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Abstract

Keypoint-based representation has proven advantageous
in various visual and robotic tasks. However, the exist-
ing 2D and 3D methods for detecting keypoints mainly rely
on geometric consistency to achieve spatial alignment, ne-
glecting temporal consistency. To address this issue, the
Transporter method was introduced for 2D data, which re-
constructs the target frame from the source frame to in-
corporate both spatial and temporal information. How-
ever, the direct application of the Transporter to 3D point
clouds is infeasible due to their structural differences from
2D images. Thus, we propose the first 3D version of
the Transporter, which leverages hybrid 3D representation,
cross attention, and implicit reconstruction. We apply this
new learning system on 3D articulated objects and non-
rigid animals (humans and rodents) and show that learned
keypoints are spatio-temporally consistent. Additionally,
we propose a closed-loop control strategy that utilizes the
learned keypoints for 3D object manipulation and demon-
strate its superior performance. Codes are available at
https://github.com/zhongcl-thu/3D-Implicit-Transporter.

1. Introduction

The ability to establish correspondences in temporal in-
puts is a hallmark of the human visual system, and this abil-
ity has been verified by developmental biologists [52] as
the enabling factor of object perception. Specifically, in-
fants can naturally separate different objects by considering
pixels that move together. Meanwhile, establishing dense
correspondences from image sequences (i.e., optical flow)
[5, 6, 9, 13, 54, 55, 53] is also one of the oldest computer
vision topics, dating back to the birth of this discipline [19].
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Figure 1. Given paired point clouds, our 3D Implicit Transporter
leverages the object/part motion to discover temporally consistent
keypoints and recover the underlying shape for each input. More-
over, the learned keypoints can serve downstream robotics tasks,
such as articulated object manipulation.

On the other hand, keypoints are preferred as a com-
pact mid-level representation in many scenarios, like vi-
sual recognition [51], pose estimation[72], reconstruction
[37], and robotic manipulation [43]. Sparse correspondence
from keypoints [30, 7, 10, 45] is another fundamental vision
topic. Most of the 2D and 3D keypoint detection methods
[73, 25] depend on the consistency under geometric trans-
formations to achieve spatial alignment of keypoints. How-
ever, these methods are limited in their ability to identify
temporally consistent keypoints, which is crucial for repre-
senting movable or deformable objects such as the human
body whose shape and topology may vary over time. So
does there exist a generic principle that reflects how humans
extract spatiotemporally consistent keypoints? One (possi-
ble) such principle is that good mid-level representation can
be used to re-synthesize raw visual inputs. This principle
has been explored in legacy methods like FRAME [77], but
limited by the modeling power of generative models at that
age, and this principle has not seen much success.

Recently, a method named Transporter [23] has been
proposed in the 2D domain, successfully connecting key-
point extraction and correspondence establishment in a self-
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supervised manner, using exactly the aforementioned prin-
ciple. Thanks to the strong power of modern image recon-
struction networks, this method can extract meaningful key-
points from image sequences without using any human an-
notation. Transporter is both a useful tool and an elegant
formulation that (potentially) mimics how the human vi-
sual system extracts keypoints. However, to the best of our
knowledge, this methodology has not been translated into
the 3D domain. Because the process of 2D feature trans-
portation is implemented on regular data formats, such as
2D image grids, it is not applicable to point clouds that
allow for non-uniform point spacing. Another reason we
believe is that 3D reconstruction from keypoints is a more
challenging setting.

As such, we propose the first 3D Transporter in the liter-
ature, based upon three core components: hybrid 3D repre-
sentation architectures for 3D feature transportation, cross-
attention for better keypoint discovery, and an implicit ge-
ometry decoder for 3D reconstruction. Our method takes as
input two point clouds containing moving objects or object
parts (Fig. 1 left panel). Then by watching these two states
solely, our 3D Implicit Transporter extracts temporally con-
sistent keypoints and a surface occupancy field for each
state, in a self-supervised manner (Fig. 1 middle panel). The
method reconstructs the shape of the target state by trans-
porting explicit feature grids from the initial state accord-
ing to the locations of detected keypoints. Via extensive
evaluations on the PartNet-Mobility dataset [65] and ITOP
dataset [18], we demonstrate significantly improved percep-
tion performance in terms of spatiotemporal consistency of
keypoints over state-of-the-art counterparts. The qualita-
tive results on the Rodent3D[40] dataset also show our key-
points consistently capture the rodent’s skeletal structure.

Besides, we also explore how well our self-supervised
mid-level representation (3D keypoints) can serve down-
stream robotic applications (Fig. 1 right panel). We choose
articulated object manipulation, which requires sophisti-
cated 3D reasoning about the kinematic structure and part
movement, as the benchmark. Existing methods often rely
on object-agnostic affordance-based representation [67, 35,
62]. Our 3D keypoint representation is also object-agnostic,
but we demonstrate that our approach offers two distinct
advantages over these methods: 1) the efficient learning
formulation of ours does not involve costly trial-and-error
interaction in simulators; 2) we leverage spatio-temporally
aligned 3D keypoints to provide a structured understanding
of objects, enabling the design of an effective closed-loop
manipulation strategy.

