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Abstract

A central challenge of video prediction lies where the
system has to reason the objects’ future motions from image
frames while simultaneously maintaining the consistency
of their appearances across frames. This work introduces
an end-to-end trainable two-stream video prediction frame-
work, Motion-Matrix-based Video Prediction (MMVP), to
tackle this challenge. Unlike previous methods that usu-
ally handle motion prediction and appearance maintenance
within the same set of modules, MMVP decouples motion
and appearance information by constructing appearance-
agnostic motion matrices. The motion matrices represent
the temporal similarity of each and every pair of feature
patches in the input frames, and are the sole input of the
motion prediction module in MMVP. This design improves
video prediction in both accuracy and efficiency, and re-
duces the model size. Results of extensive experiments
demonstrate that MMVP outperforms state-of-the-art sys-
tems on public data sets by non-negligible large margins (≈
1 db in PSNR, UCF Sports) in significantly smaller model
sizes (84% the size or smaller). Please refer to this link for
the official code and the datasets used in this paper.

1. Introduction
Video prediction aims at predicting future frames from

limited past frames. It is a longstanding yet unsolved prob-
lem studied for decades [13, 3]. Advancing research in
this area benefits various applications such as video com-
pression [29, 53, 28], surveillance systems [57, 59, 7], and
robotics [9, 16, 8]. The task can be essentially broken down
into two sub-tasks: i) motion prediction and ii) frame syn-
thesis. Each sub-task has its unique goal that cannot be
simply accomplished by achieving the other one. For the
sub-task of motion prediction, systems need to reason the
future movements of objects/backgrounds by discovering
the motion cues hidden in the past frames. Whereas for
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the sub-task of frame synthesis, systems need to maintain
appearance features and generate future frames that keep
appearance consistency. These separated goals make video
prediction inherently much more difficult than the individ-
ual task of normal motion prediction or content synthesis.

Figure 1: Performance comparison on UCF Sports with
STIP [4] and SimVP [12]. The hard subset contains sam-
ples where SSIM between the last observed frame and the
first future frame is smaller than 0.6, which indicates drastic
motion patterns (data is from Tables 2 and 6).

Most existing works in video prediction are based on a
single-stream pipeline that conducts motion prediction and
appearance feature extraction for frame synthesis within the
same set of modules. Their systems [47, 45, 46, 55, 5, 4]
usually grow out of advanced network structures for se-
quential data analysis, such as recurrent neural networks
(RNNs) [31] and transformers [42]. One shared characteris-
tic of those methods is that they show excellent capabilities
in capturing complex motion patterns but lower capabili-
ties in appearance maintenance, yielding “correct” but not
“good” synthesized frames. The reason behind this is that
those methods usually contain complicated spatial-temporal
feature extraction and state transition operations, which can
cause unavoidable appearance information loss.
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Figure 2: MMVP is a two-stream video prediction framework. It decouples motion prediction and appearance maintenance,
and it reunites motion and appearance features through feature composition operation.

Researchers have proposed several solutions to mitigate
appearance information loss; the most common approaches
are introducing sophisticated appearance-aware state transi-
tion unit [5, 4, 54], or adding frequent feature shortcuts from
previous frames [12, 46, 47, 45]. However, the former solu-
tion tends to build cumbersome models with a huge number
of parameters; and for the latter solution, too much residual
information from previous frames can cause a larger perfor-
mance drop for hard cases such as videos with fast move-
ments and/or moving cameras. Figure 1 shows the compar-
ison between STIP [4] (an example of the former solution)
and SimVP [12] (an example of the latter solution).

To avoid running into possible trade-offs between mo-
tion and appearance in single-stream pipelines, a few works
have explored two-stream pipelines [27, 2, 10, 43, 11], de-
coupling motion prediction and appearance maintenance.
However, they either require auxiliary sub-networks such as
optical flow estimator [27, 52] and key point detector [11] to
generate motion representations, which complicates video
prediction and reduces the generalizability of systems; or
they do not provide an efficient solution to reunite the pre-
dicted motion and the appearance features [6, 43].

