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Abstract

We consider the problem of video snapshot compres-
sive imaging (SCI), where sequential high-speed frames
are modulated by different masks and captured by a sin-
gle measurement. The underlying principle of reconstruct-
ing multi-frame images from only one single measurement
is to solve an ill-posed problem. By combining optimiza-
tion algorithms and neural networks, deep unfolding net-
works (DUNs) score tremendous achievements in solving
inverse problems. In this paper, our proposed model is un-
der the DUN framework and we propose a 3D Convolution-
Transformer Mixture (CTM) module with a 3D efficient and
scalable attention model plugged in, which helps fully learn
the correlation between temporal and spatial dimensions by
virtue of Transformer. To our best knowledge, this is the
first time that Transformer is employed to video SCI recon-
struction. Besides, to further investigate the high-frequency
information during the reconstruction process which are
neglected in previous studies, we introduce variance esti-
mation characterizing the uncertainty on a pixel-by-pixel
basis. Extensive experimental results demonstrate that our
proposed method achieves state-of-the-art (SOTA) (with a
1.2dB gain in PSNR over previous SOTA algorithm) re-
sults. Code can be found on https://github.com/
zsm1211/CTM-SCI.

1. Introduction

Nowadays, due to the ability of capturing high-
dimensional data in an efficient way, Snapshot Compres-

12738

BIRNAT

DUN-3DUnet

Figure 1. Illustration of comparison between the reconstruction re-
sults in the high-frequency details of previous SOTA algorithms
and Ours. We present the details both in image domain (first line)
and frequency domain (second line). To be more visually clearly,
we also present the intensity profiles extracted from the cross-
section yellow lines in the first example. Our proposed algorithm
can reconstruct better high-frequency details.

sive Imaging (SCI) [32, 59] has attracted much attention.
SCI system just employs a low-speed 2D camera to capture
3D sequential video frames, hyperspectral data, etc. [66, 3],
where a digital micro-mirror device [17, 39] or a shifting
mask [01] is utilized to modulate consequent frames. With
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Figure 2. Illustration of the design motivation.

the knowledge of modulation, the captured single 2D mea-
surement can be reconstructed to original sequential frames
by algorithms [19, 50, 26, 51, 65, 62, 56]. In this paper, we
focus on the reconstruction problem of video SCI systems.
To be concrete, the reconstruction process can be regard
as solving an ill-posed inverse problem where the num-
ber of pixels to be reconstructed is much higher than the
number of known parameters. With the development of
deep learning, deep neural networks has been employed
to conduct the reconstruction in recent years, where con-
volutional neural networks (CNN) are dominating. Com-
pared to optimization-based algorithms, learning-based al-
gorithms can directly map the measurement and the target
images which makes it easier and faster to bring reconstruc-
tion results up to the mark. To improve learning-based algo-
rithms’ defect of lacking interpretability, recently proposed
deep unfolding networks (DUNs) [50, 26, 51] combine the
merits of both optimization-based and learning-based algo-
rithms, and achieve the best results so far.
Motivation: As shown in Fig. 1, previous SOTA learning-
based algorithms [50, 5, 60] are not ideal for high-
frequency detail reconstruction. In their initialization (de-
tails in Fig. 3), as shown in the top-middle of Fig. 2, the
NF and RF both have a relatively clean background and
clear stationary areas, which can directly feed the low-
frequency information to the following network. However,
the high-frequency features such as edges and textures
can not be directly obtained from the measurement and
are neglected by previous studies for video SCI. For the
network structure, convolution-based backbone architec-
tures have long dominated visual modeling in computer vi-
sion [25, 40, 18, 16]. Itis the same in the video SCI tasks, all
previous SOTA learning-based algorithms are CNN-based.
Although CNN has many advantages, its receptive field is
usually small and relies on deeper layers or larger convolu-
tion kernels, which is not conducive to capture global fea-
tures such as contour features and texture features which
are also the high-frequency features. By contrast, Trans-
former can well capture long-distance dependencies and

global inter-dependence between different regions, yet few
researches of applying Transformer to video SCI are carried
out.

