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Abstract

Dense depth and surface normal predictors should pos-
sess the equivariant property to cropping-and-resizing –
cropping the input image should result in cropping the same
output image. However, we find that state-of-the-art depth
and normal predictors, despite having strong performances,
surprisingly do not respect equivariance. The problem ex-
ists even when crop-and-resize data augmentation is em-
ployed during training. To remedy this, we propose an
equivariant regularization technique, consisting of an av-
eraging procedure and a self-consistency loss, to explicitly
promote cropping-and-resizing equivariance in depth and
normal networks. Our approach can be applied to both
CNN and Transformer architectures, does not incur extra
cost during testing, and notably improves the supervised
and semi-supervised learning performance of dense pre-
dictors on Taskonomy tasks. Finally, finetuning with our
loss on unlabeled images improves not only equivariance
but also accuracy of state-of-the-art depth and normal pre-
dictors when evaluated on NYU-v2.

1. Introduction

Depth regression [2, 14, 24, 29, 38, 40, 42, 43, 69, 71, 72]
and surface normal regression [1, 12, 22, 57] are image-to-
image dense prediction tasks that involve predicting an out-
put image of the same size as the input image. This con-
trasts with image classification, where only one or a few
category labels are predicted per image. A shared feature
among depth and normal prediction tasks is that they natu-
rally require equivariance, such that a geometric transform
(e.g., random cropping) applied to the input image results in
the same transform to the output image [8,15,28,30], when
the effect (scale of the depth prediction) of camera intrinsic
change due to cropping is accounted for. This is because the
relative depths and normals are derived from the underlying
geometrical and physical properties of the scene that are not
affected by viewport changes. Consequently, a good depth
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Figure 1. State-of-the-art depth and surface normal predictors fail
to capture equivariance, while we know equivariance needs to hold
for an ideal depth/normal predictor (when adjusted for prediction
scale and offset). We crop and resize two patches (red & blue)
from the same scene, then extract depths/normals with pre-trained
models from [42] (MiDaS-v3) and [1]. We notice clear discrep-
ancies between the predictions of the two crops, as highlighted by
the yellow boxes. The same issue exists in other depth predictors
(Figure 2) and dense prediction tasks as well (supplementary).

or normal predictor must have the equivariant property.
To our surprise, we find state-of-the-art well-engineered

depth and normal predictors often fail at equivariance. We
investigate two recent models: the MiDaS CNN-based
(v2.1) and Transformer-based (v3.0) depth predictors from
[42,43] and the uncertainty-guided CNN-based surface nor-
mal predictor from [1]. We generate a pair of resized crops
of the same test image from NYU-v2 [49], extract predic-
tions with the networks, and measure equivariance by com-
paring and computing the mean errors between the predic-
tions of the two crops. A more equivariant network would
produce smaller errors from this procedure. We discover
that the examined depth and surface normal predictors do
not handle equivariance to cropping very well, as shown in
Figure 1. There are prominent, sometimes structural, in-
consistencies in the predictions of the two crops. For this
particular scene, the mean error induced by cropping is sig-
nificant – as large as 12.6% absolute relative error (AbsRel)
between crops for depth prediction, making it compara-
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ble to the overall AbsRel error to ground truths (13.7%).
Given the widespread use of such dense predictors, for ex-
ample, MiDaS-v3 for the depth-guided inference in Stable
Diffusion-v2 [45], it is imperative to solve such an issue.

Data augmentation is a widely-used strategy to promote
the equivariance of models during training. In each mini-
batch, instead of seeing the original images, the network
sees random resized crops of them. The network is implic-
itly trained to cope with the variations caused by random
crops in a straightforward data-driven manner. However,
the problem persists even when randomly resized cropping
augmentation is used during training. In fact, the state-of-
the-art models we tested, for example, the MiDaS depth net-
works [42, 43], are already trained on random crops. This
suggests that augmentation alone is not a sufficient solu-
tion to the equivariance issue. Other methods to enforce
equivariance include invariant inputs and equivariant archi-
tectures, but they involve a nontrivial additional effort to
construct and do not apply to the cropping transform we are
concerned about. Therefore, we compare our approach to
the data augmentation strategy as our primary baseline.

In this paper, we propose an equivariant regularization
approach built on top of data augmentation to improve
equivariance in dense depth and normal prediction net-
works. Our approach consists of two parts: an equivariant
averaging step of the outputs of random crops, and an equiv-
ariant loss between the crop outputs and the average output.
The averaging step is based on the key observation that the
full output average of all possible transforms of a transfor-
mation group guarantees equivariance to that group. Our
sampling version is effectively an unbiased estimate of the
full average. The equivariant loss enforces self-consistency
and promotes equivariance explicitly rather than implicitly
as in data augmentation. Thanks to the flexible formulation,
our approach can be applied to any layer of popular net-
work architectures (e.g., CNN or Vision Transformer [13]),
and with unlabeled images – both are beyond what data aug-
mentation can do. Meanwhile, our approach retains the ben-
efit of data augmentation, as it imposes no extra cost during
testing because the network architecture and the inference
procedure are not changed in any way.

