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Abstract

We consider the problem of video snapshot compres-
sive imaging (SCI), where sequential high-speed frames
are modulated by different masks and captured by a sin-
gle measurement. The underlying principle of reconstruct-
ing multi-frame images from only one single measurement
is to solve an ill-posed problem. By combining optimiza-
tion algorithms and neural networks, deep unfolding net-
works (DUNs) score tremendous achievements in solving
inverse problems. In this paper, our proposed model is un-
der the DUN framework and we propose a 3D Convolution-
Transformer Mixture (CTM) module with a 3D efficient and
scalable attention model plugged in, which helps fully learn
the correlation between temporal and spatial dimensions by
virtue of Transformer. To our best knowledge, this is the
first time that Transformer is employed to video SCI recon-
struction. Besides, to further investigate the high-frequency
information during the reconstruction process which are
neglected in previous studies, we introduce variance esti-
mation characterizing the uncertainty on a pixel-by-pixel
basis. Extensive experimental results demonstrate that our
proposed method achieves state-of-the-art (SOTA) (with a
1.2dB gain in PSNR over previous SOTA algorithm) re-
sults. Code can be found on https://github.com/
zsm1211/CTM-SCI.

1. Introduction
Nowadays, due to the ability of capturing high-

dimensional data in an efficient way, Snapshot Compres-

PnP BIRNAT DUN-3DUnet OursTruth Truth

Figure 1. Illustration of comparison between the reconstruction re-

sults in the high-frequency details of previous SOTA algorithms

and Ours. We present the details both in image domain (first line)

and frequency domain (second line). To be more visually clearly,

we also present the intensity profiles extracted from the cross-

section yellow lines in the first example. Our proposed algorithm

can reconstruct better high-frequency details.

sive Imaging (SCI) [32, 59] has attracted much attention.

SCI system just employs a low-speed 2D camera to capture

3D sequential video frames, hyperspectral data, etc. [66, 3],

where a digital micro-mirror device [17, 39] or a shifting

mask [61] is utilized to modulate consequent frames. With
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Figure 2. Illustration of the design motivation.

the knowledge of modulation, the captured single 2D mea-

surement can be reconstructed to original sequential frames

by algorithms [19, 50, 26, 51, 65, 62, 56]. In this paper, we

focus on the reconstruction problem of video SCI systems.

To be concrete, the reconstruction process can be regard

as solving an ill-posed inverse problem where the num-

ber of pixels to be reconstructed is much higher than the

number of known parameters. With the development of

deep learning, deep neural networks has been employed

to conduct the reconstruction in recent years, where con-

volutional neural networks (CNN) are dominating. Com-

pared to optimization-based algorithms, learning-based al-

gorithms can directly map the measurement and the target

images which makes it easier and faster to bring reconstruc-

tion results up to the mark. To improve learning-based algo-

rithms’ defect of lacking interpretability, recently proposed

deep unfolding networks (DUNs) [50, 26, 51] combine the

merits of both optimization-based and learning-based algo-

rithms, and achieve the best results so far.

Motivation: As shown in Fig. 1, previous SOTA learning-

based algorithms [50, 5, 60] are not ideal for high-

frequency detail reconstruction. In their initialization (de-

tails in Fig. 3), as shown in the top-middle of Fig. 2, the

NF and RF both have a relatively clean background and

clear stationary areas, which can directly feed the low-

frequency information to the following network. However,

the high-frequency features such as edges and textures
can not be directly obtained from the measurement and
are neglected by previous studies for video SCI. For the

network structure, convolution-based backbone architec-

tures have long dominated visual modeling in computer vi-

sion [25, 40, 18, 16]. It is the same in the video SCI tasks, all

previous SOTA learning-based algorithms are CNN-based.

Although CNN has many advantages, its receptive field is

usually small and relies on deeper layers or larger convolu-

tion kernels, which is not conducive to capture global fea-

tures such as contour features and texture features which

are also the high-frequency features. By contrast, Trans-

former can well capture long-distance dependencies and

global inter-dependence between different regions, yet few

researches of applying Transformer to video SCI are carried

out.

To sum up, previous learning-based frameworks mainly

suffer from following two problems: 1) High-frequency in-

formation is not taken into consideration. 2) Compared to

Transformer, CNNs are weak in capturing global features,

some of which are also high-frequency features like contour

features and texture features. Due to the mutual influence of

these two aspects in the reconstruction process, the fidelity

of the high-frequency details is compromised.

