the existing
methods partition the global map to small ones and conduct
bundle adjustment in the submaps. In order to fit the par-
allel framework, they use approximate solutions instead of
the LM algorithm. However, those methods often give sub-
optimal results. Different from them, we utilize the exact LM
algorithm to conduct global bundle adjustment where the
formation of the reduced camera system (RCS) is actually
parallelized and executed in a distributed way. To store the
large RCS, we compress it with a block-based sparse matrix
compression format (BSMC), which fully exploits its block
feature. The BSMC format also enables the distributed stor-
age and updating of the global RCS. The proposed method
is extensively evaluated and compared with the state-of-the-
art pipelines using both synthetic and real datasets. Prelim-
inary results demonstrate the efficient memory usage and
vast scalability of the proposed method compared with the
baselines. For the first time, we conducted parallel bundle
adjustment using LM algorithm on a real datasets with 1.18
million images and a synthetic dataset with 10 million im-
ages (about 500 times that of the state-of-the-art LM-based
BA) on a distributed computing system.

1. Introduction

Bundle adjustment (BA) is a significant step for 3D re-
construction in both computer vision and photogrammetry
communities. Its main objective is to recover the camera
poses as well as the 3D points by minimizing the square sum
of the reprojection errors. This nonlinear optimization prob-
lem is an ancient subject, having been studied for decades.
Classic solutions such as Steepest descent, Gauss-Newton,
and Levenberg-Marquardt (LM) [16, 19] have been pro-
posed and widely applied, and plenty of libraries have been
open sourced, such as Ceres [26], g2o [11], SBA [17], PBA
[27], MegBA [22], and so on. Among them, the LM al-
gorithm is most widely supported. In a bundle adjustment,
the nonlinear system is firstly linearized at an initial guess,
which is a given prior, and then solved via direct inversion,
Cholesky decomposition, or preconditioned conjugate gra-
dient (PCG) [5, 6].

The Hessian matrix in a linear system is usually reduced
by the Shur complement trick, forming a Reduced Camera
System (RCS) that is much smaller than the Hessian. As the
number of images increases, even the memory requirement
for an RCS is a challenging issue. The formation, storage
and inversion of the RCS gradually become the bottleneck
of the bundle adjustment for large-scale datasets. Some
scholars argue that BA is indivisible and hard to fit for paral-
lel computing [30]. To solve this problem, they have turned
to finding approximate methods that are more suitable for
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Figure 1. The sparse point cloud of a real dataset with 1.18 million images processed using the proposed method. The color from blue to
red represents the height from low to high. The white rectangles on the left image are enlarged and shown on the right side

parallel computing [25, 8, 20, 28, 31, 7, 30, 13]. On the con-
trary, other works still utilize the LM algorithm, and attempt
to design special parallel frameworks for it [27, 18, 22]. The
former studies often give sub-optimal results, while the lat-
ter methods, despite running fast, are still limited to median-
scale datasets (about 10k images).

2. Related works
For large-scale datasets at the city- or even world-level,

some works just register images and give an approximate
reconstruction [9, 15, 14, 24]. Heinly et al. [14] reported
a method capable of processing a large dataset with 100
million images, and more than one million images were
reconstructed. But the global bundle adjustment is never
conducted due to the large memory requirement and heavy
computation complexity. Some works try to optimize the
global map, the most of them apply a divide-and-conquer
strategy, partitioning the global map into submaps and then
solve the submaps in parallel. The connection between
submaps is either alternately optimized with submaps [21],
or solved with alternating direction method of multipli-
ers (ADMM) [8, 20, 28, 7, 30], global motion averaging
[10, 12, 31]and domain decompositions[25, 13]. These
methods, however, often give sub-optimal results because
they are only approximations to the LM algorithm. As far
as we know, the largest dataset processed by strict LM al-
gorithm only includes about 20K images [22].