Empirically, we demonstrate the effectiveness of our
equivariant regularization approach in supervised, semi-
supervised and unsupervised learning settings. In the super-
vised setting, we benchmark our approach against the no-
augmentation and augmentation baselines on edge detec-
tion, depth prediction, and surface normal prediction tasks
of the Taskonomy dataset [75]. We find that our approach
overcomes the ineffectiveness of using data augmentation
alone. In the semi-supervised setting, we show our ap-
proach benefits from unlabeled data, improving the sam-
ple efficiency further. Finally, in the unsupervised setting,
we demonstrate the capability to adapt the state-of-the-art

depth and surface normal models to the NYU-v2 dataset
[49] (which these models are not trained on), and improve
their accuracy and equivariance, without using any ground
truth labels.

To summarize, our contributions are the following:

• We point out an obvious but overlooked issue: The
state-of-the-art depth and normal prediction networks
fail at equivariance to cropping.

• We propose an equivariant regularization approach to
learn more equivariant networks effectively.

• We show empirical successes of our approach in a
range of settings, and improve the equivariance and ac-
curacy of the state-of-the-art depth and normal models.

2. Related Work

Equivariance in ML. Equivariance is tied closely to geom-
etry and symmetry. The entire subject of physics is founded
on concepts surrounding symmetry. A wide range of natural
phenomena admits equivariance inherently since the under-
lying mechanism is oftentimes geometrical. As a conse-
quence, a lot of data that machine learning deals with has
the equivariance property. For example, camera photogra-
phy follows simple 3D geometry rules, thus a shift in cam-
era position leads to a shift in the photograph; the molecules
and point clouds have translation and rotation symmetry in
3D, thus an SE(3) transform should not change any prop-
erty. Therefore, it is natural to consider equivariance in de-
veloping machine learning models.

Equivariance in 2D computer vision. Convolutional neu-
ral networks (CNN) for 2D images are shown to have the
approximate translation equivariance property due to the
nature of convolution [30]. There is a line of work devel-
oping rotation equivariant 2D CNNs [8, 36, 59, 60, 62]. The
transformation group for 2D rotation is the Special Orthog-
onal group SO(2), and the Special Euclidean group SE(2)
if the translation is allowed. The derivation of group equiv-
ariance constraint typically results in steerable filters con-
structed from 2D harmonic bases. The convolution filter
weights are parameterized as a linear combination of the
harmonic bases.

Equivariance can also be achieved by parameter shar-
ing of the neural net weights [44]. However, this approach
is only possible for limited kinds of groups, such as 90-
degree rotations. 2D scale equivariant CNN has been stud-
ied [35, 50, 61]. This is typically done by applying the
same convolution kernel on several scales or constructing
steerable filters from the bases. Equivariant network design
method can be generalized to other groups [15,28,39,46,70]
and has rich theory in math and physics [7, 9, 20]. Equiv-
ariance can also be achieved by transforming the data to
canonical coordinate systems [17,41,52]. In particular, [41]
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transforms the data to key canonical frames of the group
and averages over those frames, while we average over a
random sample of the cropping transform. Transformers
are the current state-of-the-art neural net architecture [13].
People have sought to combine Transformer and equivari-
ance, resulting in Lie-Transformer [23].

In terms of applications, there is good evidence that
equivariance benefits image semantic segmentation [6, 37,
51], object detection to shifting [34] and rotation of images
[18]. Equivariance is also useful for generative modeling,
for example, for normalizing flow-based generative mod-
els [27,48], and variational autoencoders [26]. Equivariance
to rotation is beneficial in digital pathology [56]. Extension
to time-equivariance for video is also possible [25].

Equivariance in self-supervised learning. Equivariance
and invariance are useful in self-supervised learning. The
popular contrastive learning algorithm relies on the invari-
ance of representations between augmented views of the
same image [3, 5, 19]. More recently, people are explor-
ing ways to use equivariance in contrastive learning [63].
Leveraging equivariance to cropping transform results in
dense contrastive learning at pixel-level: PixelPro [64],
DenseCL [58], and at region-level: RegionCL [67], Det-
Con [21]. Equivariance to 4-way rotation can be jointly
used with the image-level contrastive objective to improve
performance [11]. Self-supervised learning from equivari-
ance between flow transformations of the input image is
also effective [66] and between matching points for land-
mark representation learning [54].

These works are especially successful for downstream
segmentation and detection tasks. However, the advance-
ments in these work have yet to be thoroughly explored in
the state-of-the-art depth or normal predictors to the best
of our knowledge [1, 42, 43], where the dominant paradigm
is still supervised training. Inspired by prior work in SSL
and segmentation, our work brings in the powerful idea of
equivariance to improve state-of-the-art supervised depth
and normal predictors.