To summarize, we have the following contributions:

• We propose the first 3D Implicit Transporter formu-
lation that extracts 3D correspondent keypoints from
temporal point cloud inputs, using 3D feature grid

transportation, attentional keypoint detection, and tar-
get shape reconstruction.

• Based on the extracted 3D keypoint representation, we
build a closed-loop manipulation strategy and demon-
strate it successfully addresses the manipulation of
many articulated objects in an object-agnostic setting.

• We extensively benchmark the perception and manip-
ulation performance of 3D Implicit Transporter and re-
port state-of-the-art results on public benchmarks.

2. Related Work

2.1. 3D Keypoint Detection

Detecting 3D keypoints from point clouds has drawn a
lot of attention in vision and robotics [44, 57, 4, 25, 70, 76].
Traditional hand-crafted methods predict salient points ac-
cording to local geometric statistics of inputs, such as den-
sity [75] and curvature [24]. Modern learning-based ap-
proaches employ the consistency of keypoint coordinates
[25] or saliency scores [74] under rigid transformations
to formulate keypoint detection as a self-supervised task.
However, they are unable to ensure temporally consis-
tent keypoint detection of non-rigid objects whose shapes
are significantly changed after movement. To achieve
that, recent research has explored discovering temporally
aligned keypoints from given image videos. Most of them
[34, 56, 17, 11, 23, 60] consider the keypoint learning prob-
lem as a signal reconstruction process. For example, Min-
derer et al. [34] and Jennifer [56] proposed to reconstruct
a future frame by using features of the current frame and
future keypoints. Despite their better results, these meth-
ods all concentrate on 2D keypoint discovery. As far as
we know, there is seldom work investigating the task of 3D
temporally consistent keypoint detection.

2.2. Neural Implicit Representation

Recently, multiple works [29, 33, 48, 26, 39, 50] have
focused on implicit geometric representation. It intends to
parameterize a signal as a continuous function by a neu-
ral network that could decode complex shape topologies of
discrete inputs [39, 41] It shows great achievements of the
implicit neural function on the grasp pose generation [21],
articulated model estimation [20, 36], and object pose rep-
resentation [49]. More recently, it has been proved that en-
tangling an implicit shape decoder [74] instead of a coor-
dinate decoder [69] encourages the model to predict more
semantically consistent keypoints. Inspired by these works,
we exploit the implicit occupancy function to reconstruct
the underlying shape of the transported 3D objects.
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2.3. Perception and Manipulation of Articulated
Objects

Previous research has explored various techniques to un-
derstand and represent articulated objects, such as kine-
matic graphs [22, 1], 6D pose estimation [27, 63], part
segmentation [61, 65, 68], deformation flow [68], joint pa-
rameters [20, 38] and so on. However, most of them re-
quire ground truth knowledge of the object or are category-
dependent. Unlike them, we use sparse correspondence
from keypoints to capture the critical part of articulated ob-
jects without human labels, which can also generalize to un-
seen categories. Albeit the fruitful progress in vision, one
could not directly infer an action from perceptual outputs
to manipulate articulated objects. Therefore, recent works
have proposed manipulation-centric visual representations,
like visual affordance [35, 67, 64] or dense articulation flow
[14]. However, they need substantial trial-and-error inter-
actions in simulation or ground-truth geometric knowledge.
In contrast, the keypoint learning of ours is unsupervised
and effective, and the correspondences between keypoints
can also serve robotic manipulation well.

3. Method
Our perception method presents a new formulation to

discover temporally and spatially consistent 3D keypoints
of a moving object or object part in a sequence of point
clouds in a self-supervised manner. Once trained, the
learned keypoints are used to devise a strategy for the ma-
nipulation of an articulated object from its starting state to
a goal state, thus avoiding the costly trial-and-error interac-
tion typically utilized in [67].

3.1. Temporal 3D Keypoint Discovery

In accordance with the formulation in [23], we consider
a dataset comprising pairs of frames extracted from a se-
ries of trajectories, where each frame is represented as a 3D
point cloud instead of an image. Two frames in a pair are
distinguished by differences solely in the pose/geometry of
the objects. Our goal is to find the corresponding keypoints
describing the object or object part motion from the source
to the target frame. We tackle this problem by reconstruct-
ing the underlying shape of the target frame from the source
frame. Fig. 2 summarizes our method, and the subsequent
subsections provide further details on its components.

3.1.1 3D Feature Transporter

Hybrid 3D Representation. As per the formulation in 2D
Transporter, feature transportation occurs between uniform
data, such as 2D images, which is not feasible for point
clouds that are in an irregular format. A straight way is
to convert point clouds to uniform 3D voxel grids before in-
putting them to a neural network. However, converting raw

point clouds into voxels inevitably introduces quantization
errors that break the intrinsic geometric patterns (e.g., isom-
etry) of 3D data. Although a high-resolution volumetric
representation could compensate this information loss, both
computational cost and memory requirements escalate cu-
bically with voxel resolution. On the contrary, point-based
models [15, 42] lead to a significant reduction in memory
usage due to the sparse representation. As such, we uti-
lize the point-based backbone to extract local features from
sparse points and then leverage the voxel-based model for
transporting local features.