Another line of methods apply the traditional LM algo-
rithm while using high-performance GPU hardware to ac-
celerate the process. Agarwal et al. [3, 1, 2] first introduced
a framework suitable for bundle adjustment with large-scale
datasets. The framework is then implemented and acceler-
ated on GPU hardware [27, 18]. More recently, Ren et al.
[22]proposed a GPU-based distributed BA library, MegBA,
and largely improved the efficiency of bundle adjustment
using multiple GPUs. However, these methods consume a
large amount of CPU/GPU memory, which limits their ap-

plication for larger datasets.
In this paper, to maintain high accuracy, we also utilize

the LM algorithm. Different from the existing distributed
methods, which partition the global map to small ones and
conduct bundle adjustment in the submaps, we only per-
form a global bundle adjustment where the formation of the
global RCS is actually parallelized and executed in a dis-
tributed fasion. The 3D points are firstly partitioned to dif-
ferent groups, each of which is submitted to a computing
node along with the involved camera poses, and then sub-
RCSs are generated at computing nodes. Finally, the global
RCS is aggregated by summing all these sub-RCSs.

To store the large RCS, we compress it with a block-
based sparse matrix compression format (BSMC) [29],
which fully exploits the block feature of the RCS and sub-
sequently achieves better performance than the widely used
Compressed Sparse Row (CSR) format [23, 4] on both the
compression ratio and accessing efficiency. Once the global
RCS is formed, it is then solved by PCG, which is also
implemented in parallel (multi-threads), and finally the un-
knowns are calculated and updated to all computing nodes
for the next iteration.

The contributions of this work are as follows:
(1) We propose a distributed method to form the global

RCS, which largely improves the efficiency and scalability.
(2) A block-based sparse compression (BSMC) format

is applied to store the RCS and sub-RCS, and the compres-
sion ratio and the accessing efficiency of the compressed
structure are largely improved.

(3) The proposed pipeline is compared with state-of-the-
art methods. Numerous experimental results demonstrate
the superiority of our proposed method over the baselines
regarding memory usage and scalability.

(4) For the first time, we conduct parallel bundle adjust-
ment using the exact LM algorithm on super-large datasets
with up to 10 million images (500 times that of the state-of-
the-art).
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Figure 2. The pipeline of the proposed method. First, tie points are divided into groups and submitted to computing nodes along with
the initial camera poses; then the sub-RCSs are generated and stored in BSMC format at the computing nodes; after that, the global RCS
is obtained by aggregating all the sub-RCSs and then solved in parallel using PCG on the main node; finally, the camera unknowns are
computed on the main node and updated on the computing nodes for the next iteration until the convergency is achieved.

3. Problem formation
3.1. The LM algorithm

Bundle adjustment optimizes the camera poses as well
as the 3D points by minimizing the square sum of the re-
projection errors, and has been widely studied for decades.
First, we begin with the normal equation as follows.

(JTJ+ λDTD)∆x = −JTe (1)

Where J is the Jacobian matrix, the damping matrix D is
usually a diagonal matrix extracted from the matrix JTJ,
and the non-negative coefficient λ controls the damping
strength. Vector ∆x is the updating step of unknowns, and
e is the vector of reprojection errors.

The unknowns can be partitioned into camera part and
ground-point part such that ∆x = [∆xc ∆xp]. Accord-
ingly, the partitioning can be also performed to the Jacobian
J = [Jc Jp], and damping matrix D = [Dc Dp] where
the subscripts c and p denote the camera part and ground-
point part, respectively. Then, Equation (1) can be rewritten
as follows [

U W
WT U

] [
∆xc

∆xp

]
=

[
lc
lp

]
(2)

Where U = JT
c Jc+λDT

c Dc,V = JT
p Jp+λDT

p Dp,W =

JT
c Jp, lc = −JT

c e, and lp = −JT
p e.

Matrices U and V are block diagonal, and matrix W is a
block-based sparse matrix. A block-wise Gauss elimination
method is usually applied to eliminate the ground-point un-
knowns. Then, the number of unknowns in the adjustment
is largely decreased because the number of cameras is usu-
ally much smaller than the number of ground points. After
the elimination of ground points, we obtain:

(U−WV−1WT )∆xc = lc −WV−1lp (3)

V∆xp = lp −WT∆xc (4)

The camera unknown vector ∆xc is first solved accord-
ing to Equation (3), and then the ground-point unknown
vector ∆xp can be substituted according to Equation (4)
or triangulated by camera poses. This is the so-called Schur
complement trick. Equation (3) is the reduced camera sys-
tem (RCS). In the following context, we refer the RCS to
the matrix U−WV−1WT for simplicity.

