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Abstract

To bridge the physical and virtual worlds for rapidly
developed VR/AR applications, the ability to realistically
drive 3D full-body avatars is of great significance. Al-
though real-time body tracking with only the head-mounted
displays (HMDs) and hand controllers is heavily under-
constrained, a carefully designed end-to-end neural net-
work is of great potential to solve the problem by learn-
ing from large-scale motion data. To this end, we pro-
pose a two-stage framework that can obtain accurate and
smooth full-body motions with the three tracking signals
of head and hands only. Our framework explicitly models
the joint-level features in the first stage and utilizes them
as spatiotemporal tokens for alternating spatial and tem-
poral transformer blocks to capture joint-level correlations
in the second stage. Furthermore, we design a set of loss
terms to constrain the task of a high degree of freedom,
such that we can exploit the potential of our joint-level mod-
eling. With extensive experiments on the AMASS motion
dataset and real-captured data, we validate the effective-
ness of our designs and show our proposed method can
achieve more accurate and smooth motion compared to ex-
isting approaches.

1. Introduction

Driving human avatars in VR/AR can help to bridge the
gap between the physical and virtual worlds, and create
a more natural and immersive user experience. However,
in a typical capture setting, only the head and hands are
tracked with Head Mounted Displays (HMD) and hand con-
trollers. With limited inputs, driving the full-body avatar is
inherently an underconstrained problem. Considerable en-
deavor has been dedicated to addressing the challenge of
inferring full-body human pose exclusively through sparse
AR/VR signals, head and hands. Although recent studies
[5, 8, 9] have shown promising results, they are not suit-
able for real-time applications like VR body tracking. With
real-time performance in mind, Winkler ef al. [39] use re-
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Figure 1. Our method accurately estimates full-body motion using

only head and hand tracking signals.

inforcement learning for training and outperform kinematic
approaches with fewer artifacts. But their method requires
future frames, which introduces latency to the system. Most
recent work AvatarPoser [16] solves the problem in a more
practical way by combining transformer-based architecture
and inverse-kinetic optimization, setting the benchmark on
large motion capture datasets (AMASS). Despite the suc-
cess of AvatarPoser across a wide variety of motion classes,
we argue that a learning-based end-to-end method provides
more merits in simplicity, robustness, and generalization
compared with a hybrid method.

Our key insight is that correlations between different
body joints should be explicitly modeled for human pose es-
timation as body movements are highly structured and coor-
dinated. Especially for the problem of estimating full-body
motion from sparse observations, joint-level modeling is es-
sential as the position and rotation of each joint can affect
each other, and the overall body pose. By taking into ac-
count these correlations, we can derive more plausible full-
body motion, even when observations are limited. There-
fore, we design a two-stage joint-level modeling framework
to capture these dependencies between body joints for more
accurate and smoother human motion. In the first stage, we
explicitly model the joint-level features. Then we utilize
these features as spatiotemporal tokens in the second stage
for a transformer-based network to capture the joint-level
dependencies for recovering full-body motions.

In the first stage, we explicitly model the joint-level fea-
tures as 1) joint-rotation features and 2) joint-position fea-
tures. Joint-rotation offers higher compactness and com-
putational efficiency, whereas joint-position enables more
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Figure 2. [Illustration of our two-stage joint-level modeling framework. In the first stage, we embed a sequence of sparse signals to

high-dimensional input features. Then, we utilize an MLP to obtain the initial full-body poses from the features. After that, we combine
the initial full-body poses and the sparse input signals to generate initial joint-level features. In the second stage, we convert the initial
joint-level features to joint-level tokens and then feed those tokens to a transformer-based network to capture the joint-level dependencies
in spatial and temporal dimensions alternatively. In each spatial transformer block, we supplement an additional embedded input features
token generated from the high-dimensional input features. Finally, we employ an SMPL regressor to transform the spatiotemporal modeled

joint-level features into the 3D full-body pose sequence.

precise control and is intuitively easier to comprehend. By
combining the advantages of both features, we attain a re-
silient and rational human motion with the improved ability
to align endpoints more accurately.

In the second stage, we alternatively use spatial trans-
former blocks and temporal transformer blocks to capture
the joint dependencies. Given the ambiguity inherent in our
problem, we also opt to utilize the features from the first
stage of each individual frame as an embedded input fea-
tures (EIF) token for every single spatial transformer block
to reinforce the influence of the input sparse observations.