Given a frame o ∈ RN1×3, where N1 is the num-
ber of input points, we exploit a PointNet [42] P to get
point features P (o) ∈ RN1×C1 , where C1 is the dimen-
sion of features. These features are then locally pooled and
projected into structured volumes v ∈ RC2×Ch×Cw×Cd ,
where Ch, Cw and Cd are the number of voxels in three
orthogonal axes. Afterwards, the feature volumes are pro-
cessed with a 3D UNet [12] U , resulting in the outputs
U(v) ∈ RC3×Ch×Cw×Cd . The above point and voxel-based
models are denoted as the feature encoder Φ in Fig. 2.

Attentional Keypoint Detection. When we are asked to
find moving objects or object parts between paired frames,
we adopt an iterative process whereby we inspect and sift
through multiple tentative regions in both frames. However,
extracting keypoints on mobile parts using a single frame,
as done by 2D Transporter1, can be inherently ambiguous,
particularly when multiple potential mobile parts exist in
each frame. Therefore, inspired by [47, 20, 28, 71], we pro-
pose to use a cross-attention module to aggregate geometric
features from both frames to locate keypoints.

Specifically, we utilize a point-based model (not shared
with Φ) to extract multi-level features for the input point
clouds and correlate paired inputs at a coarse level to reduce
computational costs, as done in [20]. Given a frame pair
os,ot, we exploit a shared PointNet++ [42] P̂ to get two
down-sampled point features fs = P̂ (os) and f t = P̂ (ot),
where fs, f t ∈ RN2×C4 . Then, a cross attention block [59]
is used to mix point features of paired inputs, achieved by:

zs = softmax(
fsf

T
t√

C4

)fs, f ′s = [fs, zs], (1)

zt = softmax(
f tf

T
s√
C4

)f t, f ′t = [f t, zt]. (2)

The output of this block is the concatenation of input
features and attended features. Then, we upsample f ′s, f

′
t

to get dense features fds , f
d
t ∈ RN1×C5 using a PointNet++

decoder. Following the principle in the above, we convert
these dense point features into the keypoint saliency vol-
umes by projection and a 3D UNet Uk. Suppose the full
detection module is denoted as Ψ , the outputs are named
as Ψ(os,ot)s, Ψ(os,ot)t ∈ Rm×Ch×Cw×Cd . Then, we

1The reconstruction objective requires two frames.
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Figure 2. Architecture of our 3D Implicit Transporter. The network consists of (1) a feature encoder Φ that extracts features for
transportation; (2) a keypoint module Ψ to indicate where to transport; (3) a 3D feature transporter that reconstruct the feature volume
of interest; and (4) a geometry implicit decoder that allows self-supervision using solely input point clouds. The overall process involves
extracting m corresponding 3D keypoints from two frames and using them to transport the features of the target frame to the source frame
based on their keypoint locations. The transported features are then fed into the implicit decoder to reconstruct the target shape.

can marginalize (see section 3.1 of [23]) the saliency vol-
umes along three orthogonal axes to extract m 3D keypoints
ks,kt ∈ Rm×3, as visualized in the blue panel in Fig. 2.
Here, the i-th keypoint in ks and kt correspond to each
other (i ∈ [1,m]).

Feature Transportation. Similar to 2D Transporter, the
next step involves feature transportation for reconstructing
ot from os. We transport the features in Φ(ot) around kt

into Φ(os) and suppress features in Φ(os) around kt and
ks. As shown in the green panel in Fig. 2, we first erase
features at both sets of keypoints in Φ(os) to get Φ−(os),
then extract the feature surrounding keypoints kt from ot,
and finally combine both to generate Φ+(os), which is for-
mulated by:

Φ+(os) =(1−HΨ(os,ot)s) · (1−HΨ(os,ot)t) · Φ(os)

+HΨ(os,ot)t · Φ(ot), (3)

where HΨ represents a 3D heatmap made out of fixed-
variance σ isotropic Gaussians centered at each of the m
keypoint coordinates indicated by Ψ , and (1−HΨ(os,ot)s) ·
(1−HΨ(os,ot)t) · Φ(os) is denoted as Φ−(os) in Fig. 2.

It’s worth noting that the exact values of feature dimen-
sions in our experiments are detailed in the supplementary.

3.1.2 Geometry Implicit Decoder

Since the geometry except for moving parts remains the
same between the source and target frame, building trans-
ported features using detected corresponding keypoints of
moving parts can enable the re-synthesis of the target vi-
sual inputs. As the 2D Transporter does not change the data

structure after transportation, it is easily achievable to re-
construct the input image by a CNN-based decoder. This is
not viable for irregular 3D data, so our 3D Transporter uti-
lizes implicit neural representations to reconstruct the un-
derlying shape of the target instead of the raw point clouds.
This is motivated by recent studies demonstrating the effec-
tiveness of deep implicit functions for 3D reconstruction.
By mapping the irregular point clouds into volumetric fea-
tures, we find that using implicit shape decoding is more
effective compared to sparse reconstruction (see Tab. 3).

