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Figure 1: (a) We propose a novel UDA method that effectively addresses the distortion problems via the distortion-aware
attention (DA) module that extracts more salient textural details than those of self-attention (SA) [45]; (b) Our method
achieves more than 8% of mIoU than the SOTA method (with 24.98M parameters) [45] while taking only 4.64M parameters
on the Synthetic [46]-to-Real [20] scenarios.

Abstract

Endeavors have been recently made to transfer knowl-
edge from the labeled pinhole image domain to the unla-
beled panoramic image domain via Unsupervised Domain
Adaptation (UDA). The aim is to tackle the domain gaps
caused by the style disparities and distortion problem from
the non-uniformly distributed pixels of equirectangular pro-
jection (ERP). Previous works typically focus on transfer-
ring knowledge based on geometric priors with specially
designed multi-branch network architectures. As a result,
considerable computational costs are induced, and mean-
while, their generalization abilities are profoundly hindered
by the variation of distortion among pixels. In this pa-
per, we find that the pixels’ neighborhood regions of the
ERP indeed introduce less distortion. Intuitively, we pro-
pose a novel UDA framework that can effectively address
the distortion problems for panoramic semantic segmenta-
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tion. In comparison, our method is simpler, easier to im-
plement, and more computationally efficient. Specifically,
we propose distortion-aware attention (DA) capturing the
neighboring pixel distribution without using any geomet-
ric constraints. Moreover, we propose a class-wise feature
aggregation (CFA) module to iteratively update the feature
representations with a memory bank. As such, the fea-
ture similarity between two domains can be consistently
optimized. Extensive experiments show that our method
achieves new state-of-the-art performance while remark-
ably reducing 80% parameters.

1. Introduction

The burgeoning demand for omnidirectional and dense
scene understanding has stimulated the popularity of 360◦

cameras, which pose much wider field-of-view (FoV) in the
range of 360◦ × 180◦ than the 2D images captured by pin-
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hole cameras [1]. 360◦ cameras deliver complete scene
details either in the outdoor or indoor environment; there-
fore, research has been actively focused on panoramic se-
mantic segmentation for the pixel-wise scene understand-
ing of the intelligent systems, such as self-driving and aug-
mented/virtual reality [26, 36, 39].

Generally, 360◦ images are projected into the 2D pla-
nar representations while preserving the omnidirectional
information [40, 14, 50], to be aligned with the existing
pipelines [31, 49]. Equirectangular projection (ERP) is the
most commonly used projection type. However, ERP im-
ages often suffer from the image distortion and object defor-
mation [46], caused by the non-uniformly distributed pixels.
Also, the lack of precisely annotated datasets heavily im-
pedes training effective panoramic semantic segmentation
models.

For these reasons, research endeavors have been made to
transfer knowledge from the labeled pinhole image domain
to the unlabeled panoramic image domain via Unsupervised
Domain Adaptation (UDA). It aims to tackle the domain
gaps caused by intrinsic style disparities and inevitable dis-
tortion problems. Typically, [43, 44, 20, 9, 46, 45, 28]
leverage the spatial geometric priors (e.g., convolution vari-
ants [28] and attention-augmented components [45, 46]) to
address the distortion problems. However, these priors are
essentially inadequate for the panoramic semantic segmen-
tation; therefore, cumbersome, i.e., multi-branch network
architectures [38] are designed to reinforce the learning
abilities. Consequently, considerable computation costs are
induced, and their generalization abilities are profoundly
plagued by the variation of distortion among the pixels.

In this paper, we find that the pixels’ neighboring regions
in the ERP indeed introduce less distortion. As the ERP
shuffles the equidistribution of spherical pixels, the distance
(Fig. 2 (b)) between any two pixels for a specific latitude
of a 360◦ image is different from that (Fig. 2 (c)) of the
ERP image (sphere-to-plane projection). As a result, it is
easier to capture the positional distribution among the pixels
by reducing the receptive field, which is more efficient in
addressing distortion problems. Therefore, controlling the
neighboring region size is crucial in balancing the trade-off
between receptive field and distortion problems.

In light of this, we propose a novel UDA framework
that can efficiently address the distortion problems for
panoramic semantic segmentation. Compared with the
state-of-the-art UDA methods [13, 45, 46, 41, 44], our
method is simpler, easier to implement, and more compu-
tationally efficient. Our method enjoys two key contribu-
tions. Firstly, we propose a novel distortion-aware atten-
tion (DA) module to capture the neighboring pixel distri-
butions between domains (See Fig. 1 (a)). This is but-
tressed by a trainable relative positional encoding (RPE),
which provides unique neighboring positional information.

We then build a hierarchically structured DA-based trans-
former (DATR) that aggregates the feature information from
all layers. In addition, we propose a class-wise feature ag-
gregation (CFA) module that transfers knowledge of the ex-
tracted features between domains. It updates the class-wise
feature centers with a memory bank and consistently opti-
mizes the cross-domain feature similarity by iteratively up-
dating class centers.