To sum up, previous learning-based frameworks mainly
suffer from following two problems: 1) High-frequency in-
formation is not taken into consideration. 2) Compared to
Transformer, CNNs are weak in capturing global features,
some of which are also high-frequency features like contour
features and texture features. Due to the mutual influence of
these two aspects in the reconstruction process, the fidelity
of the high-frequency details is compromised.
Contributions: Towards this end, hereby, we propose a
Transformer enabled deep unfolding framework for video
SCI and we further introduce uncertainty estimation to take
high-frequency information as regularized prior under the
unfolding framework into consideration for better recon-
struction. Our contributions can be summarized as follows:

1) We propose a novel video Convolution-Transformer
module, dubbed CTM, for video SCI that can well
capture local and global spatial-temporal interactions
which is composed of 3D CNN, 3D scalable blocked
dense and dilated sparse attention. Note that the at-
tention modules take both local and global information
into consideration with only a linear complexity.

2) Unlike previous studies that only consider the low-
frequency information such as the information of sta-
tionary areas or backgrounds [5, 50, 4], we first bring
high-frequency information as regularized prior
under the unfolding framework in video SCI for
focusing on areas with high reconstruction uncer-
tainty and improving the fidelity of reconstruction,
which is achieved by the variance estimation charac-
terizing the uncertainty on a pixel-by-pixel basis.

3) We first introduce Transformer for video SCI re-
construction. Both real and simulation experiments
demonstrate that our proposed framework outper-
form previous SOTA algorithms with a large mar-
gin of PSNR over 1.2dB.

2. Related Work

Snapshot compressive imaging: In terms of hardware,
except capturing high-speed video frames [17, 11, 32],
SCI has demonstrated promising results on spectral[ 12, 65,
28], spectral-temporal[42], polarization[43], and coherent
diffraction imaging[3], etc. The underlying principle of
these systems is to modulate the high dimensional signals
and capture the measurement compressively.

From the software perspective, the reconstruction al-
gorithms can be broadly divided into two categories,
i.e., optimization-based and learning-based algorithms.
Optimization-based methods utilize various priors [58, 64,
29, 53, 54] during reconstruction. However, the inference
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time is limited by the iterative solution process. As the
development of deep learning, learning-based algorithms
achieve impressive success in solving inverse problems.
Different network backbones, such as CNN[38, 4] and re-
current neural network (RNN)[5] have been employed for
video SCI reconstruction. Though these learning-based
methods can achieve more decent results, their reconstruc-
tion process lacks interpretability. Combining the merits of
above both kind of methods, DUNs[50, 26, 51] have been
developed. However, pixels with high reconstruction vari-
ance have not attracted enough attention.

Uncertainty: Uncertainty has been widely studied to help
solve the reliability assessment, regression, risk-based de-
cision making problems[8, 10, 36, 13, 49]. Recently, un-
certainty has been introduced into deep learning to improve
the robustness and performance of deep neural networks for
computer vision tasks such as semantic segmentation[20),
22], image classification[14], object detection[6], etc. For
uncertainties in deep learning, they can be roughly classified
into model uncertainty capturing the noise of the network’s
parameters, and data uncertainty referring to the noise in-
herent in the training data. Ning et al. investigated the data
uncertainty with estimated mean and variance in low-level
vision task such as super-resolution[34], which focuses on
the areas with higher variance and achieved better result. In
image or video restoration tasks, high-frequency infor-
mation is hard to be reconstructed [52] due to the corre-
sponding high reconstruction uncertainty. To introduce
the high-frequency information from the measurement into
the network during training process, we first estimate the
uncertainty and extract the feature maps of high-frequency
information which are finally fed into the unfolding frame-
work as regularized prior.

Transformer for vision: Recently, Transformer has
achieved impressive success in the field of natural language
processing due to the powerful self-attention mechanism,
which inspires numerous researchers to introduce atten-
tion mechanism into vision. Many works[46, 55] provide
a complementary component (Self-attention/Transformers)
to CNNs for modeling long range dependency. Vision
Transformer (ViT)[9] and its follow-ups[ 15, 41, 45, 57, 44]
start the trend of that backbone architectures for com-
puter vision shift from CNNs to Transformers. Swin
Transformer[30] is a typical representative and the key de-
sign is its shift of the window partition between consecutive
self-attention layers, which enables it to serve as a general
backbone for various tasks. Video Swin Transformer[31]
extends the scope of local attention computation from only
the spatial domain to the spatiotemporal domain through
spatiotemporal adaptation of Swin Transformer. In this pa-
per, our proposed CTM takes both spatiotemporal globally
and locally into account by integrating Transformer and
3D-CNN, and outperforms all previous SOTA methods.