Given a point q ∈ R3 from a query set Q, our method
encodes it into a Ce-dimensional vector qe using a multi-
layer perceptron. Then, the local feature Φ+

q (os) is queried
from the transported feature volume Φ+(os) via trilinear
interpolation. Our implicit decoder Ω maps the concatena-
tion of feature qe and Φ+

q (os) to a target surface occupancy
probability Prob(q|ot) ∈ [0, 1], as formulated by:

Ω(qe, Φ
+
q (os)) → Prob(q|ot). (4)

3.1.3 Loss Function

All modules could be optimized by a surface reconstruction
loss. As we claim that we have no access to any information
other than the given videos, we solely use the input point
clouds for training the implicit decoder. Specifically, we
define occupied points are those lying on the input surface,
while all other points are considered unoccupied, including
those inside and outside the surface.

The binary cross-entropy loss between the predicted tar-
get surface occupancy Prob(q|ot) and the ground-truth la-

3872



bels of the target frame Probgt(q|ot) is used. If q is from
the input target point clouds, the Prob(q|ot) would be 1,
otherwise be 0. We randomly sample queries Q from the
volume of size Ch × Cw × Cd and the target point clouds,
then average the results over all queries:

Locc t =
1

|Q|
∑
q∈Q

lBCE

(
Prob(q|ot),Prob

gt(q|ot)
)
, (5)

where |Q| is the number of queries Q.
We also incorporate an additional loss term, Locc s, to

aid the source frame reconstruction process by leveraging
its own feature grids, Φ(os). This loss term, formulated in
the supplementary, leads to improved perception results.

3.2. Manipulation using Consistent Keypoints

The use of keypoints as a mid-level representation of
objects is an appropriate way for contact-rich robotic ma-
nipulation tasks that occur within a 3D space, such as tool
manipulation [43], object grasp [32], cloth folding [31] and
generic visuomotor policy learning [16]. However, previous
works either focus solely on 2D keypoint representation or
struggle to detect temporally consistent 3D keypoints when
faced with shape variations and changes in object topology.
Owing to the long-term consistency of 3D Transporter key-
points, our method is well-suited for handling 3D manip-
ulation tasks. To demonstrate that, we choose articulated
object manipulation as the benchmark.

The task is formulated in UMPNET [67]: Given a goal
state og , a robot with an end-effector aims to generate a
set of actions by which the articulated object can be moved
from the current state oc to og , as shown in Fig. 3. In this
study, each state is in the form of point clouds instead of
RGB-D images as used in [67]. Here, we use a suction-
based gripper that can grasp any point on the object surface
as [14, 67] used.

Before manipulation, we leverage the geometry prior
about articulation to design two additional losses during
keypoint learning for improving the performance of 3D
Transporter keypoint estimates:

Keypoint Correspondence Loss Since the predicted
keypoints are expected to scatter on the mobile part, we can
use them to generate the pose hypothesis of the rigid part
motion between the source and target, which is given by:

R̂, t̂ = min
R,t

m∑
i=1

∥∥ki
g −

(
R · ki

c + t
)∥∥2 . (6)

This can be computed in closed form using SVD [8]. We
enforce all correspondent keypoints to meet this rigid trans-
formation to make keypoints geometrically aligned:

Lcorr =

m∑
i=1

∥∥∥ki
g −

(
R̂ · ki

c + t̂
)∥∥∥2 . (7)
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Figure 3. Illustrations of our manipulation policy based on corre-
spondent keypoints. R means revolute and P means prismatic. The
length of the red arrow is proportional to the action distance.

Joint Consistent Loss During an articulated motion, we
note that the axis orientation of a certain joint under dif-
ferent states should remain the same or parallel. Given the
predicted pose by Eq. (6), we can calculate its axis orien-
tation µ and angle θ, through Rodrigues’ rotation formula.
We penalize the difference in axis orientation of a certain
joint at different time steps:

Laxis = min(1− µ12µ23
T , 1 + µ12µ23

T ), (8)

where µab is the predicted axis orientation between obser-
vations at time-step a and b.

The overall training loss is:

L = Locc t + Locc s + λ1Lcorr + λ2Laxis, (9)

where λ1 and λ2 are the loss weights (exact values are de-
tailed in the supplementary).