Contributions: Towards this end, hereby, we propose a

Transformer enabled deep unfolding framework for video

SCI and we further introduce uncertainty estimation to take
high-frequency information as regularized prior under the
unfolding framework into consideration for better recon-

struction. Our contributions can be summarized as follows:

1) We propose a novel video Convolution-Transformer
module, dubbed CTM, for video SCI that can well

capture local and global spatial-temporal interactions

which is composed of 3D CNN, 3D scalable blocked
dense and dilated sparse attention. Note that the at-

tention modules take both local and global information

into consideration with only a linear complexity.

2) Unlike previous studies that only consider the low-

frequency information such as the information of sta-

tionary areas or backgrounds [5, 50, 4], we first bring

high-frequency information as regularized prior
under the unfolding framework in video SCI for
focusing on areas with high reconstruction uncer-
tainty and improving the fidelity of reconstruction,

which is achieved by the variance estimation charac-

terizing the uncertainty on a pixel-by-pixel basis.

3) We first introduce Transformer for video SCI re-

construction. Both real and simulation experiments

demonstrate that our proposed framework outper-
form previous SOTA algorithms with a large mar-
gin of PSNR over 1.2dB.

2. Related Work
Snapshot compressive imaging: In terms of hardware,

except capturing high-speed video frames [17, 11, 32],

SCI has demonstrated promising results on spectral[12, 65,

28], spectral-temporal[42], polarization[43], and coherent

diffraction imaging[3], etc. The underlying principle of

these systems is to modulate the high dimensional signals

and capture the measurement compressively.

From the software perspective, the reconstruction al-

gorithms can be broadly divided into two categories,

i.e., optimization-based and learning-based algorithms.

Optimization-based methods utilize various priors [58, 64,

29, 53, 54] during reconstruction. However, the inference
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time is limited by the iterative solution process. As the

development of deep learning, learning-based algorithms

achieve impressive success in solving inverse problems.

Different network backbones, such as CNN[38, 4] and re-

current neural network (RNN)[5] have been employed for

video SCI reconstruction. Though these learning-based

methods can achieve more decent results, their reconstruc-

tion process lacks interpretability. Combining the merits of

above both kind of methods, DUNs[50, 26, 51] have been

developed. However, pixels with high reconstruction vari-
ance have not attracted enough attention.

Uncertainty: Uncertainty has been widely studied to help

solve the reliability assessment, regression, risk-based de-

cision making problems[8, 10, 36, 13, 49]. Recently, un-

certainty has been introduced into deep learning to improve

the robustness and performance of deep neural networks for

computer vision tasks such as semantic segmentation[20,

22], image classification[14], object detection[6], etc. For

uncertainties in deep learning, they can be roughly classified

into model uncertainty capturing the noise of the network’s

parameters, and data uncertainty referring to the noise in-

herent in the training data. Ning et al. investigated the data

uncertainty with estimated mean and variance in low-level

vision task such as super-resolution[34], which focuses on

the areas with higher variance and achieved better result. In
image or video restoration tasks, high-frequency infor-
mation is hard to be reconstructed [52] due to the corre-
sponding high reconstruction uncertainty. To introduce

the high-frequency information from the measurement into

the network during training process, we first estimate the

uncertainty and extract the feature maps of high-frequency

information which are finally fed into the unfolding frame-

work as regularized prior.

Transformer for vision: Recently, Transformer has

achieved impressive success in the field of natural language

processing due to the powerful self-attention mechanism,

which inspires numerous researchers to introduce atten-

tion mechanism into vision. Many works[46, 55] provide

a complementary component (Self-attention/Transformers)

to CNNs for modeling long range dependency. Vision

Transformer (ViT)[9] and its follow-ups[15, 41, 45, 57, 44]

start the trend of that backbone architectures for com-

puter vision shift from CNNs to Transformers. Swin

Transformer[30] is a typical representative and the key de-

sign is its shift of the window partition between consecutive

self-attention layers, which enables it to serve as a general

backbone for various tasks. Video Swin Transformer[31]

extends the scope of local attention computation from only

the spatial domain to the spatiotemporal domain through

spatiotemporal adaptation of Swin Transformer. In this pa-

per, our proposed CTM takes both spatiotemporal globally

and locally into account by integrating Transformer and
3D-CNN, and outperforms all previous SOTA methods.