3. Review the Forward Model of Video SCI

The top-left of Fig. 3 depicts the principle of video SCI,
where multiple high-speed frames X € RV *#*T are mod-
ulated by different masks M € R">*#*T and then the mea-
surement Y € R">*# is captured by a 2D camera, where
W, H, and T denote the width, height, and the number of
frames, respectively. The 2D measurement is

Y=Y, ,X,oM, +N, 6))

where N € R"H denotes the measurement noise and ©®
represents the Hadamard (element-wise) multiplication.
Eq. (1) can be rewritten as the following linear from:

y=®x+n, )

where x = vec(X') € RVAT |y = vec(Y) € R"H, and n =
vec(N) € R"H. vec() here denotes vectorization. The
sensing matrix ® € RVHXWHT can be expressed as

@ = [Diag(vec(My)),...,Diag(vec(M;))].  (3)

Diag() here means diagonalizing the vector. Note that @ is
a very sparse matrix and the reconstruction error is bounded
when 7 > 1 [21].

4. Proposed Method

DUN Framework: SCI reconstruction is an ill-posed prob-
lem which can be modeled as:

x:argminx||y—d>x||%+kl//(x), )

where y(x) denotes the regularization term to confine the
solutions, A balances the two terms. Here we unfold the
iterations utilizing the framework of generalized alternating
projection (GAP) [27], which solves:

{x,7} = argmin,||x —v|3 + Ay(v), st y=Px. (5)
The solution can be derived by the following two steps:

* Given v, x is updated by the following projection:
=y LT (@) (y—dvlUD).  (6)

Recall Eq. (3), we have ®®' = Diag(Ry,...,Rwy) is a
diagonal matrix where R; = ZthlM,zj, Vi=1,...,WH.

Thus Eq. (6) can be efficiently solved.
* Given x, v is achieved by:

v =e(x). 1)), %

where v(/) denotes the j-th phase’s estimate of the target
signal, [] denotes the concatenation, I" represents other
inputs of different phases, and ® symbolizes the proposed
prior module in each phase. To balance the trade-off
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Figure 3. Illustration of video SCI and our proposed model. Top-Left: Sequential video frames are modulated by dynamic masks and
then compressed to the measurement. Normalized Measurement is achieved by element-divide the sum of dynamic masks. Reference
Frames are acquired by element-wise multiplication. Top-Right: Architecture of our proposed uncertainty guided DUN for video SCI.
Bottom: Details of CTM blocks, composed of 3D scalabe blocked local and dilated global attention combining 3D-CNN. & here denotes

concatenation. More details are in Supplementary Material (SM).

between reconstruction performance and model size, we
only utilize 3 phases which will be disscused in Sec.5.3.
Unlike conventional optimization-based algorithms uti-
lizing various denoisers, in most unfolding-based algo-
rithms deep networks are used to learn a more appropriate
prior to constrain the signal domain. Differently, we do
not just let the network to learn a prior and we further
introduce a regularized prior input into our unfolding
framework by uncertainty estimation which focuses
on the pixels with higher reconstruction uncertainty.
More network structure details in the following sections.