3.2. Preconditioned conjugate gradient

The unknowns, although largely reduced by Shur com-
plement, are still too much for direct inversion or Cholesky
decomposition of the RCS. The conjugate gradient (CG)
method is preferred. It is an iterative method to solve lin-
ear systems, whereby the direct inversion of the large ma-
trix is avoided and only a matrix-vector product needs to
be iteratively computed. In Equation (3), let R = U −
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WV−1WT ,y = ∆xc, and b = lc − WV−1lp, and then
it can be rewritten as follows

Ry = b (5)

The above equation can be solved by CG. In general, a
preconditioner M−1 is applied to decrease the CG iteration
times. The main task is now shifted to solving Equation (6).

M−1Ry = M−1b (6)

This is the so-called preconditioned conjugate gradient
(PCG). In this paper, a block diagonal preconditioner [3] is
selected to conduct PCG. The detailed procedures for PCG
can be found in numerous references; therefore, we omitted
them here. The most time-consuming step in the PCG is
a matrix-vector product. The others are only vector-vector
products. Thus the parallel manipulation in Section 6.2 is
only applied for the matrix-vector product

4. Block-based sparse matrix compression

The structure of an RCS is shown in Figure 4 (top). The
non-zero blocks are determined by common points between
cameras. If there are common points between camera i and
j, then the block (i, j) is a non-zero block that consists of
ci × cj elements, where ci and cj are the number of un-
knowns for camera i and j, respectively. Generally, the RCS
is sparse; thus, it can be compressed by abandoning the zero
elements. To this end, most of methods and libraries adopt
the Compressed Sparse Row (CSR), which is a widely used
sparse matrix compression format [23, 4].

The structure of CSR format consists of three arrays, the
first array stores the non-zero elements, the second array
stores the corresponding column identities, and the third
stores the start column identities for each row (Figure 3
(bottom)). The sizes of the first and second arrays are the
number of non-zero elements in the matrix, and the size of
the third array is the row number of the matrix. However,
this format doesn’t take the advantage of the RCS’s block
characteristic (Figure 4 (top)). The Block-based Sparse Ma-
trix Compression (BSMC) format is more suitable [29]. It
takes the block as the minimal storage unit. Only the non-
zero blocks in the upper triangle part, as well as their po-
sitions (column and row IDs) and sizes (width and height),
are stored (Figure 4 (bottom)).

The BSMC format is more efficient than the CSR format
as demonstrated in Figrue 5 and Table 1. A good compres-
sion format should meet two requirements: the compression
rate (the ratio of the compressed size and full size of the
sparse matrix) should be as small as possible, and the ac-
cessing efficiency (decompression speed) should be as fast
as possible. In this section, the BSMC is fully compared
with the CSR format regarding these criteria.

Figure 3. A full matrix (top) and the corresponding compressed
structure (bottom) with CSR. Find more details in the text.

Figure 4. The structure of an RCS with ten cameras in full matrix
(top) and in BSMC (bottom). Find more details in the text.

4.1. Compression rate

The compression rate is defined as the ratio of the com-
pressed size to the full size. The smaller the compression
ratio is, the better the compressed format performs. Given a
sparse matrix with n cameras, each of which contains c un-
knowns, and the sparsity (the ratio of the non-zero blocks
and the total blocks) is α, the total number of non-zero
blocks is αn2; thus, the number of non-zero blocks in the
upper triangle part is αn2 − (αn2 − n)/2 = (αn2 + n)/2.
Generally, the data type for elements is double (8 bytes),
and for the identities it is integer (4 bytes). Furthermore,
the BSMC only stores the upper triangle part of the RCS.
As such, the memory requirements of different compression
formats can be calculated as follows:

YC = αn2 ∗ c2 ∗ 8 + αn2 ∗ c2 ∗ 4 + n ∗ c ∗ 4 (7)

YB = (αn2+n)/2∗c2∗8+(αn2+n)/2∗3∗4+n∗4 (8)

YC/YB = (6αnc2 + 2c)/(2αnc2 + 2c2 + 3α+ 5) (9)

Where YC and YB are the memory requirement for CSR
and BSMC, respectively.