To capitalize on the advantages of our joint-level model-
ing and mitigate the risk of overfitting in the highly under-
constrained problem, we have incorporated a set of loss
terms into our approach. These loss terms consist of hand
alignment loss, motion smoothness loss, and physical loss,
each meticulously designed to enhance the efficacy and gen-
eralizability of our body-tracking system in real-world sce-
narios, considering the intricate and uncertain problem na-
ture.

Extensive experiments on the large-scale motion dataset
AMASS [26] have demonstrated the effectiveness of our
proposed designs. We also collect real-data samples for fur-
ther qualitative and quantitative evaluations. Specifically,
we conduct a thorough comparison of our approach against
existing methods using various protocols. The comparative
results show that our approach significantly outperforms ex-
isting methods in all protocols by a large margin. Moreover,
our qualitative results demonstrate a significant improve-

ment in accuracy and smoothness over the previous state-
of-the-art approach, without the need for post-processing.
In summary, our contributions are the following:

* We propose a novel two-stage network that can effec-
tively estimate full-body motion from the sparse head
and hand tracking signals with high accuracy and tem-
poral consistency. Note that our method does not need
any post-processing and significantly outperforms ex-
isting state-of-the-art approaches.

* We elaborately design our feature extractor that gen-
erates joint-level rotational, positional, and embedded
input features. These features are then utilized as spa-
tiotemporal tokens and processed using a transformer-
based network, which allows for better modeling of
joint-level correlations.

We introduce a set of losses that are tailored for the
task of full-body motion estimation, and experimen-
tally demonstrate the effectiveness of these losses in
achieving high accuracy while avoiding undesirable ar-
tifacts such as floating, penetration, and skating.

2. Related Work
2.1. Full-Body Pose from Sparse Observations

The task of estimating the full-body pose of a human
from sparse observations has garnered significant attention
in the research community [7, 38, 15,42, 41, 17,2,40,9, 5,

, 39]. Previous studies [38, 15, 42, 41, 17] have relied on
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multiple IMU inputs to track the signals of the head, arms,
pelvis and legs to capture the full body movements. SIP
[38] demonstrates the possibility of reconstructing accurate
3D full-body poses using only 6 IMUs without any other in-
formation (e.g., video). Sequentially, DIP [15] further uses
deep learning to achieve real-time performance and better
accuracy with only 6 IMUs either. Most recently, there has
been a shift towards a more AR/VR-focused setup, with
some studies [2, 40, 9, 5, 16, 39] exploring the use of only
HMD and hand controllers as input sources for even sparser
observations.

Choutas et al. [8] propose a neural optimization method
to fit a parametric human body model given the observa-
tions of the head and hands. Aliakbarian et al.’s recent work
[5] uses the generative model, normalizing flow, to address
the under-constrained problem. Dittadi et al. [9] take ad-
vantage of the Variational Autoencoders to synthesize the
lower body and implicitly assume the fourth 3-D input by
encoding all joints relative to the pelvis.

The work QuestSim [39] and AvatarPoser [16] bear the
most similarities to our own methodology. QuestSim em-
ploys reinforcement learning to facilitate physics simula-
tion. Nonetheless, the approach requires additional future
information at runtime to achieve optimal results. Avatar-
Poser uses a simple transformer-based network architec-
ture to achieve accurate and smooth full-body motions,
which demonstrates the feasibility of using a discrimina-
tive method for solving the task of full-body pose estimation
from sparse observations.

Following the work by Jiang et al. [16], we further inves-
tigate the potential of discriminative methods in full-body
pose estimation from sparse observations. Our approach
takes into account the nature of the task in the design of the
framework, allowing us to leverage discriminative models
for achieving more accurate and smooth full-body motions
from only head and two-hand tracking signals.

2.2. Transformer for Human Pose Estimation

Transformer [37] has emerged as a popular tool for hu-
man pose estimation tasks in recent years. Specifically, a
number of studies [14, 21, 22, 25] have utilized transform-
ers to solve the task of 3D human pose estimation from
RGB images. In addition, several studies [45, 44, 20] have
employed transformers to lift 2D human pose to the cor-
responding 3D human pose. Transformers have also been
widely used in motion generation tasks, as seen in studies
[4, 34, 30].

Two works [16, 17] have utilized transformer-based
methods to address a problem similar to that which our
proposition seeks to solve. The work from Jiang et al. [17]
employs a transformer network and a recurrent neural net-
work in combination to accurately estimate full-body mo-
tion using data from six IMUs. Meanwhile, Jiang et al. [16]
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Figure 3. Qualitative comparisons between AvatarPoser and ours.
The results are color-coded to show errors in red.

solve the pose estimation from HMD with a combination of
a transformer network followed by traditional model-based
optimization. However, both of them only treat each frame
of the observed signals as a token for the temporal trans-
former to process. This way does not take the task nature
into account and does not model the joint-level features,
which makes them hard to obtain more accurate and smooth
full-body motions.