We conduct extensive experiments for both the syn-
thetic and real-world scenarios, including Cityscapes-to-
DensePASS and Synthetic-to-DensePASS datasets. The re-
sults show that our framework surpasses the SOTA meth-
ods by +8.76% and +1.59% on the Synthetic-to-Real and
Pinhole-to-Panoramic scenarios, respectively while taking
only 20% parameters (See Fig. 1 (b)). In summary, our ma-
jor contributions are three-fold: (I) Our work serves as the
first attempt to address the distortion problems by captur-
ing the neighboring pixel distributions. (II) We propose a
DA module to capture the neighboring pixel distributions.
(III) We propose a CFA module to iteratively transfer the
cross-domain knowledge.

2. Related Work
UDA for Panoramic Semantic Segmentation can be
divided into three major categories: adversarial learning,
pseudo label generation, and feature prototype adaption.
The first type of methods [11, 4, 25, 29] tends to learn the
domain invariance by conducting alignment from the image
level [11, 16, 22], feature level [11, 2, 12], and output
level [19, 21]. The second type of methods generates
pseudo labels for the target domain training and utilizes
self-training to refine them. For example, [17, 42, 32, 47]
conduct refinement by leveraging the guidance from an
auxiliary task, e.g., depth estimation [17]. The third type
of method, e.g., Mutual Prototype Adaption (MPA) [45],
aligns the feature embeddings with the prototypes obtained
in the source and target domain individually. However,
these approaches utilize the multi-stage training strategy
and thus fail to correlate the features in each mini-batch.
Differently, we propose the CFA module to aggregate the
class-wise prototypes and iteratively update them, promot-
ing the prototypes to have a more holistic representation of
the peculiarity of domains.

Distortion Problems of ERP. Previous works on al-
leviating the distortion problems are with the manner
of deformable kernel [27, 6] and designing adaptable
CNN [28, 48] according to the geometrical priors of the
sphere. Particularly, [46] adaptively adjusts the receptive
field during patch embedding to better retain the semantic
consistency and considers the distortion problems during
the feature parsing process. However, this method is
inevitably inefficient due to the large receptive field (See
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Figure 2: Direct Linear Projection (DLP) (a) and ERP (c)
are two projection formats of the same spherical data (b).

Fig. 1 (b)). Another way is designing distortion-aware
neural networks [45, 46]. Deformable components, e.g.,
Deformable Patch Embedding (DPE) and Deformable MLP
(DMLP) [45], are widely explored for panoramic semantic
segmentation as they can help to learn the prior knowledge
of panorama characteristics when patchifying the input
data. Though the performance is significantly improved,
the abilities of data generalization are limited, and mostly
rely on prior geometry knowledge. Differently, we find
that the neighboring region of ERP indeed introduces less
distortion, benefiting the generalization to the variance of
pixel distribution. Therefore, we propose the DA module to
address the distortion problem with much fewer parameters.

Self-attention (SA) is defined as a dot product operation on
query, key, and value sequence [30]. Dosovitskiy et al. [8]
first proposed to utilize the SA on image patches in the vi-
sion field. More recently, abundant variants of attention
paradigms [18, 35, 23, 5] are proposed to tackle vision prob-
lems. For panoramic semantic segmentation, Multi-Head
Self-Attention (MHSA) [30] and Efficient Self-Attention
(ESA) [35] are extensively applied to capture the long-range
dependencies of 360◦ images. However, MHSA and ESA
are inadequate in alleviating the distortion problem between
pixels caused by the global feature extraction strategy. By
contrast, our work shares a different spirit by focusing on
the neighboring pixels, and accordingly the DA module is
proposed to reduce the distortion problems by capturing the
distinct pixels’ distribution between domains.

3. Method

3.1. Theoretical Analysis of ERP Distortion

The most notable advantage of ERP is its ease of opera-
tion due to its projection strategy, which is a completely lin-
ear transformation [1]. However, ERP shuffles the equidis-
tribution of sphere pixels, resulting in varying distances be-
tween pixels at different latitudes before and after ERP, as
shown in Fig. 2 (a), (b), and (c), where the distances be-

Panoramic

Pinhole

Figure 3: Illustration of the proposed RPE.

tween pixels w1, w2, and w0 are different.

w0 = W/n,w1 =
2π

n

√
h1(

W

π
− h1),

w2 =
2π

n

√
h2(

W

π
− h2), w0 > w2 > w1,

(1)

where n is the number of sampling pixels at each latitude,
W is the width of ERP and h1, h2 is the height of red and
blue pixels. The non-uniform sampling density of spherical
data caused by the ERP projection can lead to distortion, as
the sampling density is different at the poles and equator.
Our idea: We quantify the lateral distortion as the differ-
ence in distance between the pixels on a distinct projec-
tion type. By contrast, the vertical distortion is evenly dis-
tributed. Intuitively, we formulate the distortion coefficient
Dis between the red and green points in Fig. 2 as:

Dis = w4 − w3 =
n′

n
(W − 2π

√
h0(

W

π
− ho)), (2)

where n′ is the number of pixels between the red and green
points in the latitude coordinate. Eq.2 demonstrates that
Dis increases with n′, indicating that a smaller value of n′

leads to less distortion. This observation leads us to propose
addressing the distortion problem in UDA for panoramic
semantic segmentation from a neighboring perspective. By
minimizing the receptive field of the UDA network model,
we can more effectively capture the pixel’s distribution and
address the distortion problem. Based on this theoreti-
cal analysis, we propose a distortion-aware attention (DA)
module in Sec.3.2.1 to mitigate this issue. More detailed
analysis see supplmat.