Uncertainty Estimation for SCI: As mentioned above, un-
certainty could be roughly classified into model uncertainty
capturing the noise of the network’s parameters, and data
uncertainty referring to the noise inherent in given training
data[23]. We investigate the data uncertainty estimation for
SCI. Let f(-) denotes the reconstruction algorithm, the data
uncertainty can be formed as an additive term o. In this
way, the observation model can be formulated as:

X:f(y)+8d, ®)

where € ~ .47(0,1). We assume a Gaussian distribution to
characterize the likelihood function:

[lx=/

262 HZ) (9)

Plx,0ly) = e exp(—

the log-likelihood function is naturally represented as:

[ESFAGIE

Inp(x,oly) = =532 — 3Inc? — jIn2z.  (10)

As shown in the top-right of Fig. 3, we learn the target es-
timation (mean value, f(y)) and uncertainty (variance, )
respectively by two decoding branches sharing the same en-
coder. Note that the network f(-) here has the same struc-
ture as the network in each phase except the additional de-
coding branch for uncertainty estimation, we will talk about
this in the Sec.5.3. For more stable training, we estimate the
log variance B = Ino? rather than directly estimate o due
to the high dynamic range. Maximizing the likelihood in
Eq.(10) is same as minimizing the following loss function
for learning the uncertainty (variance) of SCI reconstruc-
tion:

Ly =exp(—B)llx—FO)I5+B. (11)

The uncertainty estimation results is shown in Fig. 4. To
visually highlight the pixel with high variance, we uti-
lize thresholding method for the binarization processing
in Fig. 4, and the threshold is the mean of the inten-
sity. We can observe that pixels with high variance are
distributed around the high-frequency details, such as
edges and textures. In previous researches [5, 50, 4], Ref-
erence Frames (RF) are utilized in the initialization part for
introducing the low-frequency information to improve the
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Figure 4. Visualization of the estimated uncertainty of two selected
scenes under two different masks.

reconstruction performance. As shown in the top-left of
Fig. 3, the Normalized Measurement can achieve more vi-
sually clear background and stationary areas but with blurry
edges and textures. Hence, at the initialization of each
phase, we not only focus on the low-frequency information
but also take the high-frequency details into consideration.
The feature maps being fed into each phase are extracted
from the estimated uncertainty map (UM) by three 3D-CNN
blocks. The 3D-CNN blocks have the same structure but
without sharing parameters. Fig. 4 also shows the uncer-
tainty estimation module’s adaptability to different masks.
Under different masks, the uncertainty estimation is unaf-
fected.
Convolution-Transformer Mixture: Multi-head self-
attention modules (MSA) are widely used in Transform-
ers. Most of traditional MSAs of Transformers for video
perform global spatial interactions by utilizing all tokens
extracted from the whole feature map, which requires
quadratic complexity. Compared to images, videos need to
take the correlation of temporal dimension into considera-
tion. Inspired by previous studies [30, 31, 44], we propose
a novel attention module. As shown in the bottom of Fig. 3,
CTM is composed of three sequential stacked parts, i.e., 3D
blocked dense attention (BDA) for local interaction, 3D di-
lated sparse attention (DSA) for global interaction, and 3D-
CNN based feature fusion (FF) module for further exploring
spatiotemporal correlations.

Let X € RW*HxTxCdenote input feature map. In BDA,
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given a 3D window size of P x P x M, the input tokens are
partitioned into % X % X % non-overlapping 3D windows.
As shown in the bottom of Fig. 3, given an input with the
size of 8 x 8 x 8 and the 3D window size 4 x 4 x 4, we
achieve 8 3D windows. And we conduct MSA on each win-
dow:

MSA(X) = Softmax(QK” /v/d + B)V, (12)
where Q, K,V denotes the query, key, and value matrix re-
spectively, the number of each head’s channels d = % and N
is the number of heads. B represents the 3D relative position
bias. compared to full self-attention (FSA),

Q(FSA) = 4WHTC? 4 2(WHT)?C. (13)
BDA allows local spatiotemporal interactions with only a
linear complexity,

Q(BDA) = [4P*MC? +2(P>M)*C] AL,

= AWHTC* +2WHTP>MC.

For practical applications of SCI, large-scale scenarios are
very common. However, local-attention models do not
adapt well to large scales[7, 9]. Inspired by [63], we pro-
pose 3D DSA for global interaction. Unlike BDA where the
input tokens are partitioned into non-overlapping 3D win-
dows, in DSA, to keep the fixed group size of S x S x B, the
tokens are selected from the sparse positions with the inter-
val of % X % X %. As shown in the bottom of Fig. 3, given
an input with the size of 8 x 8 x 8 and the interval size of
2 x2x 2, we achieve 8 groups with the size of 4 x 4 x4 and
employ MSA as well. Note that the complexity of DSA for
global interaction is also linear,

Q(DSA) = [45?BC* +2(5?B)*C) %L

— AWHTC*+2WHTS?BC.