Both of these methods process observed signals as se-
quences of temporal tokens, which are then utilized as in-
puts to the transformer network in a direct manner. We
argue that the direct application of input signals renders
the under-constrained problem more difficult to solve. In
response, we explicitly model the joint-rotation and joint-
position features to enable a more robust, intuitive, and
comprehensive representation. Furthermore, we utilize a
transformer-based network that alternatively captures spa-
tial and temporal joint dependencies, in a manner similar to
the approach taken by MixSTE [44].

3. Method
3.1. Problem Formulation

In this task, we aim at predicting the full-body motion
© = {0;}!_, € R™*, given a sequence of sparse tracking
signals X = {z;}l_; € R of ¢ frames from headsets
and hand controllers, where ¢ and s denote the dimension
of the input and output. Following the previous work [16],
we take the position, rotation, positional velocity, and an-
gular velocity of the head and hands as the input signals;
adopt pose parameters of the first 22 joints of the SMPL
[24] model to represent the output; and use the 6D repre-
sentation of rotations for the input and SMPL model for its
effectiveness [46]. Therefore, the input and output dimen-
sions are ¢ = 3% (6+6+3+3) = 54 and s = 22x6 = 132.

3.2. Two-Stage Joint-Level Modeling Framework

As illustrated in Fig. 2, our joint-level modeling consists
of two stages: 1) the initial joint-level features generation
stage and 2) the joint-level spatiotemporal correlation mod-
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Figure 4. Qualitative comparisons between AvataPoser, our method, and ground-truth on real-captured data.

eling stage. The first stage uses a simple network upon the
input signals to generate the initial joint-level features serv-
ing as a basis for further exploiting the joint correlation.
To achieve spatially accurate and temporally consistent full-
body human motion, the second stage captures the joint de-
pendencies in both spatial and temporal dimensions based
on a spatiotemporal transformer-based network.

3.2.1 Initial Joint-Level Features Generation

To enable the explicit modeling of joint-level correlations,
it is essential to generate initial joint-level features. We ac-
complish this by 1) generating initial full-body poses and
then 2) transforming them into joint-level positional and ro-
tational features. In this way, these two sorts of representa-
tions can explore different feature spaces to benefit follow-
ing spatiotemporal modeling.

Specifically, the initial full-body pose for each frame is
generated using two MLPs as follows:

Hembed = Fembed(X) S ]Rthl;

(1)
(-)init = Freg(Hembed) S RtX22X67

in which F,,,peq embeds the input signals to high-
dimensional input features Hepped, Freq further regress the
initial full-body pose ®,,;:, and d; represents the dimen-
sion of the high-dimensional input features.

Next, we perform a forward-kinematics on the initial
poses ®;,;; to obtain 3D positions of the joints P;,;; €
R!*22x3  We subsequently convert these positions from
the SMPL coordinate system to the head-relative coordinate
system and convert the relative joint rotations to global joint
rotations. Since we have specific observations of the head
and hands, we substitute the positions and rotations of these
joints with tracking signals, which provide guidance for the
subsequent capture of joint correlations. Then, we utilize
two linear layers to embed the joint rotations and positions
into high-dimensional joint-level features denoted as Hg €
Rt*22xd2 and Hp € R*22Xd2 | respectively. Here, dy is
the dimension of the high-dimensional joint-level features.
Finally, we concatenate Hg and Hp to obtain the initial
joint-level features Hj,,;; = [Ho @ Hp] € Rt*44xdz,
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3.2.2 Spatiotemporal Correlations Modeling

To achieve spatially accurate and temporally consistent full-
body human motion, we fully exploit the joint-level features
in both spatial and temporal dimensions to model the spa-
tiotemporal correlations. Observed that our targeting full-
body motion is dependent on the input signals from the head
and hands, the most potential joint dependencies are related
to the correlations between different joints and the head and
hand joints. To fully capture these correlations, we adopt
a transformer-based network allowing easy long-range de-
pendencies modeling between other joints and the head and
hands joints. Therefore, the initial joint-level features are
then utilized as carefully designed tokens for the spatiotem-
poral transformer-based network.