3.2. Distortion-aware UDA Framework

3.2.1 Distortion-aware Attention (DA)

We now describe how to tackle the distortion problem with
the proposed DA module. It captures the pixel distribution
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Figure 4: (a) Illustration of the proposed CFA module; (b) The architecture of our proposed DA-based transformer.

in the neighborhood region. As shown in Fig. 1 (a), the
pixels in the DA only look at the neighboring pixels. To get
the intuition, let’s first review the MHSA [30], which can be
formulated as:

Attention(Q,K, V ) = Softmax(
QK>√
dhead

)V, (3)

where Q, K, and V are the linear projections of the whole
input sequence. Based on our observation, we propose to
learn UDA networks efficiently without strong geometric
constraints on the pixel’s neighboring regions. To achieve
this, we narrow the receptive field and focus more on the
local distribution of neighboring pixels to minimize the dis-
tortion coefficient, as defined in Eq. 2. To be specific, we
denote the nearest pixels of pi,j in the H × W neighbor-
hood region as Pi,j , where H and W represent the height
and width of the region, respectively. Thus, the DA can be
defined as:

DA(pi,j) = Softmax(
Qpi,j

K>Pi,j

scale
)VPi,j

, (4)

where Q, K, and V are the linear projections of the
corresponding input, the neighboring pixels, and have the
same dimensions N × C, and N = H ×W .

Relative Positional Encoding (RPE). Self-attention-based
models suffer from the inability to capture the order of in-
put tokens or patches [34]. To address this limitation for
panoramic semantic segmentation, it is crucial to incorpo-
rate explicit representations of positional information. Pre-
vious MHSA-based methods [45, 46] leverage the geomet-
ric properties of the ERP to design specific fixed positional
encoding. However, these methods rely heavily on given

priors and lack adaptive distortion-aware abilities. In con-
trast, our RPE provides local neighboring positional infor-
mation to alleviate this problem. As a result, our DA mod-
ule can ignore the resolution difference between training
and inference. As depicted in Fig.3, it is evident that the
distribution of neighboring pixels in the pinhole image (in
blue) differs from that in the panoramic image (in yellow).
To address this issue, we propose a trainable Relative Po-
sitional Encoding (RPE) for DA. Specifically, RPE consists
of a set of trainable embedding vectors, initialized with a
uniform distribution, that represents the position encoding
of each pixel. The RPE captures the distorted pixel dis-
tribution of ERP after adaptation and remains fixed during
inference. This encoding method captures the distribution
of different neighboring pixels and enables the UDA model
to address the domain gap resulting from the inevitable dis-
tortion. The encoding vectors are embedded into the DA
module, allowing us to reformulate Eq.4 as follows:

DA(pi,j) = Softmax(
Qpi,j

K>Pi,j

scale
)(VPi,j

+RPE), (5)

where the RPE is our proposed positional encoding.

3.2.2 DA Block Design

We now present the design of the DA block for distortion-
aware feature extraction. In contrast to prior methods that
use a transformer backbone [45, 46], our DA block incorpo-
rates local position information through RPE, rather than a
feed-forward network. As depicted in Figure 4 (b), our DA
block consists of normalization and MLP layers, making
the feature extraction process completely convolution-free.
Additional details of the DA block are in the supplmat.
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3.2.3 DA-based Transformer

With the proposed DA block, we introduce a DA-based
transformer model that is partially inspired by ViT [8].
Differently, our DA-based transformer model is tailored
to address distortion problems and serves as a backbone
for UDA in panoramic semantic segmentation. Our model
adopts an encoder-decoder structure without extra com-
ponents, resulting in fewer parameters than multi-branch
models such as PASTS [15] (4.64M vs. 614M). In
experiments, our DATR outperforms existing complex
models [35, 45, 13, 46, 33] (see Tab.2) and is more robust
to adaptation stability and efficiency (see Tab.3). More
specifically, our model shares a different spirit from prior
methods as it is tailored to specifically address the distor-
tion problem in panoramic segmentation. Further details
of our DA-based transformer model can be found in the
supplmat.

Encoder. As shown in Fig. 4 (b), our DA-based trans-
former backbone can generate multi-scale features,
including coarse shallow layers and fine-grained deep lay-
ers. To preserve the local continuity around the neighboring
pixels, we use the overlapping patch merging of [35]. The
patch size K, stride S, and padding size P are set to 7/4/3
and 3/2/1 for the model with different scales. Concretely,
given an input image with a resolution of H × W , the
hierarchical feature maps Fi have the resolutions of
H

2i+1 × W
2i+1 ×Ci, where i ∈ 1, 2, 3, 4. For a better trade-off

between receptive fields and distortion-aware abilities (See
Tab. 4), the first three layers of our model are based on
efficient self-attention, and the deepest layer is based on
our DA block. To reduce the computational cost of ESA
(O(N2)), we adopt the sequence reduction process utilized
in [33, 35].

Decoder. As depicted in Fig. 4 (b), the MLP decoder takes
multi-scale features Fi from the encoder as inputs, and the
channel dimensions are aligned. Then Fi are up-sampled
to F4’s size and concatenated and fused together. Finally,
the last MLP layer takes the fused features to predict the
segmentation confidence maps.