With these gaps in current research, we introduce a novel
two-stream, end-to-end trainable framework for video pre-
diction: Motion-Matrix-based Video Prediction (MMVP)
(see Figure 2 for the framework overview). As the name
indicates, MMVP uses motion matrices as the decoupled
motion representation of video frames. The motion ma-
trix is a 4D matrix representing the image feature patches
of consecutive frames (see Figure 3 I). As motion matrices
are the sole input of the matrix predictor (i.e., the motion
prediction module in MMVP), MMVP specifies the hidden
motion information and makes the matrix predictor only fo-
cus on motion-related information. For the reunion of mo-
tion and appearance features, MMVP gets inspiration from
the image autoencoder. It first embeds the past frames in-
dividually through an image encoder. Then it composes the
embedding of the future frames using the predicted motion

matrices output by the matrix predictor and the past frames’
embeddings through matrix multiplication (see Figure 3 II).
Then, an image decoder decodes the composed embeddings
into the predicted future frames.

The advantage of MMVP is three-fold: (i) MMVP de-
couples motion and appearance by constructing motion ma-
trices, requiring no extra construction modules; (ii) unlike
optical flow that describes the one-to-one relationship be-
tween pixels, motion matrices describe the many-to-many
relationship between feature patches, and are more flex-
ible and applicable for real-world data; (iii) MMVP re-
unites the appearance and motion prediction results through
matrix multiplication, which is interpretable and of little
information loss. The advantages make MMVP a much
more compact model with significantly fewer parameters
yet still matching SOTA methods in performance. We vali-
date MMVP on three datasets, UCF Sports [36], KTH [38],
and MovingMNIST [41]. Experiments show that MMVP
matches or surpasses SOTA methods on all three datasets
across metrics. Specifically, compared to STIP [4], MMVP
uses 84% fewer parameters (18M vs. 2.8M) but achieves
38% better performance in the LPIPS metric (12.73 vs.
7.88) on the UCF Sports dataset (Table 4).

2. Related Works
Good video prediction systems should not only accu-

rately reason the future motions of the objects but also
maintain their appearances and synthesize consistent future
frames. As the video resolution has become increasingly
higher today, researchers should additionally consider the
scalability and efficiency of video prediction systems [33].

Most video prediction works to date adopt a single-
stream pipeline that grows out of advanced techniques in
sequential data analysis. Those techniques usually con-
tain sophisticated spatial-temporal feature extraction op-
erations and state transitions, which result in appearance
information loss. Thus, researchers tend to modify the
techniques to let them attend more to appearance mainte-
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Figure 3: MMVP relies on the motion matrix M. M is an appearance-agnostic motion representation that measures the
cosine similarity between the feature patches of two consecutive frames. Information of the past frames {X0, ...,XT } can
compose the future information {X̂T+1, ..., X̂T ′} through matrix multiplication

⊗
with M.

nance [47, 40, 45, 5, 4, 46, 18]. Based on ConvLSTM [40],
PredRNN [47] propose a novel memory state transition
method between the recurrent nodes to help the appear-
ance features from observations be delivered to the final
prediction. E3D-LSTM [46] integrated 3D convolution
operations to help emphasize the short-term appearance.
CrevNet [23] uses a conditionally reversible network to pre-
serve the information from the past frames. More recently,
the progress in temporal modeling made by transformer-
based methods [42] has drawn more attention. The field
starts to see works that use transformers in video predic-
tion tasks [15, 50, 35]. These works have a better informa-
tion aggregation capability and less appearance information
loss, but they usually have a huge number of parameters and
lack scalability to higher-resolution videos.