To fully excavate implicit information of designed to-
kens, we introduce a Spatial Transformer Block (STB) Fi
and a Temporal Transformer Block (TTB) F}, to capture
the dependencies in the spatial and temporal dimensions,
respectively. STB aims at capturing the spatial joint de-
pendencies within a frame, especially the dependencies be-
tween other joints and observed head and hands joints, and
achieving a reasonable single-frame pose estimation. The
input joint-level tokens h; € R***492 include the joint rota-
tional/positional features within a frame, where h; denotes
the initial joint-level features H,,;; in the it" frame. To pre-
serve certain input information during the feature learning
process, we supplement additional embedded input features
token f; to every single STB, where f; is the i*" frame of
H; ¢ R¥*1xd2 Jipnear-transformed from H,,,pcq. There-
fore, the input tokens for STB are s; = [h; ® f;] € R**d2
Note that before feeding s; into STB, we add a learnable
spatial positional encoding e, € R***% to s; for indi-
cating the relative location of the joint rotations/positions.
Then, STB utilizes the self-attention mechanism [37] to
model the dependencies of all the tokens for each frame and
outputs the spatially enhanced joint-level features H, =
{Fstb(Si)LM}g:l c Rt><44><d2 .

TTB focuses on learning the temporal correlations of
each joint for maintaining temporal consistency and motion
accuracy. TTB treats each kind of feature across the se-
quence as tokens, resulting in the features h' € R**92 with
t tokens in total, where A denotes the initial joint-level fea-
tures H;,,;: sliced in the second dimension. Besides, we
add a learnable temporal positional encoding e; € R**9 to
h* € R**42 for indicating the location of a specific joint fea-
ture in the sequence. Then the temporally enhanced joint-
level features Hy = {Fy(h?)}, € RX44Xd2 are en-
coded by the TTB as outputs.

Spatial and temporal correlations modeling complement
each other, in which STB tends to generate reasonable pose
without temporal consistency and TTB tends to smooth the
motion while introducing pose misalignment. Inspired by
MixSTE [44], we alternatively use STB and TTB, which

Input Method MPJRE MPJPE MPIVE

Final IK 12.39 9.54 36.73
CoolMoves 4.58 5.55 65.28
Four LoBSTr 8.09 5.56 30.12
" | VAEHMD  3.12 351 2823
AvatarPoser 2.59 2.61 22.16
Ours 2.40 2.09 17.82
Final IK 16.77 18.09 59.24
CoolMoves 5.20 7.83 100.54
Three LoBSTr 10.69 9.02 44.97
VAE-HMD 4.11 6.83 37.99
AvatarPoser 3.21 4.18 29.40
Ours 2.90 3.35 20.79
Table 1. Evaluation results under Protocol 1.
Dataset ‘ Method MPJRE MPIJPE MPJVE
Final IK 17.80 18.82 56.83
CoolMoves 9.20 18.77 139.17
LoBSTr 12.51 12.96 49.94
CMU VAE-HMD 6.53 13.04 51.69
AvatarPoser 5.93 8.37 35.76
Ours 5.34 7.75 26.54
Final IK 15.93 17.58 60.64
CoolMoves 7.93 13.30 134.77
LoBSTr 10.79 11.00 60.74
BMLrub | v\ g ivD 5.34 969  51.80
AvatarPoser 4.92 7.04 43.70
Ours 4.71 6.49 36.96
Final IK 18.64 18.43 62.39
CoolMoves 9.47 17.90 140.61
LoBSTr 13.17 11.94 48.26
HDMO5 VAE-HMD 6.45 10.21 40.07
AvatarPoser 6.39 8.05 30.85
Ours 5.86 6.60 23.57

Table 2. Evaluation results under Protocol 2.

can decompose the feature learning into spatial and tempo-
ral dimensions. Specifically, we stack STB and TTB for n
loops to obtain the final spatiotemporally modeled features
Hst c RtX44><d2.

Finally, we employ an MLP to regress the pose parame-
ters ® of SMPL from Hg;. The MLP consists of 2 linear
layers, 1 group normalization layer, and 1 activation layer.
The local full-body pose P is derived from ® using SMPL.

3.3. Loss Design and Training Process

We make use of L1 body orientation loss, L1 body joint
rotational loss, and L1 body joint positional loss, resem-
bling AvatarPoser [16]. Moreover, since this task is of a
high degree of freedom, it is not easy to obtain accurate mo-
tion without additional constraints. Therefore, to better ex-
ploit the potential of our joint-level modeling, we introduce
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Method MPJRE MPJPE MPJVE Jitter
VPoser-HMD' / 6.74 / /
HuMoR-HMD / 5.50 / /
VAE-HMD' / 7.45 / /
ProHMR-HMD' / 5.22 / /
FLAG / 4.96 / /
AvatarPoser* 4.56 6.44 34.45 11.15
Ours 4.30 4.93 26.17 7.19

Table 3. Evaluation results under Protocol 3. T denotes methods
explicitly using additional pelvis information during inference. *
denotes our retrained AvatarPoser using their public source code.

a set of losses that are tailored for this task to achieve better
alignment with the input signals, temporal consistency, and
physically plausible results.