3.3. Class-wise Feature Aggregation (CFA)

Given the source (i.e., synthetic or pinhole images) do-
main dataset with a set of annotated images Xs = (xs,
ys), xs ∈ RH×W×3, ys ∈ 0, 1H×W×K and the target (i.e.,
panoramic images) dataset Dt = (xt), xt ∈ RH×W×3 with-
out corresponding labels, the objective of UDA is to trans-
fer knowledge from the source domain to the target domain
with K shared classes. Our model is first trained with the

source domain data Ds using the segmentation loss:

LSEG = −
H,W,K∑
h,w,k=1

ys(h,w,k)log(ps
h,w,k)

, (6)

where ps(i,j,k) is the prediction of the source image pixel
xs(h,w) as the k-th class. To adopt our model to the target
domain data, we utilize the predictions of target images as
the pseudo labels and perform self-supervised (SS) training.
The calculation and generation metric is:

ŷt(h,w,k) = 1k .=argmax(pt
h,w,:)

. (7)

With the pseudo labels, our model is optimized by:

Lt
SS = −

H,W,K∑
h,w,k=1

ŷt(h,w,k)log(pth,w,k) (8)

We propose a novel class-wise feature aggregation
(CFA) module to transfer knowledge from extracted fea-
tures between domains, as illustrated in Fig.4 (a). Our CFA
module differs from prior UDA methods[45, 46] in two dis-
tinct ways: (a) it iteratively aggregates class-wise features
and updates feature centers, thereby aligning them directly
between the two domains; (b) hard pseudo-labels ŷt(h,w,k)

are softened in the feature space and used for prediction,
enabling full leveraging of knowledge from the source do-
main. Specifically, we utilize the pseudo labels ŷt(h,w,k) as
the class-wise masks in the high-level feature space. Given
the target domain feature’s ith class center T t

i in tth iteration
and the class center from the source domain feature is St

i ,
the extracted features are first masked by the pseudo labels
and then are projected to class-wise feature centers St \ T t.
Note that St \ T t is mixed with the corresponding feature
center St−1 \ T t−1 from the last iteration (mini-batch). We
leverage this iterative mixing strategy for the feature center
to make the centers (a.k.a, prototypes) more robust:

Cs
i = (1− 1

e
)S

(t−1)
i +

1

e
St
i , C

t
i = (1− 1

e
)T

(t−1)
i +

1

e
T t
i , (9)

where the Cs
i and Ct

i are the class centers of the source and
target images, and e is the current epoch number. The same
class-wise feature centers are pushed together by the Mean
Squared Error (MSE) to mimic the class-wise knowledge
between domains:

Lf =
1

num

∑
i∈C

(Cs
i − Ct

i )
2, (10)

where num is the total category number.

4. Experiments
To evaluate the effectiveness of our proposed UDA

framework, we conducted extensive experiments on
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(a) SynPASS-to-DensePASA (a) Citycapes-to-DensePASS
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Figure 5: Example visualization results from DensePASS test set. (a) Input, (b) Fully supervised Segformer-B1 without
domain adaptation [35], (c) Trans4PASS-S [45], (d) DATR-S, and (e) Ground truth.

both real-world and synthetic datasets, which include
Cityscapes [7], DensePASS [20], and SynPASS [46]. We
designed three instance models of the DATR, namely
DATR-Mini, DATR-Tiny, and DATR-Small, with the same
architecture but different sizes. DATR-Mini is the most effi-
cient model, with the least computation cost during training
and testing (4.64M). On the other hand, DATR-Small is the
most powerful model with the best performance.

4.1. Datasets and Implementation Details

Cityscapes [7] is a widely used dataset of urban street
images captured from 50 different cities, with precise
annotations of 19 categories. The official split includes
2975 images for training and 500 images for validation. In
this paper, we use the official training set as the source data.

SynPASS [46] is a dataset of 9080 synthetic panoramic
images annotated with 22 categories. The official training,
validation, and test sets contain 5700, 1690, and 1690
images, respectively. We use the overlapping 13 classes
between SynPASS and DensePASS datasets for training
and testing.

DensePASS [20] is a 360-degree image dataset collected
from 40 cities. The official training and test sets contain
2000 and 100 images, respectively, and are annotated with
the same 19 classes as Cityscapes.

Implementation Details. We train all the models using 4
NVIDIA GPUs, with an initial learning rate of 5 × 10−5.
The learning rate is scheduled using a polynomial strategy
with a power of 0.9. We use the AdamW optimizer with an

Network Backbone CS DP Gap Param

DeepLabv3+ [3] ResNet-50 [10] 79.81 29.79 50.02 39.76
ResNet-101 [10] 80.89 32.69 48.20 58.75

Segformer [35] MiT-B1 78.85 36.98 41.87 14.72
MiT-B2 81.32 41.23 40.09 25.76

Trans4PASS [45] Trans4PASS-T 80.54 41.56 38.98 13.95
Trans4PASS-S 81.17 42.47 38.70 24.98

Trans4PASS+ [46] Trans4PASS-T+ 79.92 41.33 38.59 13.95
Trans4PASS-S+ 81.76 42.35 39.41 24.98

DATR-M 75.23 38.48 36.75 4.64
DATR DATR-T 79.01 42.22 36.79 14.72

DATR-S 79.98 47.55 32.43 25.76

Table 1: Performance gaps of some SOTA CNN-based and
transformer-based panoramic semantic segmentation mod-
els. The test size on DensePASS (DP) is 400 × 2048. All
models are only trained with the Cityscapes dataset without
the adaption module.

epsilon of 1 × 10−8 and weight decay of 1 × 10−4. The
resolutions and data augmentations for the training and test
images are kept the same as those used in [45].