3. Background

We give some background on the issue of equivariance
and how people typically approach equivariance in the lit-
erature.

Definition 1 (Equivariance). Formally, a function f : X →
Y is equivariant under the action of a group G on X and a
group of G′ on Y if for any t ∈ G there exists t′ ∈ G′ such
that f ◦ t(x) = t′ ◦ f(x). More commonly, it is true that
G = G′, i.e., the transformation on both X and Y domains
is the same, and the condition becomes

f ◦ t(x) = t ◦ f(x). (1)

Miangoleh et al. + MiDaS-v2 Miangoleh et al. + LeReS Yuan et al., 2022 (NeWCRFs)

Figure 2. Equivariance failures in more depth predictors [38, 73]
than Figure 1, suggesting the issue is prevalent. The prediction
values of the two crops are aligned with the least square. The 2nd
column is disparity, others are depth. Top-down, left-right: Notice
the blurry/sharp edge, missing object on the stand, wall, pattern on
the person’s back, vertical line on the building, and inconsistent
traffic light.

It essentially states that transform t commutes with f and
changes the input and output in the same way.

Invariance can be regarded as a special case of equiv-
ariance where g′ is always the identity operation. In other
words, invariance means f ◦ t(x) = f(x) for any action
t ∈ G. For example, equivariance is useful for modeling
transform-aware phenomena, while invariance is useful for
modeling classification tasks.

Non-equivariance issue in depth and normal predictors.
Convolutional neural networks possess a certain degree of
translation equivariance, but for a broader class of trans-
formations, such as resized cropping, rotation, and scaling,
they are not designed to capture equivariance. More recent
networks such as Transformers [13] have little inductive bi-
ases built-in, they likely do not possess much equivariance
on their own as well, and need to see a large number of train-
ing examples to learn equivariance in a purely data-driven
manner.

Figure 1 shows the failure of equivariance of depth [42]
and surface normal predictors [1]. The issue is not unique
to these two methods. We examined two more recent ap-
proaches [38, 73] in Figure 2. [38] is especially interesting,
because it similarly merges small crops to reduce the error
of pre-trained depth predictors at inference time.

While [38] and we both use the average idea, we conduct
averaging at training time instead of inference time. The
fact there are still structural changes with cropping suggests
that inference-time averaging does not completely solve the
issue. On the other hand, a network trained with our ap-
proach improves equivariance without extra inference costs.
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Additionally, we focus on reducing inconsistent predictions
between (often large) crops, while [38] focuses on improv-
ing depth details with lots of small crops, not necessarily
improving equivariance.

Another point to note is that camera intrinsic change (of
center and scale) caused by random cropping cannot explain
the discrepancies in Figures 1, 2. Camera intrinsic change
may lead to overall shifting or rescaling of predicted depths,
as noticed and fixed by [14]. However, the failures we ob-
serve are structural and related to the content, like missing
or creating non-existent objects, even with large crops that
only mildly affect intrinsics. What we observe is a separate
non-equivariance issue that needs to be solved.

3.1. Existing Approaches

We recognize three types of methods to introduce equiv-
ariance into machine learning models. They have differ-
ent advantages, disadvantages, and suitable application do-
mains. Unfortunately, data augmentation has been the only
approach that works for the random resized cropping trans-
form in the dense prediction tasks we study here, which is
still inadequate.

Data Augmentation. Data augmentation is the simplest
way to encourage the equivariance of ML models [5,19,68].
As long as the transformation function is available, we can
artificially create more training examples by transforming
the original data randomly. In the case of invariance, we
only augment the input data, e.g., the input images for im-
age classification, where the output of the machine learn-
ing model is trained to be invariant to the transformation.
In the case of equivariance, we can augment the input and
the output simultaneously, e.g., the RGB images and depth
maps. Commonly used data augmentations include random
color jittering, random resizing, and random cropping. The
benefit of this approach is simplicity. One can keep the
training pipeline and the modeling part the same. However,
the downside is potential inefficiency, as we also see with
state-of-the-art depth and normal networks in Figure 1. The
model may need to see a very large quantity of augmented
data examples to learn the equivariance property in a data-
driven manner.

Invariant Inputs. The second type of approach converts
the data into a format that is invariant or equivariant to the
specific transformation. An example of this approach is the
distance matrix when dealing with molecular data [16, 48].
People turn the Cartesian coordinates of points (atoms) into
a relative distance matrix between pairs of points. It is
easy to verify that the distance matrix is invariant to 3D
translation and rotation. If the model only depends on the
invariant inputs, it is guaranteed to be equivariant or in-
variant to any input transformation. Another example is

the alignment procedure in 3D point cloud/data process-
ing [4, 31, 32, 47, 55], where one can align the points ac-
cording to their principle canonical axes either globally or
locally. This approach works well when the invariant in-
puts exist, contain sufficient information for the task, and
are easy to compute. However, the usage is limited when
these requirements are not met. For example, it is not imme-
diately clear how to come up with invariant inputs for stan-
dard image augmentations including the crop-and-resize in
dense prediction tasks.