After training, we develop an object-agnostic manipu-
lation policy based on 3D Implicit Transporter keypoints,
avoiding the notoriously inefficient exploration used in [67].
We first define each action Ac,g , that moves the object from
its current state to the goal state, as a 6-Dof pose which indi-
cates the suction position Apos

c,g ∈ R3 and moving direction
Adir

c,g ∈ R3. Then, our policy consists of two parts:
Position and Direction Inference The first step is to ob-

tain predicted keypoints kc,kg , axis µc,g and angle θc,g .
Then, we compute the sparse articulation flow Fi

c,g =

ki
g − ki

c from correspondent keypoints. To efficiently actu-
ate the moving part, we select the keypoint location ks

c with
the highest magnitude flow as the suction point according
to the principle of leverage, denoted as Apos

c,g = ks
c.

For a revolute joint (Fig. 3 top panel), ks
c is restricted

to move on a 2D circle with a radius rs perpendicular to
the axis of rotation, where rs is the shortest vector from
ks
c to the joint link. Therefore, the ideal action direction
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Adirs
c,g for ks

c is tangent to the circle formed by rs. If the
range of motion between the current and goal state is small,
w.r.t. θc,g ≤ θthr, where θthr is a threshold, Fs

c,g is approx-
imately parallel to Adirs

c,g , which can be set as the action
direction. However, when the rotation is increased, the dif-
ference between them gets more significant. This issue can
be alleviated by interpolating some intermediate states ac-
cording to the predicted axis. Specifically, we use the axis
µc,g and θthr to rotate ks′

c (the result of moving center of
ks
c to origin coordinates) to generate ks′

c1 . Then Fs′

c,c1 can
be computed as the action direction at ks

c.
For a prismatic joint (Fig. 3 bottom panel), Adirs

c,g is par-
allel to the ground-truth articulation flow of each moving
point. Therefore, we can directly use Fs

c,g as the articulate
direction. Since the motion of a prismatic joint always sat-
isfies the condition θc,g ≤ θthr, and the rule for direction
estimates is the same as the revolute joint, there is no need
to classify the joint type.

Closed-loop Manipulation In contrast to using a single-
step action to reach the target, we generate a sequence of
actions over multiple steps to gradually change the articula-
tion state. To achieve this, we adopt a closed-loop control
system that relies on feedback to adjust the current action.
Specifically, we predict the next action based on the object’s
current and goal state. Unlike the previous method [67] that
used a constant moving distance, we leverage the magni-
tude of articulation flow Fs

c,g to adjust the moving distance
dynamically. Inspired by the idea of a PID controller [3],
we set ||Adirs

c,g || = λ · ||Fs
c,g|| at the current state, where λ

is a proportional coefficient.

4. Experiments
We demonstrate the effectiveness of our approach in

both perception and manipulation tasks. We begin with an
evaluation of 3D correspondent keypoint detection meth-
ods on both synthetic and real-world datasets. Addition-
ally, we conduct an ablation study to investigate the impact
of each design choice in our approach. Next, we demon-
strate our method’s ability to perform goal-conditioned ma-
nipulation in simulation and further verify our approach’s
practicality by showcasing its performance on a real-world
platform. More details regarding our implementation and
hyper-parameters can be found in the supplementary.

4.1. Datasets

PartNet-Mobility [65]: We adopt a similar approach to
Xu et al. [67] for selecting synthetic object models from
PartNet-Mobility to generate our data, except for two cate-
gories with an insufficient number of instances. Thus, we
train on 10 categories and test on 9 categories, with spe-
cific object classes listed in the footnote of Tab. 1. For the
perception task, we load one instance at a time into the Py-

(a) (b)
Figure 4. Relative repeatability (%) of novel instances in train cat-
egories (a) and test categories (b). Our method significantly sur-
passes other baselines. Note that our counterparts need a segmen-
tation mask to filter the keypoints on the mobile part.

bullet simulator with random pose and joint configurations,
and gradually change the articulation states of a randomly
selected joint to mimic human-object interaction. For the
manipulation task, we use the same joint configurations of
testing objects at the initial and goal states as [67] set. At
each state in both tasks, we integrate three-view rendered
depth images into point clouds. Examples of generated data
are visualized in the supplementary.

ITOP [18]: The ITOP dataset, which consists of depth
map sequences capturing diverse real human actions, is
used in our perception task. Specifically, we select 9k train-
ing frames and 1k testing frames from the dataset.

Rodent3D [40]: The Rodent3D dataset contains 240
minutes of multimodal (RGB, depth, and thermal) video
recordings depicting rodents exploring an arena in a labo-
ratory. The dataset is leveraged to develop a model aimed
at accurately tracking the 3D pose of animals.

4.2. Baselines

For the perception task, we compare our method with
several 3D keypoint detection methods, which contains ran-
dom guess, hand-crafted detectors: ISS [75], and deep
learning-based unsupervised detectors: USIP [25] and
SNAKE [74]. To find correspondence between keypoints
of two observations, we need both keypoint detectors and
descriptors. As such, we use an off-the-shelf and generic
descriptor FPFH [46] with the abovementioned keypoint
detectors. Moreover, the matching is based on the nearest
neighbor search. We also choose a joint learning method
for 3D keypoint detection and description: D3feat [4]. All
the baselines are pre-trained on our dataset.