4.2. Experimental Results

We first evaluate our proposed framework on Cityscapes
(pinhole)-to-DensePASS (panorama) datasets. Tab. 1
presents the mIoU results evaluated on the Cityscapes and
DensePASS test set. Our DATR without any adaption mod-
ule has the least performance drop (36.75%) compared with
the SOTA segmentation methods [3, 35, 45, 46]. Impor-
tantly, our DATR-M is much more compact than the prior
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Method mIoU Road S.W. Build. Wall Fence Pole Tr.L. Tr.S. Veget. Terr. Sky Persin Rider Car Truck Bus Train M.C. B.C.

ERFNet [24] 16.65 63.59 18.22 47.01 9.45 12.79 17.00 8.12 6.41 34.24 10.15 18.43 4.96 2.31 46.03 3.19 0.59 0.00 8.30 5.55
PASS(ERFNet) [37] 23.66 67.84 28.75 59.69 19.96 29.41 8.26 4.54 8.07 64.96 13.75 33.50 12.87 3.17 48.26 2.17 0.82 0.29 23.76 19.46

Omni-sup(ECANet) [39] 43.02 81.60 19.46 81.00 32.02 39.47 25.54 3.85 17.38 79.01 39.75 94.60 46.39 12.98 81.96 49.25 28.29 0.00 55.36 29.47
P2PDA(Adversarial) [44] 41.99 70.21 30.24 78.44 26.72 28.44 14.02 11.67 5.79 68.54 38.20 85.97 28.14 0.00 70.36 60.49 38.90 77.80 39.85 24.02

PCS [41] 53.83 78.10 46.24 86.24 30.33 45.78 34.04 22.74 13.00 79.98 33.07 93.44 47.69 22.53 79.20 61.59 67.09 83.26 58.68 39.80
DAFormer [13] 54.67 73.75 27.34 86.35 35.88 45.56 36.28 25.53 10.65 79.87 41.64 94.74 49.69 25.15 77.70 63.06 65.61 86.68 65.12 48.13

Trans4PASS-T [45] 53.18 78.13 41.19 85.93 29.88 37.02 32.54 21.59 18.94 78.67 45.20 93.88 48.54 16.91 79.58 65.33 55.76 84.63 59.05 37.61
Trans4PASS-S [45] 55.22 78.38 41.58 86.48 31.54 45.54 33.92 22.96 18.27 79.40 41.07 93.82 48.85 23.36 81.02 67.31 69.53 86.13 60.85 39.09

Ours w/ DATR-M 52.90 78.71 48.43 86.92 34.92 43.90 33.43 22.39 17.15 78.55 28.38 93.72 52.08 13.24 77.92 56.73 59.53 93.98 51.12 34.06
Ours w/ DATR-T 54.60 79.43 49.70 87.39 37.91 44.85 35.06 25.16 19.33 78.73 25.75 93.60 53.52 20.20 78.07 60.43 55.82 91.11 67.03 34.32
Ours w/ DATR-S 56.81 80.63 51.77 87.80 44.94 43.73 37.23 25.66 21.00 78.61 26.68 93.77 54.62 29.50 80.03 67.35 63.75 87.67 67.57 37.10

Table 2: Per-class results of the SOTA panoramic image semantic segmentation methods on DensePASS test set.

Method Backbone mIoU Road S.Walk Build. Wall Fence Pole Tr.L. Tr.S. Veget. Terrain Sky Person Car

Source-only

PVT-S 38.74 55.39 36.87 80.84 19.72 15.18 8.04 5.39 2.17 72.91 32.01 90.81 26.76 57.40
Trans4PASS+-S 43.17 73.72 43.31 79.88 19.29 16.07 20.02 8.83 1.72 67.84 31.06 86.05 44.77 68.58

DATR-M 32.37 62.48 17.00 74.55 10.66 7.17 11.48 3.37 0.38 60.21 17.56 81.99 26.38 47.55
DATR-T 33.82 61.33 16.77 75.44 14.64 7.65 15.11 4.10 1.30 64.06 15.25 82.72 26.13 55.21
DATR-S 35.15 60.43 13.57 76.69 18.35 5.88 17.33 3.44 2.62 62.68 19.54 83.58 34.30 58.56

MPA [46]

PVT-S 40.90 70.78 42.47 82.13 22.79 10.74 13.54 1.27 0.30 71.15 33.03 89.69 29.07 64.73
Trans4PASS+-S 45.29 67.28 43.48 83.18 22.02 21.98 22.72 7.86 1.52 73.12 40.65 91.36 42.69 70.87