3. Review the Forward Model of Video SCI
The top-left of Fig. 3 depicts the principle of video SCI,

where multiple high-speed frames X ∈ R
W×H×T are mod-

ulated by different masks M ∈ R
W×H×T and then the mea-

surement Y ∈ R
W×H is captured by a 2D camera, where

W , H, and T denote the width, height, and the number of

frames, respectively. The 2D measurement is

Y = ∑T
t=1 Xt �Mt +N, (1)

where N ∈ R
WH denotes the measurement noise and �

represents the Hadamard (element-wise) multiplication.

Eq. (1) can be rewritten as the following linear from:

y = Φx+n, (2)

where x = vec(X′) ∈ R
WHT , y = vec(Y) ∈ R

WH , and n =
vec(N) ∈ R

WH . vec() here denotes vectorization. The

sensing matrix Φ ∈ R
WH×WHT can be expressed as

Φ = [Diag(vec(M1)), . . . ,Diag(vec(Mt))]. (3)

Diag() here means diagonalizing the vector. Note that Φ is

a very sparse matrix and the reconstruction error is bounded

when T > 1 [21].

4. Proposed Method
DUN Framework: SCI reconstruction is an ill-posed prob-

lem which can be modeled as:

x = argminx‖y−Φx‖2
2 +λψ(x), (4)

where ψ(x) denotes the regularization term to confine the

solutions, λ balances the two terms. Here we unfold the

iterations utilizing the framework of generalized alternating

projection (GAP) [27], which solves:

{x̂, v̂}= argminx‖x− v‖2
2 +λψ(v), s.t. y = Φx. (5)

The solution can be derived by the following two steps:

• Given v, x is updated by the following projection:

x( j) = v( j−1) +Φ�(ΦΦ�)−1(y−Φv( j−1)). (6)

Recall Eq. (3), we have ΦΦ� = Diag(R1, . . . ,RWH) is a

diagonal matrix where Ri = ∑T
t=1 M2

t,i, ∀i = 1, . . . ,WH.

Thus Eq. (6) can be efficiently solved.

• Given x, v is achieved by:

v( j) = Θ([x( j),Γ]), (7)

where v( j) denotes the j-th phase’s estimate of the target

signal, [·] denotes the concatenation, Γ represents other

inputs of different phases, and Θ symbolizes the proposed

prior module in each phase. To balance the trade-off
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Figure 3. Illustration of video SCI and our proposed model. Top-Left: Sequential video frames are modulated by dynamic masks and

then compressed to the measurement. Normalized Measurement is achieved by element-divide the sum of dynamic masks. Reference

Frames are acquired by element-wise multiplication. Top-Right: Architecture of our proposed uncertainty guided DUN for video SCI.

Bottom: Details of CTM blocks, composed of 3D scalabe blocked local and dilated global attention combining 3D-CNN.
⊕

here denotes

concatenation. More details are in Supplementary Material (SM).

between reconstruction performance and model size, we

only utilize 3 phases which will be disscused in Sec.5.3.

Unlike conventional optimization-based algorithms uti-

lizing various denoisers, in most unfolding-based algo-

rithms deep networks are used to learn a more appropriate

prior to constrain the signal domain. Differently, we do
not just let the network to learn a prior and we further
introduce a regularized prior input into our unfolding
framework by uncertainty estimation which focuses
on the pixels with higher reconstruction uncertainty.
More network structure details in the following sections.

Uncertainty Estimation for SCI: As mentioned above, un-

certainty could be roughly classified into model uncertainty

capturing the noise of the network’s parameters, and data

uncertainty referring to the noise inherent in given training

data[23]. We investigate the data uncertainty estimation for

SCI. Let f (·) denotes the reconstruction algorithm, the data

uncertainty can be formed as an additive term σ . In this

way, the observation model can be formulated as:

x = f (y)+ εσ , (8)

where ε ∼ N (0,1). We assume a Gaussian distribution to

characterize the likelihood function:

p(x,σ |y) = 1√
2πσ

exp(−‖x− f (y)‖2
2

2σ2 ), (9)

the log-likelihood function is naturally represented as:

ln p(x,σ |y) =−‖x− f (y)‖2
2

2σ2 − 1
2 lnσ2 − 1

2 ln2π. (10)

As shown in the top-right of Fig. 3, we learn the target es-

timation (mean value, f (y)) and uncertainty (variance, σ2)

respectively by two decoding branches sharing the same en-

coder. Note that the network f (·) here has the same struc-

ture as the network in each phase except the additional de-

coding branch for uncertainty estimation, we will talk about

this in the Sec.5.3. For more stable training, we estimate the

log variance β = lnσ2 rather than directly estimate σ2 due

to the high dynamic range. Maximizing the likelihood in

Eq.(10) is same as minimizing the following loss function

for learning the uncertainty (variance) of SCI reconstruc-

tion:

LU = exp(−β )‖x− f (y)‖2
2 +β . (11)

The uncertainty estimation results is shown in Fig. 4. To

visually highlight the pixel with high variance, we uti-

lize thresholding method for the binarization processing

in Fig. 4, and the threshold is the mean of the inten-

sity. We can observe that pixels with high variance are
distributed around the high-frequency details, such as
edges and textures. In previous researches [5, 50, 4], Ref-

erence Frames (RF) are utilized in the initialization part for

introducing the low-frequency information to improve the
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Figure 4. Visualization of the estimated uncertainty of two selected

scenes under two different masks.

reconstruction performance. As shown in the top-left of

Fig. 3, the Normalized Measurement can achieve more vi-

sually clear background and stationary areas but with blurry
edges and textures. Hence, at the initialization of each

phase, we not only focus on the low-frequency information

but also take the high-frequency details into consideration.

The feature maps being fed into each phase are extracted

from the estimated uncertainty map (UM) by three 3D-CNN

blocks. The 3D-CNN blocks have the same structure but

without sharing parameters. Fig. 4 also shows the uncer-

tainty estimation module’s adaptability to different masks.

Under different masks, the uncertainty estimation is unaf-

fected.

Convolution-Transformer Mixture: Multi-head self-

attention modules (MSA) are widely used in Transform-

ers. Most of traditional MSAs of Transformers for video

perform global spatial interactions by utilizing all tokens

extracted from the whole feature map, which requires

quadratic complexity. Compared to images, videos need to

take the correlation of temporal dimension into considera-

tion. Inspired by previous studies [30, 31, 44], we propose

a novel attention module. As shown in the bottom of Fig. 3,

CTM is composed of three sequential stacked parts, i.e., 3D

blocked dense attention (BDA) for local interaction, 3D di-

lated sparse attention (DSA) for global interaction, and 3D-

CNN based feature fusion (FF) module for further exploring

spatiotemporal correlations.

Let X f ∈ R
W×H×T×Cdenote input feature map. In BDA,

given a 3D window size of P×P×M, the input tokens are

partitioned into W
P × H

P × T
M non-overlapping 3D windows.

As shown in the bottom of Fig. 3, given an input with the

size of 8 × 8 × 8 and the 3D window size 4 × 4 × 4, we

achieve 8 3D windows. And we conduct MSA on each win-

dow:

MSA(X f ) = Softmax(QKT/
√

d +B)V, (12)

where Q,K,V denotes the query, key, and value matrix re-

spectively, the number of each head’s channels d = C
N and N

is the number of heads. B represents the 3D relative position

bias. compared to full self-attention (FSA),

Ω(FSA) = 4WHTC2 +2(WHT)2C. (13)

BDA allows local spatiotemporal interactions with only a

linear complexity,

Ω(BDA) = [4P2MC2 +2(P2M)2C]WHT
P2M ,

= 4WHTC2 +2WHTP2MC.

For practical applications of SCI, large-scale scenarios are

very common. However, local-attention models do not

adapt well to large scales[7, 9]. Inspired by [63], we pro-

pose 3D DSA for global interaction. Unlike BDA where the

input tokens are partitioned into non-overlapping 3D win-

dows, in DSA, to keep the fixed group size of S×S×B, the

tokens are selected from the sparse positions with the inter-

val of W
S × H

S × T
B . As shown in the bottom of Fig. 3, given

an input with the size of 8× 8× 8 and the interval size of

2×2×2, we achieve 8 groups with the size of 4×4×4 and

employ MSA as well. Note that the complexity of DSA for

global interaction is also linear,

Ω(DSA) = [4S2BC2 +2(S2B)2C]WHT
S2B

= 4WHTC2 +2WHTS2BC.

Recall video Swin[31] where the mechanism of 3D shifted

windows is employed to bridge the connections across dif-

ferent windows, our proposed 3D local and global attention

achieves this in a more implementation friendly way and is

scalable.