Hand Alignment Loss. As discussed in the previous study
[16], predicting absolute pelvis translations is worse than
obtaining the translation from the known head position.
Therefore, we also obtain the translation from head align-
ment that aligns the head position of our local full-body
pose to the global position of the head to obtain full-body
positions in the global coordinate system PY9. However,
this approach causes a misalignment between the predicted
and input global hand positions. To solve this problem,
AvatarPoser adopts an inverse kinematics (IK) module to
align hands. Nevertheless, the IK module is very slow.
To better address this issue, we add a hand alignment loss
Ly = 3300 [phend — phend||; to align the global hands
after the head alignment, where p!'?"¢ denotes global hand
joint positions of i*" frame from P9 and " denotes ground-
truth. This way makes the whole framework end-to-end
trainable, contributing to good hand alignment without us-
ing the IK module to slow down the system. Since the full-
body pose is highly correlated to the hand joints, our per-
formance in different metrics all obtain improvement when
the accurate hand position is perceived by the network.
Motion Loss. Following previous studies [42, 34], we
also utilize velocity loss L,(l) = 5 Zf;} [(pit: —
pi) — (Piyr — Pi)|l1 and foot contact loss L;. =
= ZZ;}H(pfjit — p!®“*) - my]|; for achieving a smooth
and accurate motion, where p; is the predicted global full-
body pose in i** frame and p{ °“! denotes the joints relevant
to the feet. L, encourages the inter-frame velocity to be
close to the corresponding velocity of the ground-truth; L.
enforces zero feet velocity when the feet are on the ground.
m; € {0,1}¥ is the binary foot contact mask of i*" frame,
denoting whether the feet touch the ground and % is the feet-
relevant joint number. Instead of only using L, (1) to super-
vise the velocity between adjacent frames, we also utilize
L,(3) and L,(5) to avoid the accumulated velocity error.
Therefore, the proposed motion loss is defined as :

Lot = Ly(1) + Ly(3) + Ly(5) + Liye. 2)

Position Rotation
0]
’ (e § KLY
, ) L= 2 - 75 :[ i
=) = e ]
= ,2 = = - 7= \é =5

Incorrect

Position + Rotation + EIF
Figure 5. Ablation study for our method with four different gen-
erated features for the second stage, in which the errors are color-
coded in red.

Position + Rotation

Physical Loss. Since this task lacks lower body informa-
tion, the prediction tends to fail to match the upper body
while maintaining the lower body physically plausible for
challenging cases (e.g., jump, sit). To mitigate physical im-
plausibility (especially ground penetration), we add ground
penetration loss L, = 1 Sl (27" = Zground) - lil|1 and
ground-foot height loss Ly, = 1 S (285 — 2ground) -
1, Where zg,ounq is the ground height, zg”” is the pre-
dicted height of the lowest joint in ;5 frame, zszet is the
predicted height of the feet-relevant joints in 7** frame, and
l; € {0,1}?2 denotes whether the joint is lower than the

ground. Thus, the proposed physical loss is defined as:

Lphy =L,+ ath. 3)

These two physical losses are complementary to each other
because penetration error tends to “push” the predictions
away from the ground, while the foot height error tends to
“pull” the predictions to the ground.

Overall Loss. Our complete loss function for training the
model is defined as follows:

L= Lfirst +BL07'1' +’YLT'ot +6Lpos +€Lh + CLmot + Lphya
4)

where L tirst, Lori, Lyrot, and Lpes are L1 loss for the ini-
tial head-relative full-body pose, the final SMPL root orien-
tation @1, joint rotations @132 and full-body pose P.
We set «, 3, v, 6, €, and ¢ to 0.5, 0.02, 2, 5, 5, and 50
respectively to balance their loss scale.

Masked Training. During training, we randomly masked
2 of the tokens except for the head and hands tokens. In
this way, the model is more robust for the quality of the
generated initial joint-level features.