To compare the memory requirements of the two for-
mats, the ratio of YC and YB is computed by Equation (9).
To be specific, the number of camera parameters c is set to
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Figure 5. The relationship between the ratio of CSR to BSMC and
the number of cameras for different sparsity a.

Format First Operation Second Operation
CSR 1 or log2 nc

∑c
i=0 log2 csi

BSMC 1 or log2 c log2 si

Table 1. Accessing efficiency of the BSMC and CSR formats

11 (6 for exterior and 5 for interior). We plotted the relation-
ship between the ratio and the number of cameras ranging
from 10k to 200k with different sparsities (Figure 5). As can
be seen, the BSMC format is 1.5 to 3 times more efficient
than the CSR format, especially for large-scale datasets.

4.2. Accessing efficiency

To evaluate the accessing efficiency of a compression
format, we consider two operations. (1) Given an element
or a block in the compressed structure, find its column and
row identities in the full matrix; (2) Given the column and
row identities of an element or a block in the full matrix,
find the corresponding block in the compressed structure.

Table 1 shows the searching times of these two opera-
tions for the BSMC and CSR formats. Readers can find
more details in the Supplementary Material. As shown in
Table 1, if the elements or blocks in the compressed struc-
ture are accessed continuously, the first operation will be
immediately performed for the two formats. In the real
case, for matrix-vector product, the elements or blocks in
the compressed structure are continuously accessed. How-
ever, for matrix updating or aggregation, the second op-
eration is frequently applied. The accessing efficiency of
BSMC for both the first and second operations is better than
the CSR; thus, it’s strongly recommended for the compres-
sion of block-based sparse matrices, such as the Hessian and
RCS.

5. Formation of the RCS
The formation of the RCS is a major step in BA, domi-

nating the most part of the computation complexity. In this
section, we examine the details of the formation of an RCS
and try to parallelize it. We find that the formation of the

Figure 6. The formation of the RCS. A global RCS (left), con-
sisting of 5 cameras, is aggregated by sub-RCSs generated by all
3D points. The right side shows two sub-RCSs. The middle is
generated by a 3D point seen by camera 1 and 3, and the right is
genrated by a 3D point seen by camera 2 and 3, respectively.

RCS can be performed point by point as shown in Figure
8. The proof of this is omitted here due to the length lim-
itations. Readers can find the details in the Supplementary
Materials.

The formation of an RCS can be summarized as follows:
(1) For each 3D point k, compute its Jacobian and Hes-

sian, and then conduct the Shur complement to obtain a sub-
RCS;

(2) Update the RCS with the sub-RCS;
(3) Stop until all the 3D points are completed.
According to the above procedures, the formation of the

RCS can be divided into parallel tasks, with each consisting
of a group of 3D points. Those tasks are independent to
each other; therefore, they can be executed in a distributed
way.

6. Parallelization
The time-consuming steps in BA include the formation

of the RCS, which dominates most part of the computa-
tional complexity, the computation of PCG and the trian-
gulation of 3D points. In this paper, the formation of the
RCS is executed in a distributed way, and the computation
of PCG and the triangulation of 3D points are both accel-
erated by multi-threading. However, the parallelization of
triangulating 3D points is omitted here because it’s simple.

6.1. Parallelizing the formation of the RCS

To parallelize the formation of the RCS, we first divide
the 3D points to groups, with each submitted to a computing
node along with the involved camera poses; and then gen-
erate sub-RCSs at computing nodes. Finally, we aggregate
all the sub-RCSs to form a global RCS as shown in Figure
2. To be simple, we naively divide 3D points to groups with
the same point number in this paper.