We propose an initialization feature extraction block at

the beginning of each phase to increase the generalization

and trainability of the network. In each CTM block, to fur-

ther explore the correlation of spatiotemporal dimensions,

we plug FF into each CTM block. In FF, the feature map is

first divided into two parts according to the channels. Then

the two parts with skip connection are respectively sent into

two Resnet modules with the same structure but not shar-

ing parameters. Finally the features are fused to keep the

original dimensions. We utilize 3D-CNN for all the convo-

lutional layers.
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Training: Prior to the training of uncertainty estimation,

we first train the whole network without uncertainty esti-

mation to ensure the convergence. Given the training pairs

(yi,xi)
N
i=1, where N is training data number (52000 cropped

pairs used here), the mean square error (MSE) loss is se-

lected as the loss function. After 20 epoch training, LU
loss function is utilized to estimate the uncertainty. The ini-

tial learning rate is 5e−5 for the first 10 epochs and decays

to 1e−5 for the last 10 epochs. After the training of UM

estimation, we fix all the parameters of uncertainty estima-

tion network and train the proposed framework with the ini-

tialization of corresponding parameters from the same net-

work modules, i.e., duplicating the corresponding parame-

ters from the uncertainty estimation network to each phase,

which will lead to faster convergence of training.

The network is trained on 2 NVIDIA A40 GPUs uti-

lizing PyTorch [35]. Adam [24] is employed as the opti-

mizer. Note that, for the training of uncertainty estimation,

if we directly use LU for training, the training is easy to di-

verge. Therefore, we used MSE loss for training at the first.

S× S×B and P×P×M we set in the experiments are the

same, i.e., 7× 7× 2. The setting of the spatial parameters,

i.e., P and S, follows Swin Transformer[30]. And the cho-

sen number of B and M, i.e., two, echoes the two divided

parts in the FF module.

GAP-TV PnP-FastDVDNet DeSCI BIRNAT DUN-3DUnet OursGround Truth

Crash #16

Aerial #11

Drop #3

RevSCI

Kobe #12

Runner #7

Traffic #8

Figure 5. Selected multiple reconstruction frames of simulated

benchmark dataset.

5. Experiments
Dataset: We choose DAVIS 2017 [37] as our training

dataset following previous studies. It contains 90 scenes

with two resolutions: 480P and 1080P. We conduct data

augmentation by random cropping, rotation and flip.

5.1. Benchmark Simulation of SCI

The testing synthetic datasets of Benchmark follow

previous study [29] including Kobe, Traffic, Runner,
Drop, Crash and Aerial with the size of 256 × 256 ×
8. We compare our model with previous SOTA al-

GAP-TV

PnP-FFDNet

MetaSCI

Ours

Ground Truth

512*512

#1

#1

#1

#1

#1

Beauty Jockey

1024*1024

#14

#14

#14

#14

#14

RaceNight

2048*2048

#30

#30

#30

#30

#30

Figure 6. Selected reconstruction frames of different scales. Zoom

in for better view.
gorithms, i.e., GAP-TV [58], PnP-FFDnet [60], PnP-

FastDVDnet [61], DeSCI [29], E2E-CNN [38], GAP-Unet-

S12 [33], BIRNAT [5], MetaSCI [48], RevSCI [4] and

DUN-3DUnet [50]. The quantitative comparison is sum-

marized in Tab. 1. Both PSNR and structured similarity

(SSIM) [47] are selected to evaluate the reconstruction qual-

ity. It can be observed that our method substantially out-

performs (by a large margin of nearly 1.2dB in PSNR) all

previous SOTA algorithms. Selected reconstructed frames

are shown in Fig. 5. As we can see, the optimization-based

algorithms, such as GAP-TV and PnP, usually lead to over-

smooth (Crash,Kobe,Runner, and Traffic) artifacts. DeSCI

is with poor restoration of the irregular textures (Aerial).

When the object is with large motion, other learning-based

methods do not work well. Obviously, our proposed method

achieves much better visually results on the areas with high

uncertainty (variance), such as the edges, textures, and other

high-frequency details. The inference time is on par with

previous SOTA DUN-3DUnet.

Adaptability: We test our uncertainty estimation module

under different masks. As shown in Fig. 4, it can well

adapt to different masks. We further test the adaptability

of the reconstruction, the results are presented in Tab. 3.

Note that all the experiments are directly conducted with-

out training with other masks, which is never achieved by

previous learning-based methods. (Other methods’ results

are in SM.)