For the manipulation task, UMPNet [67] is selected as
a strong baseline, which proposed to use a universal strat-
egy to handle various objects for goal-conditioned manip-
ulation. We also compare with a single-step action model
proposed by Agrawal et al. [2].
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Table 1. The perception performance of ours and other baselines.
Novel Instances in Train Categories Test Categories

Av
g.

Av
g.

Average correspondent keypoint distance (ACKD) ↓
Random 0.24 0.26 0.34 0.31 0.27 0.24 0.21 0.28 0.24 0.13 0.25 0.32 0.30 0.32 0.25 0.25 0.18 0.21 0.24 0.31 0.26
ISS[75] 0.26 0.24 0.31 0.28 0.26 0.24 0.20 0.25 0.25 0.14 0.24 0.31 0.29 0.33 0.23 0.26 0.19 0.22 0.20 0.30 0.26
USIP[25] 0.23 0.28 0.34 0.36 0.26 0.23 0.25 0.24 0.23 0.13 0.26 0.33 0.34 0.38 0.19 0.29 0.21 0.23 0.21 0.26 0.27
SNAKE[74] 0.25 0.26 0.31 0.29 0.25 0.28 0.21 0.27 0.25 0.16 0.25 0.29 0.31 0.31 0.24 0.24 0.18 0.22 0.26 0.29 0.26
D3feat[4] 0.20 0.21 0.22 0.21 0.25 0.23 0.11 0.24 0.25 0.14 0.21 0.19 0.22 0.24 0.17 0.20 0.13 0.21 0.16 0.19 0.19
Ours 0.21 0.07 0.07 0.11 0.15 0.11 0.11 0.14 0.23 0.06 0.13 0.13 0.06 0.12 0.15 0.18 0.12 0.22 0.07 0.13 0.13

Average distance on pose estimation (ADD) ↓
Random 0.26 0.26 0.31 0.34 0.27 0.27 0.21 0.28 0.26 0.18 0.26 0.31 0.29 0.34 0.28 0.26 0.18 0.22 0.32 0.33 0.28
ISS[75] 0.27 0.24 0.32 0.30 0.26 0.28 0.22 0.23 0.26 0.18 0.26 0.29 0.30 0.35 0.24 0.26 0.19 0.22 0.30 0.33 0.27
USIP[25] 0.28 0.25 0.33 0.38 0.26 0.27 0.23 0.27 0.27 0.17 0.27 0.29 0.33 0.38 0.25 0.28 0.24 0.24 0.32 0.30 0.29
SNAKE[74] 0.26 0.25 0.33 0.33 0.28 0.29 0.24 0.24 0.26 0.19 0.27 0.29 0.32 0.37 0.24 0.26 0.21 0.21 0.37 0.29 0.29
D3feat[4] 0.21 0.22 0.26 0.24 0.27 0.27 0.16 0.24 0.28 0.19 0.23 0.21 0.26 0.34 0.19 0.27 0.16 0.21 0.21 0.18 0.23
Ours 0.18 0.08 0.07 0.10 0.16 0.11 0.11 0.13 0.21 0.07 0.12 0.14 0.06 0.11 0.15 0.15 0.12 0.24 0.07 0.12 0.13

Classes: fridge, folding chair, laptop, stapler, trashcan, microwave, toilet, window, cabinet, kettle, box, phone, dishwasher, safe, oven, washing machine, table, kitchen pot, door.

SNAKE D3featUSIP OursISS SNAKE D3featUSIP OursISS

Figure 5. Temporal consistency of keypoints on articulated objects in different articulation states. The object in yellow has a revolute joint,
and the blue one has a prismatic joint. The keypoint in the same color is correspondent.

Table 2. Results on the ITOP dataset under two settings: w/ and
w/o a mask to filter keypoints of the human body at the test.

Random ISS USIP SNAKE D3feat Ours

w/ mask 0.53 0.29 0.23 0.27 0.22 0.13
w/o mask 0.74 0.89 0.87 0.69 0.78 0.14
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Figure 6. Keypoint consistency on an articulated human.

4.3. Correspondent Keypoint Detection
We compare the keypoint consistency of two different

articulation states of the same instance. We mainly focus
on keypoints of the moving part to demonstrate the tempo-
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Figure 7. Keypoint predictions of ours on the Rodent3D dataset.

ral consistency. Note that we need to use the ground-truth
segmentation mask to select keypoints to meet the above re-
quirement for all baselines. For a fair comparison, we set a
fixed keypoint number m of 6 for each method and ours.
Metrics We exploit the following metrics for evaluation:
1) Average correspondent keypoint distance (ACKD): CKD
is the Euclidean distance of correspondent keypoints in the
same coordinate system. ACKD is the average CKD of all
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Init Target Start Middle1 Middle2 End

Figure 8. Visualizations of the goal-conditioned task, and the perception and manipulation results of our method in each step.