Equivariant Architecture. A rich line of research focuses
on building equivariance property into the ML model in a
“hard-wired” manner [7, 8, 9, 15, 20, 28, 36, 46, 59, 60, 62].
They typically start from a group theory and symmetry
standpoint and derive functional forms that satisfy equivari-
ance (relatively) precisely with math and physical science
flavor. For example, 2D convolution can be derived for
the planer translation group with a Fourier basis. Mirror-
ing constraints on convolutional kernels can be derived for
the left-right mirroring group. Convolutions with spherical
harmonics can be derived for SO(3) groups. The advan-
tage of this type of approach is that it is principled, exact,
and sample-efficient. As rewriting the functional form with
equivariance in mind restricts the size of the function class
and introduces strict inductive biases, searching for the right
hypothesis from data may become easier, and the learning
may be accelerated. However, the disadvantages are that
one has to modify the model architecture, and deriving the
analytical solution for the equivariance basis might be com-
plicated or even impossible, such as for the randomly re-
sized transform in our dense prediction case.

4. Our Approach

Our approach is equivariant regularization. Equivariant
property can be imposed by a regularization loss in a “soft”
manner together with data augmentation.

We will first describe the mathematical intuition of our
approach. We start with the definition of equivariance, then
introduce the equivariant average operator as a core tech-
nique. The average operator has nice properties, such as be-
ing able to turn a non-equivariant function into an equivari-
ant one. We leverage such properties to build our equivari-
ant regularization technique. We introduce a differentiable
equivariant loss between the average and individual predic-
tions, which can be minimized to encourage equivariance.

Now we consider the following average operator.

Definition 2 (Equivariant average operator). Let P (t) be a
uniform distribution over group elements t ∈ T . We define
the equivariant average of an arbitrary function f as

f̄(x) = Et∼P (t)

[
t−1 ◦ f ◦ t(x)

]
. (2)
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The intuition behind this definition is variance reduction.
Each summand in the expectation is an estimator of the pre-
dicted quantity, with some variance. Taking crop transform
as an example, each t takes a particular cropped view of the
input image, f makes the predictions for this view, and t−1

transforms the predicted image back to the original coordi-
nate frame. Now, each t might lead to a different type of
error in the prediction, but averaging (or summing) over all
of them will make the differences disappear. This intuition
is formally described in the following properties.

Proposition 1. The averaged f̄ is equivariant to T .

Proof. For any t ∈ T , it is straightforward to verify that

f̄ ◦ t(x) = Et1∼P (t)

[
t−1
1 ◦ f ◦ t1 ◦ t(x)

]
(definition of f̄ )

= Et2∼P (t)

[
(t2 ◦ t−1)−1 ◦ f ◦ t2(x)

]
(let t2 = t1 ◦ t, associativity)

= Et2∼P (t)

[
t ◦ t−1

2 ◦ f ◦ t2(x)
]

(3)

= t ◦ Et2∼P (t)

[
t−1
2 ◦ f ◦ t2(x)

]
(linearity of expectation)

= t ◦ f̄(x) (definition of f̄ )

which is the definition of equivariance.

Proposition 2. The equivariant average operator preserves
the function f if f is already equivariant. As a corollary, the
operator is idempotent, namely, ¯̄f = f̄ .

Proof. Use the equivariance definition of f and the associa-
tivity of function composition,

f̄(x) = Et∼P (t)

[
t−1 ◦ f ◦ t(x)

]
= Et∼P (t)

[
t−1 ◦ t ◦ f(x)

]
= Et∼P (t) [f(x)] = f(x).

(4)
From Proposition 1, we know that f̄ is always an equivari-
ant function, therefore ¯̄f = f̄ .

Proposition 1 and 2 are practically useful. They to-
gether justify treating the equivariant average as a normal-
ization operation because (1) it can turn an arbitrary non-
equivariant function into an equivariant one, (2) applying it
twice has no further effect than applying it only once.

Once we have the equivariant average, we can use it as
a training target to achieve higher equivariance. Specifi-
cally, we construct the following loss function based on the
equivariant average operator to encourage equivariant prop-
erty on a trainable function f . This f can be the output of a
dense prediction network or any intermediate features.

Definition 3 (Equivariant loss). We define the Equivariant
loss as the mean L2 error between the individual prediction
f ◦ t(x) and the averaged prediction f̄(x):

ξ(f) =
1

Z(f̄)
Et∼P (t)

[
∥f ◦ t(x)− t ◦ f̄(x)∥22

]
(5)

f

f

f

Equivariant
L2 loss

AverageInput crops

Output crops

Sup loss

Figure 3. Illustration of our equivariant regularization approach
with 3 crops for the 2D texture edge detection task. We generate 3
crops of the input image and pass them through the network f to
get 3 outputs. We perform the equivariant average to register them
together and get the averaged output. Next, we crop the averaged
output to obtain 3 output crops. They correspond to the same im-
age regions as the input crops. We use them as training targets
(gradient-stopped) for the individual crop’s outputs. A standard
supervised loss would use the ground truth as a target, whereas
our approach uses the averaged output as a target.

where Z is the normalizing constant: Z(f̄) = ∥f̄(x)∥22 as-
suming f̄ is not everywhere 0.