5.2. Scalability of Transformer on Large-scale Data

As mentioned in the preceding part of the paper, the abil-

ity to cope with large-scale data is crucial for reconstruc-

tion algorithms. Our proposed scalable Transform mod-

ule (BDA and DSA) facilitates the practical applications of

SCI. We test the proposed model on the large-scale bench-

mark dataset [48]. The quantitative comparison is summa-

rized in Tab. 2. As we can see, few algorithms can be ap-

plied to large scale data due to GPU memory limit while
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Dataset Kobe Traffic Runner Drop Aerial Crash Average Running time

GAP-TV [58] 26.45 0.845 20.90 0.715 28.48 0.899 33.81 0.963 25.03 0.828 24.82 0.838 26.58 0.848 4.2

E2E-CNN [38] 27.79 0.807 24.62 0.840 34.12 0.947 36.56 0.949 27.18 0.869 26.43 0.882 29.45 0.882 0.0312

DeSCI [29] 33.25 0.952 28.72 0.925 38.76 0.969 43.22 0.993 25.33 0.860 27.04 0.909 32.72 0.935 6180

PnP-FFDNet [60] 30.47 0.926 24.08 0.833 32.88 0.938 40.87 0.988 24.02 0.814 24.32 0.836 29.44 0.889 3.0

PnP-FastDVDNet [61] 32.73 0.946 27.95 0.932 36.29 0.962 41.82 0.989 27.98 0.897 27.32 0.925 32.35 0.942 18

BIRNAT [5] 32.71 0.950 29.33 0.942 38.70 0.976 42.28 0.992 28.99 0.927 27.84 0.927 33.31 0.951 0.16

GAP-Unet-S12 [33] 32.09 0.944 28.19 0.929 38.12 0.975 42.02 0.992 28.88 0.914 27.83 0.931 32.86 0.947 0.0072

MetaSCI [48] 30.12 0.907 26.95 0.888 37.02 0.967 40.61 0.985 28.31 0.904 27.33 0.906 31.72 0.926 0.025

RevSCI [4] 33.72 0.957 30.02 0.949 39.40 0.977 42.93 0.992 29.35 0.924 28.12 0.937 33.92 0.956 0.19

DUN-3DUnet [50] 35.00 0.969 31.76 0.966 40.90 0.983 44.46 0.994 30.46 0.943 29.35 0.955 35.32 0.968 1.35

Ours 35.77 0.984 32.40 0.979 41.82 0.993 45.25 0.996 31.41 0.968 31.08 0.978 36.29 0.983 1.26

Ours-with-Uncertainty 35.97 0.986 32.59 0.981 42.10 0.995 45.49 0.998 31.64 0.970 31.33 0.980 36.52 0.985 1.58

Table 1. The quantitative comparison of different algorithms. The average results of PSNR in dB (left entry), SSIM (right entry) and

running time per measurement in seconds. Note that GAP-TV and DeSCI are running on CPU while others are on GPU. The best results

are bold, and the second best are underlined. Full results are in SM.

Size Algorithm Beauty Bosphorus HoneyBee Jockey ShakeNDry Average Running Time

512x512

GAP-TV [58] 32.13 0.857 29.18 0.934 31.40 0.887 31.01 0.940 32.52 0.882 31.25 0.900 44.67

PnP-FFDNet [60] 30.70 0.855 35.36 0.952 31.94 0.872 34.88 0.955 30.72 0.875 32.72 0.902 14.22

MetaSCI [48] 35.10 0.901 38.37 0.950 34.27 0.913 36.45 0.962 33.16 0.901 35.47 0.925 0.12

Ours 41.22 0.983 42.39 0.990 43.63 0.990 41.81 0.988 37.09 0.966 41.23 0.983 4.97

Ours-with-Uncertainty 41.36 0.984 42.59 0.990 43.71 0.991 42.10 0.989 37.40 0.966 41.41 0.984 6.32

Size Algorithm Beauty Jockey ShakeNDry ReadyGo YachtRide Average Test Time

1024x1024

GAP-TV [58] 33.59 0.852 33,27 0.971 33.86 0.913 27.49 0.948 24.39 0.937 30.52 0.924 178.11

PnP-FFDNet [60] 32.36 0.857 35.25 0.976 32.21 0.902 31.87 0.965 30.77 0.967 32.49 0.933 52.47

MetaSCI [48] 35.23 0.929 37.15 0.978 36.06 0.939 33,34 0.973 32.68 0.955 34.89 0.955 0.59

Ours 40.11 0.978 42.28 0.988 38.95 0.978 40.39 0.989 37.76 0.982 39.90 0.983 23.76

Ours-with-Uncertainty 40.40 0.979 42.46 0.990 39.22 0.979 40.60 0.989 37.96 0.983 40.13 0.984 31.78