Note that, the sub-RCSs are first aggregated at the com-
puting nodes to form a large sub-RCS, and then the large
sub-RCS are aggregated to form a global RCS. We refer the
large sub-RCS to sub-RCS for simplicity in the remainder
of this paper. The sub-RCSs are directly stored in the main
data center, which is connected with all computer nodes.
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Figure 7. Multiplication of a matrix in BSMC format to a vector.
Find details in the text.

The camera identities are reordered in the sub-RCS for effi-
cient memory usage because they only involve a small part
of the whole map as shown in Figure 2. The sub-RCSs and
global RCS are all stored in BSMC structure. The column
and row IDs of the blocks in the global RCS are stored in
the second array of the BSMC structure for aggregating pur-
pose as shown in Figure 4 (bottom). In the meantime, an
extra array is added to store the local column and row IDs
in the sub-RCS to update the sub-RCSs. The formation of
the sub-RCS on each computing node is further parallelized
by multi-threading, making the process even more efficient.

6.2. Parallelizing the PCG

Once the global RCS has been generated, the PCG algo-
rithm is then applied to solve it. The most time-consuming
step in the PCG is the multiplication of the RCS to the di-
rection vector. Note that the RCS is stored in BSMC format.
So, we first investigate the direct multiplication of a vector
by a matrix in BSMC format. As demonstrated in Figure
4 (bottom) and Figure 7, the blocks are stored in the first
array of the BSMC structure. We can successively read out
the blocks and their column IDs in the full matrix, finding
the row IDs in the full matrix by row counting according
to the third array. The corresponding positions in the mul-
tiplier and result vectors can be determined by the block’s
column and row IDs in the full matrix, respectively. For
each block, multiply it to the corresponding multiplier vec-
tor (green rectangle in Figure 7), and a component (red rect-
angle in Figure 7) of the result vector is generated. Finally,
the result vector is obtained by aggregating all its compo-
nents.

The multiplication of a BSMC-format matrix to a vector
can be divided into the multiplication of blocks to the cor-
responding vectors as shown in Figure 7. Therefore, it is
simple to parallelize this type of operation: First, divide the
blocks into a number of groups, then submit them to multi-
ple threads along with the corresponding multiplier vector,
and finally collect all the outcome vectors and aggregate

them to obtain the result vector.

7. Experiments
The proposed method was implemented using C++ lan-

guage. To setup the parallel environment, we used ten inter-
connected computers to form a Local Area Network (LAN).
The main program was deployed on one of the comput-
ers called the main node, and the parallel tasks were exe-
cuted on other computers called computing nodes. All the
data were stored in the main data center, which was con-
nected with all nodes. The communication speed between
nodes and the data center can achieve 1GB/s. The com-
puting nodes were equipped with Inter(R) Xeon(R) CPU
E5-1650 v3 @3.5GHz, 64GB RAM and Windows 10 Op-
erating System. The main node was equiped with the same
CPU and operating system, but a larger 128GB RAM. A
parallel task submission and management platform pro-
vided by Mirauge3D Technology Inc. was used for par-
allel task assignment. The whole pipeline is also inte-
grated in Mirauge3D, which is a commercial 3D reconstruc-
tion software available at www.mirauge3d.com. The
code for BSMC is available at https://github.com/
MozartZheng/DistributedBA, the public version of
the whole pipeline will also be released when it is ready.

The proposed method is compared with the state-of-the-
art bundle adjustment methods, such as Ceres [2], PBA [27],
DeepLM [13] and MegBA [22]. These methods’ experi-
mental results on the public datasets were directly extracted
from the papers of DeepLM and MegBA. To be as objective
as possible, we did’t use the result of DeepLM method in its
own paper; instead, we use the result provided by the paper
of MegBA.

7.1. Datasets

To fully evaluate the proposed method, we test it with
both synthetic and real datasets. Three public datasets, La-
dybug, Venice, and Final were used to test and compare
the proposed method with the state-of-the-art methods. The
large-scale datasets collected by UAVs were used to test the
scalability of the proposed method. The image numbers of
those datasets range from 21K to 1.18M. Other methods,
such as PBA, DeepLM, and MegBA were not tested with
these datasets because they ran out of GPU memory. For
Ceres, it encountered some kind of integer overflow error
for these large datasets.