The normalizing constant Z is a technical trick to nor-
malize the scale of the equivariant loss. Without Z, simply
multiplying f with a scalar will enlarge the equivariant loss,
which is undesired. With Z(f̄), since Z(αf̄) = α2Z(f̄),
we can show that

ξ(αf) =
1

α2Z(f̄)
EP (t)

[
α2∥f ◦ t(x)− t ◦ f̄(x)∥22

]
= ξ(f).

(6)
In practice, it is often computationally infeasible to enu-

merate and average over all possible transforms t’s, as there
are too many. This is the case for the commonly-used ran-
dom resized cropping augmentation we care about. The
random cropping induces a combination of continuous rigid
transformation and scaling groups. We can circumvent this
issue by Monte Carlo estimation, i.e., sample a couple of
t’s and compute the empirical average of f̄ and loss. The
sample size K is a hyper-parameter to be studied empir-
ically that trades off accuracy and computation efficiency.
The following equations state the sampling version:

̂̄f(x) = 1

K

∑
k

[
t−1
k ◦ f ◦ tk(x)

]
, (7)

ξ̂(f) =
1

Z(f̄)

1

K

∑
k

[
∥f ◦ tk(x)− tk ◦ ̂̄f(x)∥22] . (8)

We can attach the equivariant loss onto any layer of a
neural net, and train the network with the linear combina-
tion of the task loss and the equivariant loss. Formally, as-
sume the task loss is ℓ and the equivariant loss is imposed
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on the l-th layer fl with loss coefficient λl, the total loss
writes as

ℓtotal(f) = ℓ(f(x), y) + λlξ̂(fl). (9)

Figure 3 illustrates our equivariant regularization ap-
proach regarding the random resized crop transform.

4.1. Discussion

The difference between our approach and the equivariant
architecture is that we do not emphasize exact equivariance
in this case. Once trained, the model is allowed to have a
certain degree of non-equivariance than a strict equivariant
model but is expected to possess a higher degree of equivari-
ance than a baseline model without any special equivariance
treatment.

Our approach builds on top of data augmentation. It
strikes a balance between the equivariant architecture and
the data augmentation approaches. It improves upon pure
data augmentation by introducing explicit learning sig-
nals for equivariance and does not require the complicated
derivation or architecture modification of a strict equivariant
model. In fact, there should be no additional overhead to a
regular model at inference time. We also have the flexibility
to adjust the regularization strength by tuning loss coeffi-
cients, when the task is not perfectly equivariant or to strive
for better overall performance. Our approach can also ex-
tend naturally with unlabeled data since the procedure does
not involve ground truth labels.

5. Experiment
5.1. Datasets, Models, and Tasks

We evaluate our approach on three data labeling settings
with increasing difficulty: supervised, semi-supervised and
unsupervised.

Supervised setting. For a supervised setting, we use the
Taskonomy dataset [75] standard Tiny splits for experimen-
tation. Taskonomy contains RGB-D scans of indoor build-
ing scenes. Several dense prediction tasks are derived from
the scans. We focus on 2D texture detection, a low-level vi-
sion task; and depth z-buffer prediction and surface normal
prediction, two related geometric vision tasks. The Tiny
split has 24 training buildings (250K images; originally 25
buildings, 1 building is removed due to data corruption) and
5 validation buildings (52K images).

The model involved in the supervised setting is the stan-
dard U-Net from XTaskConsistency [74]. This U-Net has
6 downsampling, 6 upsampling blocks, and the skip con-
nections between corresponding downsampling and upsam-
pling stages. The supervised loss is the L1 loss between
the outputs and ground truth targets. For depth, we use in-
verse depth (i.e., disparity) following [43]. We apply our

equivariant regularization loss technique on the second to
last convolutional layer of the network. The loss location
will be ablated. The loss coefficient is set to 1e-4. For
each image, we generate K = 3 random crops with scale
variation uniformly sampled from 0.4-1.0, aspect ratio from
3/4-4/3, allowing at most 20% padding length, and common
color jittering (brightness = contrast = saturation = 0.4, hue
= 0.1). In practice, we also employ a weighting window
with smooth edges when computing the equivariant aver-
age to suppress the boundary effects. We train all models
with the AdamW optimizer [33], with learning rate cosine
annealed from 1e-3 to 0, and weight decay 1e-4, for 78K
gradient steps with batch size 32 distributed on 4 GPUs. In-
put resolution is 256x256. To maintain fair comparison, the
supervised baseline is also trained with K = 3 crops per
image, therefore the wall-clock time of all experiments is
roughly the same.