Recall video Swin[3 1] where the mechanism of 3D shifted
windows is employed to bridge the connections across dif-
ferent windows, our proposed 3D local and global attention
achieves this in a more implementation friendly way and is
scalable.

We propose an initialization feature extraction block at
the beginning of each phase to increase the generalization
and trainability of the network. In each CTM block, to fur-
ther explore the correlation of spatiotemporal dimensions,
we plug FF into each CTM block. In FF, the feature map is
first divided into two parts according to the channels. Then
the two parts with skip connection are respectively sent into
two Resnet modules with the same structure but not shar-
ing parameters. Finally the features are fused to keep the
original dimensions. We utilize 3D-CNN for all the convo-
lutional layers.



Training: Prior to the training of uncertainty estimation,
we first train the whole network without uncertainty esti-
mation to ensure the convergence. Given the training pairs
(y,-,xi)gvz 1» where N is training data number (52000 cropped
pairs used here), the mean square error (MSE) loss is se-
lected as the loss function. After 20 epoch training, .2y
loss function is utilized to estimate the uncertainty. The ini-
tial learning rate is Se > for the first 10 epochs and decays
to le for the last 10 epochs. After the training of UM
estimation, we fix all the parameters of uncertainty estima-
tion network and train the proposed framework with the ini-
tialization of corresponding parameters from the same net-
work modules, i.e., duplicating the corresponding parame-
ters from the uncertainty estimation network to each phase,
which will lead to faster convergence of training.

The network is trained on 2 NVIDIA A40 GPUs uti-
lizing PyTorch [35]. Adam [24] is employed as the opti-
mizer. Note that, for the training of uncertainty estimation,
if we directly use .4y for training, the training is easy to di-
verge. Therefore, we used MSE loss for training at the first.
Sx 8§ xBand P x P x M we set in the experiments are the
same, i.e., 7 x 7 x 2. The setting of the spatial parameters,
i.e., P and S, follows Swin Transformer[30]. And the cho-
sen number of B and M, i.e., two, echoes the two divided
parts in the FF module.

Ground Truth  GAP-TV PnP-FastDVDNet DeSCI BIRNAT RevSCI  DUN-3DUnet Ours

Crash #16

</
e

Aerial #11

Figure 5. Selected multiple reconstruction frames of simulated
benchmark dataset.
5. Experiments

Dataset: We choose DAVIS 2017 [37] as our training
dataset following previous studies. It contains 90 scenes
with two resolutions: 480P and 1080P. We conduct data
augmentation by random cropping, rotation and flip.

5.1. Benchmark Simulation of SCI

The testing synthetic datasets of Benchmark follow
previous study [29] including Kobe, Traffic, Runner,
Drop, Crash and Aerial with the size of 256 x 256 x
8. We compare our model with previous SOTA al-
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Figure 6. Selected reconstruction frames of different scales. Zoom

in for better view.
gorithms, i.e., GAP-TV [58], PnP-FFDnet [60], PnP-

FastDVDnet [61], DeSCI [29], E2E-CNN [38], GAP-Unet-
S12 [33], BIRNAT [5], MetaSCI [48], RevSCI [4] and
DUN-3DUnet [50]. The quantitative comparison is sum-
marized in Tab. 1. Both PSNR and structured similarity
(SSIM) [47] are selected to evaluate the reconstruction qual-
ity. It can be observed that our method substantially out-
performs (by a large margin of nearly 1.2dB in PSNR) all
previous SOTA algorithms. Selected reconstructed frames
are shown in Fig. 5. As we can see, the optimization-based
algorithms, such as GAP-TV and PnP, usually lead to over-
smooth (Crash,Kobe,Runner, and Traffic) artifacts. DeSCI
is with poor restoration of the irregular textures (Aerial).
When the object is with large motion, other learning-based
methods do not work well. Obviously, our proposed method
achieves much better visually results on the areas with high
uncertainty (variance), such as the edges, textures, and other
high-frequency details. The inference time is on par with
previous SOTA DUN-3DUnet.