keypoints. 2) Relative repeatability (RR): A keypoint is re-
peatable if its CKD is below a distance threshold. RR is
the percentage of repeatable points in a total number of de-
tected keypoints. 3) Average distance on pose estimation
(ADD): According to Eq. (6), the part motion of an artic-
ulated object can be solved. Following PoseCNN [66], we
adopt ADD to compare the distance between predicted pose
[R̂, t̂] and ground-truth pose [R, t].
Evaluation Results The quantitative results on the PartNet-
Mobility dataset are provided in Tab. 1 and Fig. 4. Our
method demonstrates superior performance on both novel
instances within the training set and test categories. Base-
lines perform poorly on temporal keypoint detection. The
reason may be twofold. 1) Their core principle is to find
repeatable keypoints under view variations, which makes
sense only for rigid objects. And they did not design a strat-
egy to adapt to significant shape disturbances of the same
object. 2) The bottleneck is the mismatch between keypoint
detector and descriptor. The performance gap between the
D3feat and other baselines is the apparent evidence to ver-
ify that. Owing to the design of the 3D feature transport
and implicit shape reconstruction, our method can leverage
object motion to discover keypoints scattered on the mobile
parts without segmentation masks, which is different from
all baselines. As shown in Fig. 5, our keypoints show good
temporal alignment compared to other methods.

We compute the Chamfer Distance for the ITOP dataset
using human-annotated semantic points, and the results are
listed in Tab. 2. Note that all methods do not have access
to masks of the human body points during training. De-
spite this, our proposed method achieves satisfactory per-
formance in real-world scenarios compared to the baselines.
The counterparts cannot distinguish keypoints on the mov-
ing body from those in the background without segmenta-
tion masks. The visualization in Fig. 6 illustrates that our
keypoints are close to the human labels.

Notably, the Rodent3D dataset does not furnish valid
pose annotations, and therefore, we restrict ourselves to pre-
senting qualitative outcomes of our 3D Implicit Transporter,
as shown in Fig. 7. Our results demonstrate that the key-
point predictions generated by our method effectively cap-

ture the rodent’s skeletal structure and display spatiotem-
poral coherence. Overall, our self-supervised method has
the potential to significantly improve behavior analysis by
addressing the difficulty of obtaining accurate 3D keypoint
annotations for animals. More intuitive performance can be
found in the supplementary video.

Ablation Studies 1) Network and loss functions. Tab. 3
shows the average perception performance on test cate-
gories from the PartNet-Mobility dataset w.r.t. designs of
our method. (Row 1-2) Using a point-based decoder like
TopNet [58] to recover the target point cloud, rather than
employing the implicit reconstruction results in a decrease
in performance. (Row 2-3) It shows that the keypoint per-
formance improves when we utilize the cross-attention for
feature fusion. (Row 3-5) The two loss functions are essen-
tial to make keypoints temporally consistent. 2) Keypoint
parameters. The keypoint number m and Gaussian vari-
ance σ are involved with the spatial range of transported fea-
tures. The results for different settings of both parameters
are shown in supplementary, which indicates that m = 6
and σ = 0.15 are the best choice in our settings. 3) Vol-
ume size. The higher volumetric resolution of feature grids
improves keypoint detection performance, as shown in the
supplementary. However, this comes at the cost of increased
memory usage. So we choose the voxel size of 64 to bal-
ance the memory cost and keypoint performance. 4) Query
sampling. Increasing the number of queries can improve the
performance of keypoint detection as shown in Tab. 4. But
this increases the cost of memory and training time as well.
Besides, it is crucial to sample negative queries randomly.

Table 3. Ablations for the designs of our method.
Imp. Rec. Cro. Att. Lcorr Laxis RR ↑ ACKD ↓ ADD ↓

0.170 0.286 0.317
✓ 0.457 0.199 0.186
✓ ✓ 0.530 0.153 0.143
✓ ✓ ✓ 0.602 0.130 0.123
✓ ✓ ✓ ✓ 0.611 0.127 0.109

Table 4. Analysis of query sampling strategies. ’R’ and ’U’ means
random and uniform sampling of negative queries.

Query # 5k(R) 2k(R) 1k(R) 2k(U)

Repeatability ↑ 0.663 0.611 0.597 0.058
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Table 5. The manipulation performance of ours and other baselines.
Novel Instances in Train Categories Test Categories

Av
g.

Av
g.

Success rate ↑
ISS[75] 0.43 0.44 0.52 0.99 0.73 0.85 0.45 0.61 0.55 0.68 0.63 0.68 0.48 0.90 0.67 0.59 0.78 0.25 0.78 0.64 0.64
SNAKE[74] 0.44 0.32 0.33 0.71 0.32 0.64 0.32 0.44 0.41 0.21 0.41 0.45 0.42 0.44 0.62 0.38 0.14 0.23 0.34 0.67 0.41
D3feat[4] 0.55 0.57 0.80 0.99 0.43 0.60 0.52 0.73 0.34 0.67 0.62 0.56 0.67 0.26 0.61 0.09 0.41 0.55 0.88 0.76 0.53
INVERSE[2] 0.43 0.68 0.72 0.55 0.63 0.89 0.78 0.65 0.61 0.83 0.68 0.67 0.59 0.80 0.73 0.58 0.83 0.67 1.00 0.68 0.73
UMPNet[67] 0.67 0.78 0.90 0.73 0.68 0.86 0.90 0.58 0.63 0.79 0.75 0.68 0.89 0.86 0.76 0.62 0.80 0.68 1.00 0.79 0.79
Ours 0.77 0.81 1.00 0.98 0.93 0.90 0.91 0.87 0.64 0.90 0.87 0.77 0.98 0.97 0.87 0.78 0.89 0.57 0.95 0.78 0.83