Moreover, to further test the proposed method’s limit ca-
pacity, two synthetic datasets with 5 million and 10 million
images are generated. To maintain simplicity, we intention-
ally generated the synthetic datasets with sparse features
(about 300 features for each image) because the size of RCS
is independent of image features. Random errors subject to
normal distribution of (0.0, 1.0) pixels are added to these
synthetic datasets. The statistics of the datasets are listed in
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Dataset Images Cam. 3D pt. Obs. Spa.
Ladybug 1723 1723 0.16M 0.67M 0.040
Venice 1778 1778 0.99M 5.0M 0.082
Final 13682 13682 4.4M 29M 0.070
SW 21K 5 31M 166M 0.004
JLP 45K 5 44M 228M 0.002
YQC 46K 5 39M 254M 0.002
JZ 49K 5 41M 218M 0.001
XS 62K 95 55M 267M 0.001
DG 71K 5 87M 385M 9e-4
NM 85K 50 101M 638M 0.001
MCZ 86K 8 98M 588M 0.001
WQ 91K 60 93M 535M 8e-4
DaPu 133K 10 8M 61M 4e-4
HM 407K 35 352M 1790M 2e-4
AJH 442K 35 112M 1500M 3e-4
GDS 1.18M 114 1016M 5084M 8e-5
Syn1 5M 2 405M 2839M 3e-6
Syn2 10M 2 810M 5836M 1e-6

Table 2. The statistics of the datasets. The term Cam. represents
cameras, pt. represents points, Obs. represents observations, and
Spa. represents the sparsity.

Table 2. The sparsity is the ratio of non-zero blocks to to-
tal blocks in the RCS. The smaller the ratio, the sparser the
RCS. The sparsities of the public datasets are the largest,
possibly because of the large overlap. The real datasets are
sparser because they are regularly collected by UAVs.

7.2. Memory usage and run time

The memory requirements of a dataset are mainly de-
termined by the number of tie points (3D points and corre-
sponding image points) and the size of the RCS. For the pro-
posed method, the tie points were divided to groups, with
each submitted to a computing node. Suppose ten com-
puting nodes are applied, the memory requirement of the
proposed method for tie points are theoretically 1/10 that of
the serial method (such as Ceres). Meanwhile, the proposed
method uses the BSMC format to store the RCS, which is
1.5 to 3 times more efficient than other methods applying
the CSR format, as discussed in Section 4. The main node
uses the most memory compared with other nodes because
the global RCS is stored in the main node. Therefore, we
define the main node’s memory usage as that of the pro-
posed method.

To extensively evaluate the proposed method, we com-
pared its memory usage, run time and accuracy with base-
lines using the public datasets. The results are listed in Ta-
ble 4. As can be seen, the memory usage of the proposed
method is the lowest since tie points are divided and stored
in all nodes, and the memory-efficient format BSMC is ap-

Figure 8. The runtime with respect to various parameters.

Data Tie points subRCSs camera poses
Syn2 32 15 0.2

Table 3. Data transmission time for tie points (minutes), sub-
RCS(seconds), and camera poses (seconds) among the network
for the largest dataset Syn2

plied to store the RCS. The proposed method is faster than
Ceres but slower than the GPU-based methods, MegBA,
DeepLM, and PBA. MegBA runs fastest but requires multi-
ple GPUs, as well as a large amount of memory. DeepLM
is faster than PBA and its memory requirement is smaller;
however, it might provide sub-optimal results. Although the
GPU-based methods are faster than Ceres, they use almost
the same memory. Therefore, for larger datasets, MegBA,
DeepLM, and PBA all run out of memory. Owing to the
distributed computing manner and memory-efficient format
BSMC, the proposed method is superior to all the baselines
regarding memory usage.

The super-large UAV and synthetic datasets are used to
test the scalability of the proposed method. The memory us-
age, run time and accuracy are listed in Table 5. The mem-
ory requirements Mt and Mr are the theoretical memory
required by the tie points and global RCS, respectively. The
memory usage Mu is the actual memory consumption for
the main node. The table shows that the actual memory us-
age is much smaller than the memory requirement because
the tie points are stored in a distributed way, whereas the
main node only stores 1/10 of the tie points. For the largest
dataset with 10 million images and 5.8 billion observations,
the memory usage of the proposed method is only 67.48
GB, which is affordable for an advanced modern computer.