Adaptability: We test our uncertainty estimation module
under different masks. As shown in Fig. 4, it can well
adapt to different masks. We further test the adaptability
of the reconstruction, the results are presented in Tab. 3.
Note that all the experiments are directly conducted with-
out training with other masks, which is never achieved by
previous learning-based methods. (Other methods’ results
are in SM.)

5.2. Scalability of Transformer on Large-scale Data

As mentioned in the preceding part of the paper, the abil-
ity to cope with large-scale data is crucial for reconstruc-
tion algorithms. Our proposed scalable Transform mod-
ule (BDA and DSA) facilitates the practical applications of
SCI. We test the proposed model on the large-scale bench-
mark dataset [48]. The quantitative comparison is summa-
rized in Tab. 2. As we can see, few algorithms can be ap-
plied to large scale data due to GPU memory limit while
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Dataset Kobe Traffic Runner Drop Aerial Crash Average Running time
GAP-TV [58] 26450845 20.900.715 28.480.899 33.810.963 25.030.828 24.820.838 26.580.848 42
E2E-CNN [38] 27.790.807 24.620.840 34.120.947 36.560.949 27.180.869 26.430.882 29.450.882 0.0312
DeSCI [29] 33.250952 28.720.925 38.760.969 43.220.993 25.330.860 27.040.909 32.720.935 6180
PnP-FFDNet [60] 30470926 24.080.833 32.880.938 40.870.988 24.020.814 24.320.836 29.440.889 3.0
PnP-FastDVDNet [61]  32.730.946 27.950.932 36.290.962 41.820.989 27.980.897 27.320.925 32.350.942 18
BIRNAT [5] 32710950 29.330.942 38.700.976 42.280.992 28.990.927 27.840.927 33.310.951 0.16
GAP-Unet-S12 [33]  32.090.944 28.190.929 38.120.975 42.020.992 28.880.914 27.830.931 32.860.947 0.0072
MetaSCI [48] 30.120.907 26.950.888 37.020.967 40.610.985 28.310.904 27.330.906 31.720.926 0.025
RevSCI [4] 33.720.957 30.020.949 39.400.977 42.930.992 29.350.924 28.120.937 33.920.956 0.19
DUN-3DUnet [50] 35.000.969 31.760.966 40.900.983 44.460.994 30.460.943 29.350.955 35.320.968 1.35
Ours 35.770.984 32.400.979 41.820.993 45.250.996 31.410.968 31.080.978 36.29 0.983 1.26
Ours-with-Uncertainty 3597 0.986  32.59 0.981 42.100.995 45.490.998 31.640.970 31.330.980 36.52 0.985 1.58

Table 1. The quantitative comparison of different algorithms. The average results of PSNR in dB (left entry), SSIM (right entry) and
running time per measurement in seconds. Note that GAP-TV and DeSCI are running on CPU while others are on GPU. The best results
are bold, and the second best are underlined. Full results are in SM.