Implementation Detail. Following AvatarPoser [10], we
set the input sequence length ¢ to 41 frames if not stated
otherwise. During inference, we utilize sliding windows
for prediction like AvatarPoser, which predicts the current
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Protocol ‘ Method MPJRE MPIJPE MPIJVE Jitter Ground Skate H-PE U-PE L-PE
1 AvatarPoser* 3.07 4.15 28.39  16.15 3.80 023 245 200 791
Ours 2.90 3.35 20.79 8.39 3.30 013 124 172 6.20

3 AvatarPoser* 4.56 6.44 3445 11.15 2.95 032 370 293 12.59
Ours 4.30 4.93 26.17 7.19 2.17 021 145 227 959

Table 4. More metrics comparisons with AvatarPoser [
public source code.

] under Protocol 1 and Protocol 3. * denotes our retrained AvatarPoser using their

Method ‘ MPJRE MPIJPE MPJVE Jitter Ground Skate H-PE U-PE L-PE
AvatarPoser™ 7.28 11.22 31.67 12.87 2.20 030 6.60 579 20.73
Ours 6.98 9.52 25.78  10.04 0.20 021 531 516 17.15

Table 5. Evaluation results on the real-captured data. * denotes our retrained AvatarPoser using their public source code.

frame using the current frame and previous ¢ — 1 frames.
We train the network with a batch size of 64 and use Adam
solver [18] for optimization. Our model is trained for
100, 000 iterations. The learning rate starts at le — 4 and
drops to 1le — 5 after 60, 000 iterations. The feature dimen-
sion d; and dy for our model are set to 1024 and 512, and
the stacked loops n of our network are set to 6. Our model
takes 24.7ms to infer 41 frames on an NVIDIA A100 GPU
without needing any further post-processing (e.g., IK).

4. Experiment

In this section, we first report the metrics adopted in pre-
vious tasks [16, 5, 43, 42]. Then we compare with pre-
vious state-of-the-art methods qualitatively and quantita-
tively. We also evaluate each of our main contributions.
Fig. 4 demonstrates the superiority of our methods using
various motions. Please kindly refer to our supplementary
video/materials for more details.

Accuracy-related metric. To evaluate the pose accuracy
for each frame, we use MPJPE (mean per joint position
error) and MPJRE (mean per joint rotation error), which
measure the average position/relative rotation error of all
body joints. Besides the full-body MPJPE, we also evalu-
ate upper-body MPJPE (U-PE), lower-body MPJPE (L-PE),
and hand MPJPE (H-PE), which can reflect different capa-
bilities of the methods.

Smoothness-related metric. To evaluate the motion
smoothness, we use MPJVE (mean per joint velocity er-
ror) and Jitter. MPJVE measures the average velocity error
of all body joints. Jitter measures the average jerk (time
derivative of acceleration) of all body joints, which reflects
the smoothness of the motion [11].

Physics-related metric. To evaluate the physical plau-
sibility of motions, we use Ground and Skate metrics.
Ground measures the distance between the lowest ground-
truth body joint and the lowest predicted body joint. This
metric reflects whether the generated motions have the cor-
rect contacting relationship with the ground (if the body
penetrates the ground or floats above the ground, the error
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Figure 6. Ablation study for our method with different loss set-
tings, in which the errors are color-coded in red.

will be large). Skate measures the average horizontal dis-
placement between the grounding feet in adjacent frames.

4.1. Comparison

We make a thorough comparison with previous studies
on the AMASS dataset[26]. Fig. 3 presents the qualitative
comparison against AvatarPoser [16] and demonstrates that
our method can achieve more accurate and smooth results
without physical implausibilities. For quantitative compari-
son, we adopt three widely used settings as follows.
Protocol 1. For the first setting, we follow [16] to split the
subsets CMU [13], BMLrub [35], and HDMOS5 [28] into
90% training data and 10% testing data. We compare our
performance using both three (headset and controllers) and
four inputs (add a pelvis tracker) with previous methods
[16,9, 2, 40, 32]. Note that unless otherwise stated, we all
use three inputs for experiments. As shown in Tab. 1, our
performance with both three and four inputs outperforms
existing approaches by a large margin in all previously used
metrics. At the top of Tab. 4, we present comprehensive
comparisons between our method and AvatarPoser using
all the metrics. The results show that our method can ac-
curately estimate lower body motions (L-PE) while being
much smoother and more physically plausible.