The standard evaluation metrics are L1 error for edge;
the percentage of pixels with a relative depth error larger
than 1.25 (δ>1.25), mean absolute relative error (AbsRel)
for depth; and mean angular error for surface normal [74,
75]. Since depth predictor is usually not aligned to metric
depth, i.e., they output arbitrary scale, we align predicted
depth to ground truth with least square regression following
MiDaS [42, 43]. The detail is described in Supp. C.

The essential question we want to study is whether our
approach performs better than the usual data augmentation
approach in achieving equivariance and accuracy.

Semi-supervised setting. For this, we concentrate on the
depth prediction task. We use 6 or 12 buildings out of 24
buildings in the training set as the labeled portion, and use
the rest of the buildings as the additional unlabeled data.
The model, hyper-parameters, and optimization schedule
are the same as above. During training, we sample two
equal-sized mini-batches (2 × 32 images × 3 crops) from
the labeled and unlabeled data streams, respectively. We
impose the supervised loss only on the labeled batch and
our equivariant loss on both batches.

This setting is to test whether our approach provides ad-
ditional benefits from unlabeled data, which is not possible
with the simple data augmentation approach.

Unsupervised setting. We focus on unsupervised finetun-
ing of pre-trained state-of-the-art models on the NYU-v2
dataset [49]. The NYU-v2 dataset contains RGB-D scans
of 464 indoor scenes, of which 249 scenes (795 images) are
used for training and 215 scenes (654 images) for testing.
The resolution is 480x640.

We consider the MiDaS-v2.1 and v3.0 depth predictors
from [42,43] with CNN and Vision Transformer backbones,
respectively. According to their paper, these models are
trained on random augmented crops of length 384; there-
fore, we set the input shape as 384x288 in our unsupervised
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Table 1. Supervised setting: Taskonomy Edge2D, Surface Normal,
and Depth-ZBuffer. Equivariant regularization on U-Net improves
validation performance. Sup baseline refers to baseline with-
out data augmentation, Aug refers to with augmentation, EqLoss
refers to our equivariant loss approach. Ang error is the mean an-
gular error in degrees, δ>1.25 is the percentage of pixels with a
relative depth error larger than 1.25.

Task Edge2D Normal Depth-Z
Metric L1 error (×10−3)↓ Ang error (◦)↓ δ>1.25 (%)↓

Sup baseline 8.14 6.72 27.8
+ Aug 7.35 (-9.7%) 6.55 (-2.5%) 27.0 (-2.9%)
+ EqLoss (ours) 6.35 (-22%) 6.47 (-3.7%) 25.0 (-10%)

Table 2. Semi-supervised setting: Taskonomy Depth-ZBuffer.
Equivariant regularization with additional unlabeled data improves
more. We treat 1/4, 1/2 of the original data as labeled images; the
rest as unlabeled images. Sup + EqLoss refers to using only the la-
beled part and our loss. Semi-sup + EqLoss refers to applying our
equivariant loss on both the labeled and unlabeled images. δ>1.25
is the percentage of pixels with a relative depth error larger than
1.25, AbsRel is the mean absolute relative error.

Labeled portion 1/4 1/2 All
#Buildings 6 12 24
#Images 58,783 123,496 248,148

δ>1.25 (%)↓
Sup + Aug 43.4 30.4 27.0
Sup + EqLoss (ours) 42.0 29.8 25.0
Semi-sup + EqLoss (ours) 41.0 29.3 25.0

AbsRel (%)↓
Sup + Aug 25.2 20.3 18.9
Sup + EqLoss (ours) 24.9 20.2 18.0
Semi-sup + EqLoss (ours) 24.8 19.6 18.0

finetuning experiments. We also consider the pre-trained
uncertainty-guided surface normal predictor from [1]. This
network is based on the convolutional EfficientNet back-
bone [53]. We set the input shape as 640x480 for surface
normal to match their training setting. We use AdamW op-
timizer for 800 steps, with a small learning rate of 1e-5 for
depth and 1e-4 for surface normal, as we find them work the
best. Two loss functions are involved in finetuning: the first
is the supervised loss between the outputs and the pseudo
labels generated from the pre-trained checkpoints, and the
second is our equivariant loss on the output of the network.
We set the equivariant loss coefficient to 1e-4 as well. We
sample K = 3 random crops per image with scale variation
0.7-1.0, at most 10% padding and common color jittering.

Note that all the pre-trained checkpoints investigated
here are not trained on NYU-v2. We want to see if our
approach can boost the performance of state-of-the-art pre-
trained models on this new dataset, by encouraging equiv-
ariance alone, without using any ground truth labels.