Size Algorithm City Kids Lips RaceNight RiverBank Average Test Time

2048x2048

GAP-TV [58] 21.27 0.902 26.05 0.956 26.46 0.890 26.81 0.875 27.74 0.848 25.67 0.894 764.75

PnP-FFDNet [60] 29.31 0.926 30.01 0.966 27.99 0.902 31.18 0.891 30.38 0.888 29.77 0.915 205.62

MetaSCI [48] 32.63 0.930 32.31 0.965 30.90 0.895 33.86 0.893 32.77 0.902 32.49 0.917 2.38

Ours 40.31 0.981 40.22 0.984 35.26 0.933 36.36 0.924 36.87 0.970 37.81 0.964 95.06

Ours-with-Uncertainty 40.54 0.983 40.45 0.985 35.49 0.934 36.59 0.956 37.10 0.971 38.04 0.966 120.09

Table 2. Large-scale results (CR: 8): quantitative comparison of existing algorithms that can be applied to large-scale data. The best results

are in bold, and the second best results are underlined. PSNR and SSIM are selected as the evaluation metrics.

Evaluation metrics Trained mask New mask 1 New mask 2

PSNR SSIM 36.52 0.985 36.47 0.985 36.48 0.985

Table 3. Quantitative comparison with different masks.

training, our proposed method far exceeds (nearly 6dB

in PSNR) all previous SOTA algorithms with competitive

inference time, which verifies our proposed Transformer

module is with enough scalability to large-scale data. De-

tails of selected reconstruction frames of different scales are

shown in Fig. 6. It can be observed that we can achieve

much better visual performance especially in the details.

5.3. Ablation Study

Effectiveness of modules: To validate the effectiveness of

each part of our proposed CTM module, we conduct ab-

lation experiments on the benchmark dataset for each sub-

modules, i.e., BDA, DSA and FF. To reduce the effects of

uncontrollable factors on the experiments, the above abla-

tion experiments are conducted without uncertainty estima-

tion with quantitative result shown in Tab. 4, where � de-

notes the corresponding components are preserved, × is on

the contrary. As we can observe, each of the modules is

essential for the whole framework.

As described in the above, to test the efficiency of each

module, we directly remove each part of the module sepa-

rately. However, we should not ignore the effect brought
by the reduction of parameter count. In order to mea-

sure the effectiveness of the Transformer module more ac-

curately, we conduct experiments utilizing BDA to replace

DSA and utilizing DSA to replace DSA respectively, which

all maintain the same parameter count and FLOPs. Block

attention mechanism’ efficiency has been verified in many

other computer vision tasks [30]. However when we use

BDA to replace DSA, PSNR decreases by 0.33dB on the

benchmark dataset (256∗256∗8). When we use DSA to re-

place BDA, PSNR decreases by 0.87 dB on the benchmark

dataset (256 ∗ 256 ∗ 8). The results demonstrate that local

attention plays a more important role, yet the combination

of both local and global attention leads to higher perfor-

mance. We also test different order of the sub-modules,
i.e., BDA, DSA and FF in CTM block. Because the blocks

are sequentially arranged, the change of the order of the sub-

modules does not affect the performance.
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#2 #4 #6 #8 #10

GAP-TV

#2 #4 #6 #8 #10

PnP-FFDNet

#2 #4 #6 #8 #10

DeSCI

#2 #4 #6 #8 #10

BIRNAT

#2 #4 #6 #8 #10

DUN-3DUnet

#2 #4 #6 #8 #10

Ours

#2 #4 #6 #8 #10

GAP-TV

#2 #4 #6 #8 #10

PnP-FFDNet

#2 #4 #6 #8 #10

DeSCI

#2 #4 #6 #8 #10

BIRNAT

#2 #4 #6 #8 #10

DUN-3DUnet

#2 #4 #6 #8 #10

Ours

Figure 7. Selected reconstruction frames of real data Water Bal-
loon and Domino. More results are in SM.

#2 #4 #6 #8 #10

Figure 8. Selected estimated uncertainty map of real data Water
Balloon and Domino.

BDA DSA FF PSNR SSIM

× � � 31.11 0.960

� × � 31.04 0.955

� � × 27.81 0.912

� � � 36.29 0.983

Table 4. Ablation study of CTM on benchmark dataset. The quan-

titative effects (PSNR in dB and SSIM) are shown.