Normalized distance to target ↓
ISS[75] 0.53 0.54 0.43 0.01 0.25 0.14 0.54 0.42 0.37 0.44 0.37 0.26 0.50 0.10 0.33 0.37 0.20 0.75 0.20 0.34 0.34
SNAKE[74] 0.52 0.62 0.63 0.28 0.67 0.33 0.67 0.54 0.58 0.78 0.56 0.54 0.53 0.55 0.35 0.61 0.86 0.77 0.66 0.31 0.58
D3feat[4] 0.42 0.41 0.16 0.01 0.57 0.39 0.46 0.27 0.65 0.32 0.37 0.41 0.35 0.74 0.36 0.91 0.58 0.44 0.08 0.20 0.45
INVERSE[2] 0.30 0.21 0.32 0.31 0.27 0.17 0.28 0.09 0.27 0.09 0.23 0.25 0.32 0.09 0.17 0.27 0.15 0.21 0.00 0.27 0.19
UMPNET[67] 0.20 0.19 0.05 0.19 0.23 0.16 0.12 0.13 0.28 0.11 0.17 0.26 0.03 0.06 0.15 0.21 0.16 0.22 0.00 0.17 0.14
Ours 0.20 0.09 0.00 0.01 0.05 0.08 0.07 0.10 0.35 0.09 0.11 0.19 0.02 0.02 0.08 0.21 0.11 0.42 0.05 0.21 0.15

4.4. Goal Conditioned Manipulation

The manipulation task is formulated in section 3.2. We
set the same initial and goal state for test objects, and the
maximum action step as [67] used. We adopt our proposed
manipulation strategy for other keypoint-based methods.
Metrics Following UMPNet, we exploit 1) normalized dis-
tance to target state and 2) success rate as manipulation
metrics. The first metric means the distance between the
end and target state divided by the distance between the ini-
tial and target state, denoted as d. A success means d<0.1.
Evaluation Results We report the results in Tab. 5. Our
method surpasses other keypoint-based baselines on both
seen and unseen categories, demonstrating the better perfor-
mance of our predicted keypoints. Our method also outper-
forms manipulation-centric methods Inverse [2] and UMP-
Net [67] in most categories. It is noteworthy that, although
UMPNET produces comparable results, it necessitates pro-
hibitively costly trial-and-error simulations for pixel-wise
affordance learning. The training time of UMPNet is 5-7
times of ours when using the same hardware, which can be
found in the supplementary. Notably, they also need color
and surface normal for each point. It is suggested that the
learning formulation of the 3D Implicit Transporter is effi-
cient and the manipulation strategy based on correspondent
keypoints is also effective. We provide the qualitative re-
sults of our method in Fig. 8. With the correspondent key-
points, we can compute the axis-angle and translation direc-
tion, which direct us to generate a future action to interact.
In contrast to moving an end-effector a fixed length every
time as UMPNet used, we dynamically adjust the moving
distance according to the articulation flow Fs

c,g between the
current and goal state.

4.5. Real-World Experiments

Finally, to examine the effectiveness of our method, we
conduct a real-world experiment. We design a robot system
that consists of a 6-DoF robotic arm, a pneumatic suction
gripper as the end-effector, and a calibrated RGB-D camera,
as visualized in Fig. 9. We choose a laptop as the manipula-

tion object. Results on more real-world objects can be found
in the supplementary. For training data generation, we in-
teract with the laptop to change articulation states under dif-
ferent camera view-points. In contrast to synthetic data, real
data contains human motion which encourages keypoints to
locate on the human body according to the principle of the
Transporter. Therefore, we manually label an bounding box
in the first frame of each video to coarsely filter points of
the laptop in all frames. Fig. 9 illustrates that our method
could find temporally consistent keypoints and the proper
suction positions and action directions.

Suction
Gripper

Air TubeInput

Output

Train

Predict

Model

Figure 9. Real-world experiment. We train the 3D Transporter on
the real data and transfer the model to a real robotic application.

5. Conclusions
Our work presents 3D Implicit Transporter, a self-

supervised method to discover temporally correspondent
3D keypoints from point cloud sequences. We introduce
three novel components that extend the 2D Transporter to
the 3D domain. Extensive evaluations show that our key-
points are temporally consistent and generalizable to un-
seen object categories. Moreover, we develop a manipu-
lation policy for downstream tasks that utilizes the Trans-
porter keypoints and demonstrate that they are suitable for
3D manipulation tasks.
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