Protocol 2. For the second setting, we follow [16] to
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Stage | Method

MPJRE MPIJPE MPIVE Jitter

Ground Skate H-PE U-PE L-PE

| Constant Token 6.97 9.00 31.21 3.80 12.02 0.36 1.55 371 18.26
Learnable Token 6.91 8.91 30.82 3.48 11.52 0.36 1.57 371 18.01
Position 6.15 6.77 25.53 5.76 2.63 0.23 1.62 348 1251

) Rotation 6.00 7.48 26.41 3.77 2.48 0.26 1.92 3.62 14.21
Rotation + Position 5.90 6.71 23.97 4.42 2.60 0.22 1.71 3.51 12.30
Rotation + Position + EIF 5.86 6.60 23.57 4.10 2.46 021 169 352 1212

Table 6. Performance comparisons between our proposed method with different initial joint-level features. The best results are in bold, and

the second-best results are underlined.

Method MPJRE MPIJPE MPIVE Jitter Ground Skate H-PE U-PE L-PE
Ours + Basic Loss 6.09 7.50 32.53 8.98 3.66 035 311 393 1376
+ Hand 5.87 6.90 29.07 6.88 3.73 033 158 351 1285
+ Hand + Motion 5.81 6.74 24.25 4.22 3.22 022 1.60 356 1232

+ Hand + Motion + Physical 5.86 6.60

23.57 4.10 2.46 021 1.69 352 1212

Table 7. Performance comparisons between our proposed method with different loss functions. * denotes our retrained AvatarPoser using
their public source code. The best results are in bold, and the second-best results are underlined.

perform a 3-fold cross-dataset evaluation to compare with
[16, 9, 2, 40, 32]. Using the subsets CMU [13], BMLrub
[35], and HDMOS5 [28], we train on two subsets and test
on the other subset in a round-robin fashion. Tab. 2 shows
the experimental results. Our method achieves the best per-
formance over all the previously used metrics in all three
datasets. Our performance is significantly better than the
second-best method, demonstrating exploiting joint-level
features contributes to generalization ability greatly.

Protocol 3. For the third setting, we follow [5] to use the

subsets [13, 3, 36, 10, 27, 35,27, 12, 26, 23, 1, 28] for train-
ing, and use the Transition [26] and HumanEva [33] subsets
for testing. The comparative results with [29, 31, 19, 9, 16]

are shown in Tab. 3. Since some existing approaches
[29, 31, 19, 9] implicitly assume the knowledge of the pelvis
position but we do not, the comparisons are unfair. How-
ever, our MPJPE is still superior to FLAG [5], showing the
effectiveness of our method. When fairly compared with
AvatarPoser, our method is significantly better. The perfor-
mance gap between AvatarPoser and ours is larger than that
in other protocols, which indicates our method can benefit
from more training data. At the bottom of Tab. 4, we present
the comprehensive comparisons between our method and
AvatarPoser using all the metrics. Similar to Protocol 1, our
proposed method outperforms AvatarPoser in all metrics by
a large margin.

Moreover, to further evaluate our performance on the
real headset-and-controllers data for VR/AR applications.
We also capture a set of real evaluation samples from HMD
and controller devices with the corresponding ground truth
using a synchronized MoCap system; for details see supple-
mentary materials. To quantitatively compare our method
with AvatarPoser and show the sim-to-real performance gap
on real-captured data, we use the models trained with Pro-
tocol 3. As shown in Tab. 5, even though there are some

acceptable drops in certain metrics from synthetic data, our
model still outperforms AvatarPoser by a large margin as
well, indicating our performance improvement does not
come from simply overfitting the synthetic data but from
well-learned motion knowledge from the large-scale motion
data. Fig. 4 qualitatively demonstrates that our model can
reconstruct more realistic and physically plausible results
for those challenging cases (e.g., walking backward, kick-
ing, sitting, and standing up) better than AvatarPoser.

Beyond the above comparisons, we also conducted a
user study to compare the subjective quality of our method
with AvatarPoser. Our method achieved 3.69 scores while
AvatarPoser gained 1.98 scores only (5-level Likert scale).
More details are in supplementary materials.

4.2. Ablation Study

We perform ablation studies using CMU [13] and BML-
rub [35] for training and HDMOS [28] for testing.
Initial joint-level features and tokens. To validate the ef-
fectiveness of our two-stage framework using a coarse full-
body for feature initialization apart from the head and hand
joints, we compare our method with two alternatives: 1) us-
ing the constant token as the initialized features; 2) using the
learnable token as the initialized features, similar to [0, 25].
As shown in Tab. 6, these two alternatives are much worse
than ours. Next, we demonstrate the effectiveness of our to-
ken design with different initial joint-level features. The re-
sults in Tab. 6 proves that using either joint-rotation features
or joint-position features is worse than combining them to-
gether to exploit different useful features. After adding em-
bedded input features token to provide input information for
the spatial transformer blocks, the performance is better, in-
dicating that repeatedly introducing the input information is
useful for this task. Fig. 5 shows visual results with differ-
ent initial joint-level features.
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Method