About the communication overhead, there are three types
of data need to be transferred among the nodes. First, the
tie points are transferred to different computing nodes be-
fore LM iteration. Second, for each iteration, the sub-RCSs
generated on the computing node should be transferred to
the main node. Third, the camera poses for all images gen-
erated on the main node should be transferred back to the
computing node for each iteration. As listed in Table 3, the
time of data transmission for the largest dataset Syn2 is ac-
tually negligible compared to the total runtime which is 7.72
hours.

We plotted the run time with respect to various parame-
ters (images, 3D points and observations) as shown in Fig-
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ure 8. The run time is affected by various factors, the im-
age, tie point and iteration numbers. For an instance, the run
time of the synthetic dataset with 5 million images is actu-
ally about 1/4 that of the real dataset GDS which includes
only 1.18 million images. The reasons could be the follow-
ing: First, the tie points of the synthetic dataset are actually
about half that of the GDS dataset as shown in Table 2; sec-
ond, the iteration number is also half that of the GDS. The
same result can be found in the real dataset DaPu, which
has more images but less tie points.

Figure 9. Sparse point cloud of the public datasets Ladybug,
Venice and Final using the proposed method. The points in Fi-
nal are all blue because there are some points far away from the
main structure.

Figure 10. Visualization of the real datasets processed using the
proposed method. From left to right, then top to bottom: SW, JLP,
YQC, JZ, XS, DG, NM, MCZ, WQ, and DaPu, respectively.

7.3. Accuracy and scalability

As shown in Table 4, The accuracy of the proposed
method is almost the same as the LM algorithm applied in
Ceres, which is expected because the proposed method uses
the exact LM algorithm. The difference is that the tasks of
forming the RCS and computing the PCG are executed in a
distributed way. MegBA achieves the best accuracy, which
is unexpected since it also applies the exact LM algorithm
and the difference is only that it is executed on GPU. The
possible reason could be the strict outlier elimination strat-
egy used in their method.

For the UAV datasets, the proposed method achieves
about 1.2 pixels for most of datasets, and sub-pixel accu-
racy for two datasets. The sparse point clouds of the pub-
lic datasets and the UAV datasets after bundle adjustment
with the proposed method are shown in Figure 9 and 10,
respectively. The proposed method successfully processed
the super-large datasets (Syn1 and Syn2), and the accura-
cies are reasonable according to the errors added in the syn-
thetic data, demonstrating the proposed method’s vast scal-
ability. To our own knowledge, datasets of this magnitude
have never been handled by other LM-based methods. The
proposed method overcomes the traditional LM algorithm’s
scalability bottleneck issue and relieves its limitations on
image numbers by exploiting distributed computing and a
memory-efficient compression format BSMC.

7.4. Ablation study for different parallel task as-
signments and node numbers

To investigate the efficiencies of different parallel task
assignments and node numbers, we conduct ablation study
on three datasets SW, DaPu and GDS using 2, 6 and 10
computing nodes, respectively. The GDS dataset is so large
that we only test it on 10 computing nodes. The results are
demonstrated in Figure 11. The parallel task number is nei-
ther the more the better, nor the fewer the better. For each
dataset, there is a best parallel task number which achieves
highest efficiency, but the best parallel task numbers vari-
ous from different datasets. The best parallel task assign-
ment scheme could be also related to the performance of
the computing nodes. Nonetheless, the efficiency variation
for different task assignment schemes is not big. However,
it is certain that more computing nodes provide higher effi-
ciency. The efficiency is generally linear to the number of
computing nodes.

8. Conclusions
We parallelized the LM algorithm for bundle adjustment,

which is thought to be indivisible. We found that the forma-
tion of the RCS can be divided by 3D points. So, the for-
mation of the RCS can be executed in a distributed way us-
ing multiple computing nodes. We also introduced a block-
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Dataset Ceres-CG PBA DeepLM MegBA Ours
M T Acc. M T Acc. M T Acc. M T Acc. M T Acc.