DATR-M 48.24 77.05 46.43 83.80 25.16 35.25 26.20 19.12 12.54 77.93 23.79 94.23 38.04 67.59
DATR-T 52.11 78.40 52.10 85.04 31.52 42.44 30.11 22.78 15.01 77.50 27.96 93.76 47.08 73.80
DATR-S 52.76 78.33 52.70 85.15 30.69 42.59 32.19 24.20 17.90 77.72 27.24 93.86 47.98 75.34

DATR-M 51.04 77.62 49.03 84.58 28.15 39.70 30.34 23.83 15.95 78.23 24.74 93.73 44.14 74.45
CFA (ours) DATR-T 53.23 79.09 52.92 85.51 32.02 42.90 31.56 27.17 17.14 77.87 28.71 93.72 48.16 75.26

DATR-S 54.05 79.07 52.28 85.98 33.38 45.02 34.47 26.15 18.27 78.21 26.99 94.02 51.21 77.62

Table 3: We evaluate all the UDA methods with various backbones on the SynPASS-to-DensePASS scenario, the overlapped
13 classes (DensePASS13) of two datasets are used to test the UDA performance.

models, with only 4.64M parameters, and has a competi-
tive and even superior performance. In Tab. 2, we com-
pare DATR against previous SOTA approaches, includ-
ing PASS [37], Omni-sup [39], P2PDA [44], PCS [41]
and Trans4PASS [45]. Among these methods, though
DAFormer [13] serves as the SOTA transformer-based DA
method, Trans4PASS achieves better results. Yet our
DATR-S reaches the mIoU of 56.81% on the DensePASS
test set while outperforming the DAFomer and Trans4PASS
by mIoU increment of +2.14% and +1.59%, respectively.
Evidently, large improvements (over 3%) have been ob-
tained on sidewalk, wall, pole, etc., which are challenging
yet pivotal categories in practical applications.

We further evaluate our method on SynPASS (synthetic)-
to-DensePASS (real-world) datasets. Though synthetic
panoramas’ spatial distributions and content are closer to
the real panoramic data, the previous methods struggle on
several categories, e.g., traffic light and traffic sign, which
strongly rely on texture cues. The main reasons are two
folds: 1) the simulated traffic elements in the synthetic data
do not present diverse textures and details, which aggravate
the domain gap; 2) prior UDA methods fail to capture the
regional pixel-wise correspondence. As shown in Tab. 3, all

of the variants of our DATR consistently outperform pre-
vious SOTA methods. Especially, our DATR-S achieves
dramatically mIoU increment on the most challenging cate-
gories, including Fence (+23.04↑), Pole (+11.75↑), Tr.Light
(+18.29↑), Tr.Sign (+16.75↑), Person (+8.52↑), and Car
(+6.75↑). This is also demonstrated in Fig. 5. Overall, even
the most compact model, DATR-M, achieves +5.75% mIoU
increment than the prior SOTA method Trans4PASS+-
S [46](24.98M) with only 4.64M parameters. This indi-
cates that our DATR model brings largely enhanced domain
adaptation performances in synthetic-to-real scenarios, but-
tressed by the proposed DA and CFA modules.

5. Ablation Study and Analysis
Design Choices for DA and ESA. We first demonstrate
the superiority and necessity for the simultaneous usage
of ESA and DA by conducting ablation experiments. We
set different experiment settings, including DA at different
structure locations. As we can see in Tab. 4, only using
ESA suffers unsatisfactory performance. Meanwhile, using
DA in the shallow layers also leads to poor performance
due to the limited local receptive fields of the DA module.
By contrast, utilizing DA at the deep layer brings the
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largest performance gain (+2.03% ↑). It validates that using
ESA and DA together in the proper sequence makes DATR
achieves better distortion-aware abilities.

Effectiveness of Relative Positional Encoding. We now
study the effectiveness of the proposed RPE in DA. We
test three positional encoding strategies including absolute
positional encoding (APE), relative positional encoding
(RPE), and without any positional encoding (without PE).
Our DATR-M achieves 41.56%, 51.04%, and 36.98%
mIoU with APE, RPE and without PE, respectively. This
indicates the significant effectiveness of our proposed RPE
in conferring distortion-aware abilities to models.

Ablation of UDA Module. To verify the effectiveness
of our proposed UDA module, we conduct experiments
on two benchmarks with different modules. As shown
in Tab. 5, evidently, models trained with CFA achieve
over 6% mIoU increment on Cityscapes-to-DensePASS
than the models only trained with the source (Cityscapes)
data. Moreover, our CFA gives more than 9% mIoU
improvement to all variants of DATR, which indicates
the effectiveness of our CFA and the structure superiority
of DATR. As for SynPASS to DensePASS, our Self-Sup
strategy and CFA achieve more than 10% mIoU increment.

Generality of CFA. In SynPASS-to-DensePASS scenario,
our CFA achieves 48.33% and 44.97% and 48.96% mIOU
with Trans4PASS-S, PVT-S and DAFormer. Compared
with the MPA Tab. 3, our CFA achieves higher UDA
performance by 3.04%, 4.07%, and 3.71% than MPA,
respectively. The results confirm that CFA provides a better
learning signal to diverse models.