Size Algorithm Beauty Bosphorus HoneyBee Jockey ShakeNDry Average Running Time
GAP-TV [58] 32.130.857 29.180.934 31.400.887 31.010.940 32.520.882  31.250.900 44.67
512x512 PnP-FFDNet [60] 30.700.855 35.360.952 31.940.872 34.880.955 30.720.875 32.720.902 14.22
MetaSCI [48] 35.100.901 38.370.950 34270913 36.450962 33.160.901 35.470.925 0.12
Ours 41.22 0983 42.39 0990 43.630.990 41.810.988 37.09 0.966 41.23 0.983 4.97
Ours-with-Uncertainty ~ 41.36 0.984  42.59 0.990 43.710.991 42.100.989 37.40 0.966 41.41 0.984 6.32
Size Algorithm Beauty Jockey ShakeNDry  ReadyGo YachtRide Average Test Time
GAP-TV [58] 33.590.852 33270971 33.860.913 27.490.948 24.390.937 30.520.924 178.11
1024x1024 PnP-FFDNet [60] 32.360.857 35250976 32.210.902 31.870.965 30.770.967 32.490.933 52.47
MetaSCI [48] 35230929 37.150.978 36.060.939 33340973 32.680.955 34.890.955 0.59
Ours 40.11 0978 42.280.988 38.950.978 40.390.989 37.760.982  39.90 0.983 23.76
Ours-with-Uncertainty ~ 40.40 0.979  42.46 0.990  39.22 0.979 40.60 0.989  37.96 0.983  40.13 0.984 31.78
Size Algorithm City Kids Lips RaceNight RiverBank Average Test Time
GAP-TV [58] 21.270.902  26.050.956 26.460.890 26.810.875 27.740.848 25.67 0.894 764.75
2048x2048 PnP-FFDNet [60] 29.310.926  30.01 0966 27.990.902 31.180.891 30.380.888  29.77 0.915 205.62
MetaSCI [48] 32.630.930 32310965 30.900.895 33.860.893 32.770.902 32.4900917 2.38
Ours 40.31 0981 40.220.984 35.260.933 36.360.924 36.870.970  37.81 0.964 95.06
Ours-with-Uncertainty ~ 40.54 0.983  40.45 0.985 35.49 0.934 36.59 0.956 37.100.971  38.04 0.966 120.09

Table 2. Large-scale results (CR: 8): quantitative comparison of existing algorithms that can be applied to large-scale data. The best results
are in bold, and the second best results are underlined. PSNR and SSIM are selected as the evaluation metrics.

Evaluation metrics  Trained mask New mask 1 ~ New mask 2
PSNR SSIM 36.520.985  36.470.985 36.48 0.985
Table 3. Quantitative comparison with different masks.

essential for the whole framework.

As described in the above, to test the efficiency of each
module, we directly remove each part of the module sepa-
rately. However, we should not ignore the effect brought
by the reduction of parameter count. In order to mea-
sure the effectiveness of the Transformer module more ac-
curately, we conduct experiments utilizing BDA to replace
DSA and utilizing DSA to replace DSA respectively, which
all maintain the same parameter count and FLOPs. Block
attention mechanism’ efficiency has been verified in many

training, our proposed method far exceeds (nearly 6dB
in PSNR) all previous SOTA algorithms with competitive
inference time, which verifies our proposed Transformer
module is with enough scalability to large-scale data. De-
tails of selected reconstruction frames of different scales are
shown in Fig. 6. It can be observed that we can achieve
much better visual performance especially in the details.

5.3. Ablation Study

Effectiveness of modules: To validate the effectiveness of
each part of our proposed CTM module, we conduct ab-
lation experiments on the benchmark dataset for each sub-
modules, i.e., BDA, DSA and FF. To reduce the effects of
uncontrollable factors on the experiments, the above abla-
tion experiments are conducted without uncertainty estima-
tion with quantitative result shown in Tab. 4, where v* de-
notes the corresponding components are preserved, X is on
the contrary. As we can observe, each of the modules is

other computer vision tasks [30]. However when we use
BDA to replace DSA, PSNR decreases by 0.33dB on the
benchmark dataset (256 %256 % 8). When we use DSA to re-
place BDA, PSNR decreases by 0.87 dB on the benchmark
dataset (256 x 256 x 8). The results demonstrate that local
attention plays a more important role, yet the combination
of both local and global attention leads to higher perfor-
mance. We also test different order of the sub-modules,
i.e., BDA, DSA and FF in CTM block. Because the blocks
are sequentially arranged, the change of the order of the sub-
modules does not affect the performance.
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Figure 7. Selected reconstruction frames of real data Water Bal-
loon and Domino. More results are in SM.

Figure 8. Selected estimated uncertainty map of real data Water
Balloon and Domino.

BDA DSA FF PSNR SSIM

X v v 31.110.960
v X v 31.040.955
v v x  27.810.912
v v v 36.290.983

Table 4. Ablation study of CTM on benchmark dataset. The quan-
titative effects (PSNR in dB and SSIM) are shown.