Ladybug 0.52 46.7 1.14 0.3 12.3 2.22 2.1 3.9 1.12 1.6 0.77 0.56 0.06 15.6 1.12
Venice 3.68 1992 0.66 - - - 6.2 24.4 0.66 13.6 11.9 0.33 0.27 69.7 0.67
Final 16.8 3897 1.59 11.9 340 3.0 14.89 149 1.50 89.7 22.6 0.75 4.93 906 1.24

Table 4. Memory M(GB), run time T(s), and accuracy Acc.(pixels) of different methods.

Data Mt Mr Mu Iter. T Acc.
SW 6.3 0.53 1.21 6 0.44 1.29
JLP 8.7 1.21 2.22 4 0.48 1.37
YQC 9.1 1.37 2.44 7 1.10 0.89
JZ 8.3 0.69 1.60 6 0.62 1.29
XS 10.5 0.91 2.06 6 0.66 1.05
DG 15.5 1.39 3.10 5 0.74 1.24
NM 23.0 2.46 5.04 6 2.72 1.22
MCZ 21.6 2.22 4.63 7 2.65 0.69
WQ 19.9 2.00 4.22 5 1.59 1.24
DaPu 2.1 1.81 2.23 6 0.23 1.45
HM 69 9.72 17.73 6 4.60 1.27
AJH 46.3 16.18 22.64 6 10.50 1.28
GDS 197 28.22 51.15 6 12.73 1.23
Syn1 99.9 20.84 33.52 3 3.68 1.15
Syn2 204 41.70 67.48 3 7.72 1.17

Table 5. Memory(GB), run time T(h) and accuracy Acc.(pixels) of
the proposed method for super-large datasets. The terms Mt and
Mr show the theoretical memory that required by the tie points
and the global RCS respectively. The memory usage Mu is the
actual memory consumption on the main node. The term Iter. rep-
resents the iteration times.

Figure 11. Ablation study for different parallel task assignments
and node numbers. The blue, red and green lines represent SW,
DaPu and GDS datasets respectively. The solid, long dashed and
short dashed lines represent the results using 2, 6 and 10 comput-
ing nodes, respectively.

based sparse matrix compression format to store the global
RCS and sub-RCSs. The BSMC format was compared with

the traditional sparse matrix compression format CSR, and
our results demonstrate its superiority against the CSR on
the compression rate and accessing efficiency. The other
time-consuming steps in BA are also parallelized, such as
the computation of PCG and the triangulation of 3D points.
Based on the above, we proposed a parallel framework to
conduct bundle adjustment with the exact LM algorithm in
a distributed computing system. The proposed method is
extensively evaluated and compared with the state-of-the-
art methods using diverse datasets, including public inter-
net datasets, real datasets collected by UAVs, and synthetic
datasets. According to the experimental results and discus-
sions, we conclude that

(1) The proposed method is memory efficient compared
with the baselines due to the application of parallel comput-
ing and the memory-efficient compression format BSMC.
The accuracy is the same as the Ceres since both methods
apply the LM algorithm.

(2) The BSMC format can largely decrease the memory
requirement of the RCS by 1.5 to 3.0 times compared with
the traditional sparse matrix compression format CSR. The
global RCS and sub-RCSs can be stored in a distributed
manner based on the BSMC format.

(3) The vast scalability of the proposed method is ver-
ified by large-scale datasets with up to 10 million images.
This magnitude of dataset has never been tested by other
LM-based BA methods.

The parallel mode of the proposed method is suggested
for large-scale datasets. However, the improvement on the
small datasets (image number less than 2K) is not obvi-
ous. The serial mode of the proposed method is suitable
for the small datasets since the BSMC format works for all
datasets as long as they are sparse. A limitation of the pro-
posed method is that the global RCS, though compressed
by BSMC, is still stored on the main node, which means the
proposed method will eventually fail as the dataset contin-
ues to scale up. We plan to not aggregate the global RCS on
the main node at all, and direct conduct the PCG in a dis-
tributed way. This will be further studied in the following
research.
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