Effectiveness of DATR. We evaluate the generalization ca-
pacity of our introduced DATR by applying it in other do-
main adaptation methods, e.g., MPA [45]. As shown in
Tab. 3, our DATR consistently achieves superior perfor-
mance than PVT [33] and Trans4PASS+ [46]. Specifically,
our most efficient instance model DATR-M (4.64M) out-
performs PVT-S (24.5M) and Trans4PASS+-S (24.98M) by
+7.34% and 2.95% mIoU increments, respectively. Evi-
dently, large improvements have been made by our DATR-
S model, which achieves +11.86% and +7.47% compared
with PVT-S and Trans4PASS+-S. This indicates the supe-
rior generalization capacity of our proposed DATR, facing
domain shift behind 360◦ and pinhole imagery.

6. Discussion
Significance of Neighboring Region Size. The DA’s
cover size has a significant impact on the performance
of our proposed DATR. When the neighborhood region
covers the entire input, DA behaves like self-attention.

Structure ◦ ◦ ◦ ◦ ? ◦ ◦ ◦ ◦ ? ◦ ◦ ◦ ◦ ? ◦ ◦ ◦ ◦ ? ? ◦ ? ◦ ◦ ? ◦ ?
mIoU 36.45 37.56 38.07 38.29 38.48 37.15 38.17

∆ - +1.11↑ +1.62↑ +1.84↑ +2.03↑ +0.70↑ +1.72↑

Table 4: Ablation study of the proper location of our pro-
posed DA block. ?: DA block, ◦: ESA block.

Cityscapes ->DensePASS SynPASS ->DensePASS

Backbone Method mIoU δ Backbone Method mIoU δ

DATR-M
Source 38.48 -

DATR-M
Source 33.01 -

SS 45.71 +7.23↑ SS 45.52 +12.51↑
CFA 52.90 +14.42↑ CFA 51.04 +18.03↑

DATR-T
Source 42.22 -

DATR-T
Source 33.98 -

SS 48.27 +6.05↑ SS 47.72 +13.74↑
CFA 54.60 +12.40↑ CFA 53.23 +19.25↑

DATR-S
Source 47.55 -

DATR-S
Source 36.74 -

SS 54.96 +7.41↑ SS 50.08 +13.86↑
CFA 56.81 +9.26↑ CFA 54.05 +17.31↑

Table 5: Ablation study of different module combinations
on two public benchmarks.

However, using a smaller neighborhood size results in
simpler distortion but smaller receptive fields, which can
be fatal for semantic segmentation tasks. We conducted
experiments with different neighborhood region sizes
ranging from 7× 7 to 15× 15 and found that much smaller
or larger region sizes did not bring satisfactory results. To
balance GFLOPs and performance, we choose the region
size as 11× 11.

Performance of small objects. Our proposed DATR
demonstrates its capability of performing well on relatively
small objects, such as traffic lights, through the use of DA
blocks with narrowed receptive fields of attention. This is
evidenced by the performance gains on such objects, with
an increase of 18.29% as presented in Tab. 3. Moreover,
DATR also shows reasonable performance gains on larger
objects, such as the sky (+2.66%) and buildings (+2.80%).

Rationality of DA and ESA. To demonstrate the segmen-
tation performance on panoramic images, we conduct abla-
tion experiments of training a single layer of DA and ESA.
As shown in Fig. 6 (c), our proposed DA shows more salient
textural details than ESA w.r.t. the visualization of the ex-
tracted features, showing the superiority of our DA.

Effectiveness and rationality of CFA. To demonstrate
the effectiveness and rationality of our proposed CFA, we
conducted ablation experiments using our proposed DATR
model. The results in Tab.3 show that our CFA consistently
outperforms the previous state-of-the-art method MPA[45].
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Figure 6: (a) Ablation study of different Neighborhood region sizes with DATR-M framework on the DensePASS test set.
(b) t-SNE visualizations with different modules on the DensePASS test set with DATR-T. (c) Visualization of the extracted
features from panoramic images by Self-Attention (SA) and Distortion-aware Attention (DA).

With all variants of our proposed DATR model, our CFA
achieved the highest mIoU, surpassing MPA by 1.29%,
1.12%, and 2.80% mIoU, respectively. Additionally, we
used t-SNE visualization to compare the extracted features
before and after incorporating our CFA on the DensePASS
test set. As shown in Fig. 6 (b), CFA provides holistic
class-wise feature aggregation, resulting in more closely
tied features within the same class, such as the red and blue
circles.

Iterative Strategy in CFA. To ablate the impact of our
proposed iterative class-wise feature aggregation module,
we substitute the iterative strategy with non-iterative and
linear iterative methods to demonstrate the effectiveness
of our iterative strategy. We conduct experiments with
DATR-M by non-iterative and linear iterative strategy,
the mIoU results are 50.43% and 50.53%, respectively.
Our iterative update makes the class center more robust
and holistic and achieves 51.04% mIoU with the same
backbone.

Analysis of failure classes. Our DATR, which uses DA
blocks in the deepest layer, performs well on relatively
small objects, such as traffic lights (+18.29%) shown in
Tab. 3. It also achieves reasonable performance gains on
large objects, such as sky (+2.66%) and building (+2.80%).
Consequently, the performance of each class is related to
the neighboring size of DA, as shown in Fig. 6(a).