Effectiveness of uncertainty estimation: We also ver-
ify the effect of uncertainty estimation. Directly applying
Zy loss for reconstruction brings a direct drop of nearly
1.1dB in PSNR. Recall Eq. (11), the attention of pixels with
high variance will be impaired by the division. Though
paying less attention to pixels with high variance (uncer-
tainty) helps promote performance in high level vision
tasks[23, 1, 2], it does not work in low level vision tasks.
As shown in Tab. | and Tab. 2 , when the high-frequency
information is not introduced, the PSNR and SSIM de-
cline nearly 0.2-0.3dB and 0.002-0.003, respectively. Al-
though we can further improve the reconstruction perfor-
mance, the inference speed of the model is sacrificed. There
is a trade-off between the benefits of reconstruction qual-
ity and the sacrifice of the inference speed. As mentioned
above, we utilize the network of only one-phase instead of
three-phases to estimate the uncertainty, which can reduce
the inference time. We conducted experiments with the un-
certainty map estimated by two different network, i.e., one-
phase and three-phases networks, the reconstruction quality
is almost the same. Obviously, one-phase uncertainty esti-
mation has higher inference speed. Considering the mem-
ory cost, the phase number we chose is three in this paper.
The three-phases inference model with uncertainty esti-
mation is basically with the same number of parameters
as four-phases model. Hence we test different phase num-
bers, i.e., 1, 2, 3 and 4, under our proposed framework with-
out uncertainty estimation utilizing the same benchmark

Figure 9. Comparison of selected reconstruction video frames of
real color data Hammer.

dataset (256 %256  8). As shown in Tab. 5, as the phase
number increases, the reconstruction quality improvement
is slowing down. Compared with three-phases, four-phases
model only gain an increase of less than 0.1dB in PSNR,
which is why we only use 3 phases and also illustrates the
effectiveness of introducing uncertainty estimation.

Phase Number One Two Three Four Three with Uncertainty
PSNR SSIM ~ 35.510.970 36.120.981 36.290.983 36.37 0.983 36.52 0.985

Table 5. Reconstruction with different phase numbers.

5.4. Real Data Benchmark

We test our model on the real data Water Balloon and
Domino with the size of 512 x 512 x 10 [38]. Due to the
uncontrollable noise during capturing, it is more challeng-
ing to reconstruct real measurements. Note that we do not
add any noise to the training data during the training with
real masks, which demonstrates the generalization ability
of our model to a certain extent. The selected results are
presented in Fig. 7. In the areas with higher uncertainty
(variance), such as edges and textures, our proposed method
outperforms all existing algorithms, which is shown in the
left part of Fig. 7. Even when the water balloon collides
with box, the edge of the box is still sharp in our recon-
struction. Besides, falling dominoes are with higher speed,
which further increases the difficulty of reconstruction. As
we can observe in right part of Fig. 7, all previous SOTA al-
gorithms can not recover the legible letters except our pro-
posed method. Our results are with sharper edges, more de-
tails, and cleaner background, which indicates our proposed
method is more powerful in practical applications. The es-
timated uncertainty maps of real data are shown in Fig. §,
the edge and texture features can be directly obtained from
the real measurement.

We also test our model on real color dataset Hammer
with the size of 512 x 512 x 22. Few learning based al-
gorithms conducted experiments on the color video SCI
task. We compare our model with previous SOTA algo-
rithms which are iteration-based. As we can see in Fig. 9,
GAP-TV has noisy results, DeSCI and PnP-FastDVDNet
are blurry in the areas of background and edges, our results
are cleaner and have sharp edges than other methods. The
implementation details are in the SM.
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6. Conclusions and Future Work

We have proposed a Transformer and 3D-CNN based
network for video SCI reconstruction and introduced high-
frequency information by uncertainty estimation. The de-
sign of the backbone with Transformer and 3D-CNN helps
explore the correlation across the spatio-temporal dimen-
sions. More importantly, our proposed method achieved
SOTA results with a competitive inference time.

Although we have achieved the best results so far, the in-
troduction of high-frequency information is time-inefficient
and when the model is applied to large-scale data, the infer-
ence time is still long for real-time applications. In the fu-
ture, we will reduce the parameters for high inference speed
by knowledge distillation and employ the high-frequency
information in a more time-efficient way. Besides video,
our proposed framework can also be used in other inverse
problems such as image compressive sensing and spectral
compressive imaging.
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