‘MPJRE MPJPE MPJVE Jitter

Ground Skate H-PE U-PE L-PE

AvatarPoser ‘ 6.39 8.05 30.85 - - - - - -

AvatarPoser-L* 5.95 7.80 30.82 6.89 3.83 0.32 4.29 419 14.12
AvatarPoser-L* + Our Loss 6.02 7.14 23.92 341 2.51 0.21 1.82 3.54 1343
Ours + Our Loss 5.86 6.60 23.57 4.10 2.46 0.21 1.69 352 12.12

Table 8. Architecture comparisons with AvatarPoser [16]. * denotes our retrained AvatarPoser using their public source code. AvatarPoser-

L denotes a larger version of AvatarPoser.

Method ‘ MPIJIRE MPIPE MPIVE Jitter
Ours 5.86 6.60 23.57 410
w/o Mask Training 5.91 6.65 23.87 4.19

Table 9. Performance comparisons between our proposed method
with and without mask training.

Loss. Tab. 7 shows the contribution of our designed loss
functions. Adding hand alignment loss upon the basic loss
significantly reduces hand error (H-PE) and makes the net-
work end-to-end trainable, which also improves other met-
rics. Additional motion loss contributes a lot to the motion-
related metrics (MPJVE, Jitter, and Sliding), and also ben-
efit other metrics. Using physical loss, physics-related er-
rors decrease, especially the Ground error. For more ex-
periments on every single combination of all our loss func-
tions, please refer to our supplementary materials. Fig. 6
provides our visual results with and without our designed
loss. To better justify the effectiveness of our loss design,
we also apply our complete loss function to the AvatarPoser.
As shown in Tab. 8, our loss can also dramatically improve
AvatarPoser, indicating that our loss design is not only use-
ful for our network design but also suitable for this task.
Architecture. To fully compare our joint-level architec-
ture with AvatarPoser, we enlarge AvatarPoser by using 12
transformer layers and setting the feature dimension to 512
for it (if even larger, AvatarPoser cannot converge). As
shown in Tab. 8, our method still outperforms AvatarPoser
to a great extent. Even after being significantly improved
by our loss function, AvatarPoser still achieves an inferior
performance to our method in almost all the metrics. Even
though the Jitter metric for AvatarPoser is better, analyzing
this metric alone makes no sense since Jitter error can be
quite low when predicting the same wrong full-body poses.
This phenomenon further justifies our joint-level modeling.
Mask training. Tab. 9 shows that our method with and
without mask training. The results demonstrate that our
method benefits from mask training. Meanwhile, this ap-
proach does not introduce any inference burden.

4.3. Limitation and Discussion

We expect to generate realistic motions, in which “re-
alistic” emphasizes smoothness, physical plausibility, and
alignment with the inputs. Despite our ability to achieve this
objective in the majority of cases, there remain some issues

AMASS Real-Captured Data

GT

Ours
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|
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Il
I
I
|
|
|
|
|

> P

Figure 7. Failure cases on AMASS and real-captured data.

that are beyond our capacity to solve. Fig. 7 presents our
failure cases. On AMASS, our model can not predict com-
plex lower body motions (e.g., ballet) and may collapse with
rare motions (e.g., falling down). On real-captured data,
our model has difficulty reconstructing motions with small
variances of tracking signals but large lower-body move-
ments. Inferring full-body poses from three sparse signals
is under-constrained and highly dependent on large-scale
motion data. Incorporating additional legs’ signals (e.g.,
IMUs and images) may help resolve this problem. Further-
more, we believe more real-captured training data can also
contribute greatly to the task since we observe some chal-
lenging cases can be solved with enough trained data on the
synthetic data.

5. Conclusion

In this paper, we propose a two-stage learning-based
framework for accurately estimating full-body motion from
sparse head and hand tracking signals. We explicitly model
the joint-level features in the first stage and then utilize them
as spatiotemporal tokens for alternating spatial and tempo-
ral transformer blocks to estimate the full-body motion in
the second stage. With a set of carefully designed losses,
we fully exploit the potential of our joint-level modeling
to obtain realistic full-body motion. Extensive experiments
demonstrate both significant quantitative and qualitative im-
provement of our method over the previous state-of-the-art
approaches without any post-processing during inference.
We believe that our approach is a critical step in bridging
the physical and virtual worlds for VR/AR applications.
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