Table 3. Unsupervised setting: Adaptation of state-of-the-art pre-
trained depth networks to NYU-v2. We finetune the network
with images in NYU-v2, pseudo labels and our equivariant loss
(EqLoss row), but without ground truth labels. EqLoss reduces
validation errors, while also reducing the validation equivariant
loss (EqLoss column), suggesting the network becomes more
equivariant. The results compare favorably to other recent meth-
ods dedicated to NYU-v2.
Model δ>1.25(%)↓ AbsRel(%)↓ EqLoss↓

Models trained only on NYU-v2
Big-to-Small [29] 11.0 11.5 -
Yin et al. [71] 10.8 12.5 -
Huynh et al. [24] 10.8 11.8 -
TransDepth [69] 10.6 10.0 -

Models trained on mix datasets transfer to NYU-v2
MiDaS-2.1 CNN [43] 8.71 9.68 7.10e-3
MiDaS-2.1 CNN + EqLoss 7.82 8.92 3.77e-3
MiDaS-3.0 DPT [42] 8.32 9.16 7.86e-3
MiDaS-3.0 DPT + EqLoss 7.75 8.91 3.04e-3

Table 4. Unsupervised setting: Adaptation of a state-of-the-art pre-
trained surface normal network to NYU-v2. Our unsupervised
equivariant finetuning strategy (EqLoss row) reduces the valida-
tion mean and median angular errors while reducing the validation
equivariant loss (EqLoss column). 11.25◦ refers to the percentage
of pixels with an error larger than 11.25◦. All other models here
are trained on ScanNet [10] and evaluated on NYU-v2 directly.

Model Mean◦↓ Median◦↓ 11.25◦↑ EqLoss↓

FrameNet [22] 18.6 11.0 50.7 -
VPLNet [57] 18.0 9.8 54.3 -
TiltedSN [12] 16.1 8.1 59.8 -

Bae et al. [1] 16.03 8.47 58.8 1.26e-2
Bae et al. + EqLoss 15.71 8.30 59.4 8.80e-3

5.2. Results

Equivariant regularization improves edge, depth, and
normal dense prediction tasks in the supervised setting.
The results are organized in Table 1. Comparing the first
row to the second, we confirm that data augmentation is
better than no data augmentation, which is known widely.
This suggests that the implicit encouragement of equivari-
ance from augmentation is helpful. Comparing the second
row to the third, we find that our approach brings notice-
able gains on top of data augmentation. We achieve as large
as 22%, 3.7%, and 10% error reduction for the edge, nor-
mal, and depth predictions relative to the supervised base-
line without augmentation in their respective metrics. The
results indicate that our approach is a more effective way
to enforce equivariance during training than data augmenta-
tion and that by doing so, the accuracy is also improved.

Equivariant regularization enables unlabeled data in
the semi-supervised setting. Our equivariant regular-
ization approach naturally extends to the semi-supervised
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learning setting, where the model can learn from additional
unlabeled scene images. Apart from the usually labeled
data stream, we train with an additional equivariant loss on
the unlabeled data stream. In Table 2, we show that, al-
though Sup + EqLoss already brings decent improvements,
Semi-sup + EqLoss yields more improvements. These re-
sults demonstrate the capability of our approach to leverage
unlabeled data to achieve higher label efficiency, which is
impossible with the standard augmentation approach.

Unsupervised equivariant finetuning improves state-of-
the-art depth and surface normal predictors. Another
advantage (and important application) of our equivariant
regularization approach over data augmentation is the abil-
ity to perform an unsupervised finetuning of state-of-the-
art dense predictors to downstream datasets without any
ground truth labels. Recall that the SoTA dense prediction
networks do not preserve equivariance very well as in Fig-
ure 1. In this part, we demonstrate improvements in the
equivariance and accuracy of the state-of-the-art MiDaS-
v2.1 (CNN-based model), v3.0 (DPT-Large, Dense Predic-
tion Transformer) depth predictors [42, 43] in Table 3, and
the uncertainty-guided normal predictor [1] on the NYU-
v2 dataset [49] in Table 4. Note that none of the finetuned
models have seen any NYU-v2 ground truth. Our approach
consistently boosts their performance of them.

Quantitatively, we observe that not only the accuracy
metrics of the depth and normal predictors are increased,
but also the EqLoss column in Table 3 and 4, which mea-
sures the equivariant loss on validation images, is reduced
by our approach in both cases. Reducing the EqLoss means
that the expected error magnitude of prediction inconsis-
tency coming from different crops of the same image is re-
duced. This suggests improvements of the equivariance of
these predictors. A more thorough and direct evaluation of
the finetuned predictors is in the supplementary material.

Qualitatively, our equivariant finetuning approach signif-
icantly alleviates the non-equivariant issue of state-of-the-
art models. Figure 4 visualizes the predictions before and
after finetuning on NYU-v2. We can clearly see that the
inconsistency between predictions of two crops is lessened
after finetuning.

5.3. Ablation Study

We ablate hyper-parameters in the supervised Taskon-
omy Depth setting, and provide additional comparisons.