Unrestricted resolutions. Our DATR computes attention
in a fixed neighborhood region, which is not largely
affected by input sizes. We test different resolutions
during inference, and the performance variation among
different input sizes did not exceed 10%, while compared
models [45, 46], fluctuate over 20% (See Tab.4 in the
suppl.).

7. Conclusion and Future Work
In this paper, we found that the pixels’ neighborhood re-

gions of ERP indeed introduce less distortion. Based on our
observation, we proposed a novel distortion-aware attention
(DA) module that focuses on capturing the neighboring
pixel distribution, buttressed by a trainable relative posi-
tional encoding (RPE). We further built a unified backbone
model for panoramic semantic segmentation. Moreover, we
proposed a class-wise feature aggregation (CFA) module
to iteratively update the features with a memory bank.
As such, we consistently optimized the feature similarity
between domains. Our proposed framework significantly
outperformed the SOTA UDA methods with an order of
magnitude fewer parameters.

Limitation and future work: In this paper, the UDA
is performed on a single source dataset to a single target
dataset. It would be worth exploring the multi-source
domain adaptation for panoramic semantic segmentation.
Moreover, we will explore how to utilize the other projec-
tions of the sphere data to facilitate knowledge transfer.
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tional Natural Science Foundation of China (NSF) under
Grant No.NSFC22FYT45.

18695



References

[1] Hao Ai, Zidong Cao, Jinjing Zhu, Haotian Bai, Yucheng
Chen, and Ling Wang. Deep learning for omnidirectional
vision: A survey and new perspectives. arXiv preprint
arXiv:2205.10468, 2022.

[2] Chaoqi Chen, Weiping Xie, Tingyang Xu, Wenbing Huang,
Yu Rong, Xinghao Ding, Yue Huang, and Junzhou Huang.
Progressive feature alignment for unsupervised domain
adaptation. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 627–636, 2019.

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018.

[4] Jaehoon Choi, Taekyung Kim, and Changick Kim. Self-
ensembling with gan-based data augmentation for domain
adaptation in semantic segmentation. 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
6829–6839, 2019.

[5] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. Advances in Neural Information Processing
Systems, 34:9355–9366, 2021.

[6] Benjamin Coors, Alexandru Paul Condurache, and Andreas
Geiger. Spherenet: Learning spherical representations for
detection and classification in omnidirectional images. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), September 2018.

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proc.
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020.

[9] Qiqi Gu, Qianyu Zhou, Minghao Xu, Zhengyang Feng,
Guangliang Cheng, Xuequan Lu, Jianping Shi, and Lizhuang
Ma. Pit: Position-invariant transform for cross-fov domain
adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8761–8770, 2021.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[11] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei A. Efros, and Trevor Dar-
rell. Cycada: Cycle-consistent adversarial domain adapta-
tion. In ICML, 2018.

[12] Judy Hoffman, Dequan Wang, Fisher Yu, and Trevor Darrell.
Fcns in the wild: Pixel-level adversarial and constraint-based
adaptation. ArXiv, abs/1612.02649, 2016.

[13] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Daformer:
Improving network architectures and training strategies for
domain-adaptive semantic segmentation. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pages
9914–9925. IEEE, 2022.

[14] Xing Hu, Yi An, Cheng Shao, and Huosheng Hu. Dis-
tortion convolution module for semantic segmentation of
panoramic images based on the image-forming principle.
IEEE Transactions on Instrumentation and Measurement,
71:1–12, 2022.

[15] Jihyun Kim, Somi Jeong, and Kwanghoon Sohn. Pasts: To-
ward effective distilling transformer for panoramic semantic
segmentation. In 2022 IEEE International Conference on
Image Processing (ICIP), pages 2881–2885, 2022.

[16] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirec-
tional learning for domain adaptation of semantic segmen-
tation. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6929–6938, 2019.

[17] Mengyi Liu, Shuhui Wang, Yulan Guo, Yuan He, and Hui
Xue. Pano-sfmlearner: Self-supervised multi-task learning
of depth and semantics in panoramic videos. IEEE Signal
Processing Letters, 28:832–836, 2021.

[18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021.

[19] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi
Yang. Taking a closer look at domain shift: Category-
level adversaries for semantics consistent domain adaptation.
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2502–2511, 2019.

[20] Chaoxiang Ma, Jiaming Zhang, Kailun Yang, Alina Roit-
berg, and Rainer Stiefelhagen. Densepass: Dense panoramic
semantic segmentation via unsupervised domain adaptation
with attention-augmented context exchange. In 2021 IEEE
International Intelligent Transportation Systems Conference
(ITSC), pages 2766–2772. IEEE, 2021.

[21] Luke Melas-Kyriazi and Arjun K. Manrai. Pixmatch: Unsu-
pervised domain adaptation via pixelwise consistency train-
ing. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 12430–12440, 2021.

[22] Zak Murez, Soheil Kolouri, David J. Kriegman, Ravi Ra-
mamoorthi, and Kyungnam Kim. Image to image transla-
tion for domain adaptation. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4500–
4509, 2018.

[23] Zequn Qin, Pengyi Zhang, Fei Wu, and Xi Li. Fcanet:
Frequency channel attention networks. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 783–792, 2021.
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