Effectiveness of uncertainty estimation: We also ver-

ify the effect of uncertainty estimation. Directly applying

LU loss for reconstruction brings a direct drop of nearly

1.1dB in PSNR. Recall Eq. (11), the attention of pixels with

high variance will be impaired by the division. Though

paying less attention to pixels with high variance (uncer-

tainty) helps promote performance in high level vision

tasks[23, 1, 2], it does not work in low level vision tasks.

As shown in Tab. 1 and Tab. 2 , when the high-frequency

information is not introduced, the PSNR and SSIM de-

cline nearly 0.2-0.3dB and 0.002-0.003, respectively. Al-

though we can further improve the reconstruction perfor-

mance, the inference speed of the model is sacrificed. There

is a trade-off between the benefits of reconstruction qual-

ity and the sacrifice of the inference speed. As mentioned

above, we utilize the network of only one-phase instead of

three-phases to estimate the uncertainty, which can reduce

the inference time. We conducted experiments with the un-

certainty map estimated by two different network, i.e., one-

phase and three-phases networks, the reconstruction quality

is almost the same. Obviously, one-phase uncertainty esti-

mation has higher inference speed. Considering the mem-

ory cost, the phase number we chose is three in this paper.

The three-phases inference model with uncertainty esti-
mation is basically with the same number of parameters
as four-phases model. Hence we test different phase num-

bers, i.e., 1, 2, 3 and 4, under our proposed framework with-

out uncertainty estimation utilizing the same benchmark

#3 #6 #9 #12 #15 #18 #21

GAP-TV

PnP-
FastDVDNet

DeSCI

Ours

Figure 9. Comparison of selected reconstruction video frames of

real color data Hammer.

dataset (256 ∗ 256 ∗ 8). As shown in Tab. 5, as the phase

number increases, the reconstruction quality improvement

is slowing down. Compared with three-phases, four-phases

model only gain an increase of less than 0.1dB in PSNR,

which is why we only use 3 phases and also illustrates the

effectiveness of introducing uncertainty estimation.

Phase Number One Two Three Four Three with Uncertainty

PSNR SSIM 35.51 0.970 36.12 0.981 36.29 0.983 36.37 0.983 36.52 0.985

Table 5. Reconstruction with different phase numbers.

5.4. Real Data Benchmark

We test our model on the real data Water Balloon and

Domino with the size of 512× 512× 10 [38]. Due to the

uncontrollable noise during capturing, it is more challeng-

ing to reconstruct real measurements. Note that we do not
add any noise to the training data during the training with
real masks, which demonstrates the generalization ability
of our model to a certain extent. The selected results are

presented in Fig. 7. In the areas with higher uncertainty

(variance), such as edges and textures, our proposed method

outperforms all existing algorithms, which is shown in the

left part of Fig. 7. Even when the water balloon collides

with box, the edge of the box is still sharp in our recon-

struction. Besides, falling dominoes are with higher speed,

which further increases the difficulty of reconstruction. As

we can observe in right part of Fig. 7, all previous SOTA al-

gorithms can not recover the legible letters except our pro-

posed method. Our results are with sharper edges, more de-

tails, and cleaner background, which indicates our proposed

method is more powerful in practical applications. The es-

timated uncertainty maps of real data are shown in Fig. 8,

the edge and texture features can be directly obtained from

the real measurement.

We also test our model on real color dataset Hammer
with the size of 512 × 512 × 22. Few learning based al-

gorithms conducted experiments on the color video SCI

task. We compare our model with previous SOTA algo-

rithms which are iteration-based. As we can see in Fig. 9,

GAP-TV has noisy results, DeSCI and PnP-FastDVDNet

are blurry in the areas of background and edges, our results

are cleaner and have sharp edges than other methods. The

implementation details are in the SM.
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6. Conclusions and Future Work
We have proposed a Transformer and 3D-CNN based

network for video SCI reconstruction and introduced high-

frequency information by uncertainty estimation. The de-

sign of the backbone with Transformer and 3D-CNN helps

explore the correlation across the spatio-temporal dimen-

sions. More importantly, our proposed method achieved

SOTA results with a competitive inference time.

Although we have achieved the best results so far, the in-

troduction of high-frequency information is time-inefficient

and when the model is applied to large-scale data, the infer-

ence time is still long for real-time applications. In the fu-

ture, we will reduce the parameters for high inference speed

by knowledge distillation and employ the high-frequency

information in a more time-efficient way. Besides video,

our proposed framework can also be used in other inverse

problems such as image compressive sensing and spectral

compressive imaging.
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