Number of crops (Figure 5). The optimal number of crops
per image K (appears in Eq. 7) for our approach is around
3. We choose 3 in our experiments. Note that in the figure,
a single stddev is estimated for all K as the error bars. We
also control each run to take roughly the same wall-clock
time, which means K=3 yields the best trade-off between
extra computing and performance under the fixed computa-

Table 5. Ablation study on the equivariant loss coefficient.

Coefficient 1e-5 3e-5 1e-4 3e-4

δ>1.25 (%) 25.5 25.2 25.0 25.8

Table 6. Ablation study on which layer to apply equivariant loss.

Layer L L-1 up0 up1 up2 up3

Dimension 1 16 16 32 64 128
δ>1.25 (%) 25.7 25.0 25.0 25.2 25.1 26.1

Table 7. Inference-time equivariant averaging yields only small
depth error reduction on NYU-v2, compared to the reduction from
our training-time equivariant finetuning.

δ>1.25, AbsRel(%) No averaging 3 crops averaging

MiDaS-v2.1 pre-trained 8.71, 9.68 8.63 (-0.08), 9.61 (-0.07)
MiDaS-v2.1 + EqLoss 7.82, 8.92 7.78 (-0.04), 8.86 (-0.06)

tion time budget. The depth error of our approach is almost
always below that of the data augmentation alone baseline,
indicating the higher efficiency of our approach.

Equivariant loss coefficient. In Table 5, 3e-5 or 1e-4 per-
forms well; the latter is slightly better. Table 6 studies
where to put the equivariant loss. L means applying the
loss on the final output, L-1 means the penultimate Conv
layer (which we use in experiments), up0-3 means the pro-
gressively earlier upsampling block of the U-Net. Applying
the loss around L-1 seems to be working well, while going
deeper into earlier layers yields worse results. This could
be due to the lower resolution of early-stage feature maps.

Inference-time equivariant averaging (Table 7). We
tested both the MiDaS pre-trained network and our fine-
tuned network on NYU-v2. In both cases, inference-time
averaging offers a small reduction of depth prediction error
(smaller than our equivariant finetuning), which suggests
the non-equivariant issue cannot be simply addressed by it.
Note that inference-time averaging increases latency–small
improvement at the cost of the multiplied running time. The
benefit of our approach is that the workload of averaging is
offloaded to training, so that the inference procedure is un-
changed and efficient (1 forward pass).

Comparison to contrastive learning. In Table B.1 of the
supplementary material, we initialize from DenseCL [58]
or PixelPro [65] pre-trained ResNet, and Table B.2 where
we use DenseCL loss as regularization during training. In
summary, B.1 suggests that DenseCL indeed provides supe-
rior performance than random/supervised initialization, but
it does not completely resolve the equivariance issue–and
our method can further improve upon DenseCL initializa-
tion; B.2 suggests that our method (K=3) is stronger than
pairwise DenseCL regularization during training both depth
and normal tasks.
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Depth for red crop
Before finetuning
Depth for blue crop Discrepancy Depth for red crop

After finetuning (ours)
Depth for blue crop Discrepancy

Normal for red crop
Before finetuning
Normal for blue crop Discrepancy Normal for red crop

After finetuning (ours)
Normal for blue crop Discrepancy

Figure 4. Visualization of predictions of a state-of-the-art depth network (MiDaS-v3.1 DPT Large [42]) and a surface normal network [1]
on two crops (red and blue) of the same image, before and after our unsupervised equivariant finetuning. The yellow boxes highlight the
regions where the pre-trained models struggle with. The discrepancies in those regions are suppressed considerably after finetuning.
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Figure 5. Study on the number of random crops per image.

6. Conclusion

This paper reveals a salient problem in state-of-the-art
depth and normal predictors – that they are not equivariant
to cropping, and proposes an equivariant regularization ap-
proach to address it. We demonstrate the usefulness of our
approach in supervised, semi-supervised and unsupervised
settings. We substantially improve equivariance and accu-
racy of state-of-the-art pre-trained models on NYU-v2 test

set without using ground-truth labels. We hope future work
can explore the powerful idea of equivariance in other dense
prediction tasks and with transformations beyond cropping.
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[21] Olivier J Hénaff, Skanda Koppula, Jean-Baptiste Alayrac,
Aaron Van den Oord, Oriol Vinyals, and Joao Carreira. Effi-
cient visual pretraining with contrastive detection. In ICCV,
2021. 3

[22] Jingwei Huang, Yichao Zhou, Thomas Funkhouser, and
Leonidas J Guibas. Framenet: Learning local canonical
frames of 3d surfaces from a single rgb image. In ICCV,
2019. 1, 7

[23] Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi,
Emilien Dupont, Yee Whye Teh, and Hyunjik Kim. Lietrans-
former: Equivariant self-attention for lie groups. In ICML,
2021. 3

[24] Lam Huynh, Phong Nguyen-Ha, Jiri Matas, Esa Rahtu, and
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