Seeking an alternative solution to video prediction and
overcoming the drawbacks of the aforementioned methods,
a few works have also explored the potential of decoupling
motion and appearance and building a two-stream pipeline.
Using optical flow is an intuitive idea. Several previous
works [27, 2, 52, 10] use built-in or off-the-shell systems to
predict the optical flow from the past to future frames; they
use the predicted optical flow to warp past frames into final
results. The drawbacks of this line of work are two-fold:
i) time-consuming, especially for the warping procedure of
high-resolution video sequences; ii) more importantly, the
one-to-one relationship defined by the optical flow may not
be applicable for some cases such as when one pixel or su-
perpixel moves half of the pixel size, or when one pixel has
impacts on several pixels in the next frames. Besides optical
flow, pose [43] and keypoint [11] are also used to represent
the motion of the objects in the scene for video prediction.
However, this approach requires extra pose or keypoint de-
tectors to process videos. For videos with multiple objects,
more complex motions, and higher resolution, the efficiency
of these extra modules cannot be guaranteed. Alternatively,
MCNet [6] uses the difference between frames to represent
motion information. It does not require extra modules, but
using concatenation to reunite motion and appearance fea-
tures is inefficient.

Compared to the small number of two-stream video pre-

diction systems above, our MMVP has three advantages: i)
its motion matrix is able to describe the many-to-many rela-
tionship of the pixels or super-pixels, which makes MMVP
much more flexible and reasonable for real-world data; ii)
MMVP does not require an extra module to produce mo-
tion representation; and iii) the reunion of motion and ap-
pearance features is more intuitive and interpretable than
the approaches used in previous works. This paper will
demonstrate how MMVP makes a more capable and com-
pact video prediction framework.

3. Motion-Matrix-based Video Prediction
3.1. Framework Overview

Given a video sequence I = {It}Tt=1, where It denotes
the tth frame, usually in the RGB format, MMVP estimates
the future T ′ frames ÎT+1 to ÎT+T ′ from I1 to IT . In com-
parison to the known frame set I, we denote the estimated
frame set as I ′ = {I ′t}T+T ′

t=T+1. The training of the frame-
work is solely supervised by mean-squared error (MSE)
loss. MMVP consists of three steps as follows:

Step 1: Spatial feature extraction. We use an
RRDBs [44] based network architecture to model an image
encoding function Ω, defined in eq. 1. This image encoder
embeds each frame Ii, i ∈ {1, 2, ..., T} in a down-sample
hidden space separately and outputs their corresponding
hidden features fi. In MMVP, besides the image encoder,
we have an extra filter block that models a filtering function
Θ defined in eq. 2. It takes fi as the input and aims to gener-
ate gi. As the module name indicates, the filter block aims
to filter out motion-irrelevant features of fi for motion ma-
trix construction. We will introduce the details in Sec. 3.2.

Step 2: Motion matrix construction and prediction.
MMVP generates a set of motion matrices {Mi,i+1}, i ∈
{1, 2, .., T − 1} for every two consecutive frames based
on their feature pairs {gi, gi+1}. Then, a matrix predicting
function Φ defined in eq. 4 takes {Mi,i+1} as the input and
predicts future matrices {M̂T,T+j}, j ∈ {T, ..., T + T ′}.
Sec. 3.3 will elaborate on the definition and construction
procedures of the motion matrices, and Sec. 3.4 will demon-
strate the inner structure of the matrix predictor.
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Step 3: Future composing and decoding. Using the
output of steps 1 and 2, MMVP composes the unknown in-
formation for future frames. Then, a future decoding mod-
ule takes the composed features as the input and outputs the
final prediction. We will introduce the feature composition
procedure in Sec. 3.5 and the future decoding module in
Sec. 3.6.

3.2. Spatial Feature Extraction

Spatial feature extraction involves two components of
the MMVP framework: image encoder, and filter block.

The image encoder Ω in MMVP encodes every Ii from
the input data sequence to their corresponding features fi
individually. The filter block Θ subsequently processes fi
and makes it ready for the construction of a motion matrix.
Formally,

fi = Ω(Ii), (1)

gi = Θ(fi), (2)

where i ∈ {1, 2, ..., T}. We use a convolutional network
with residual in residual dense blocks (RRDBs) [44] to im-
plement the image encoder, and we use a two-layer con-
volutional network to implement the filter block. See the
detailed network architecture in Appendix.

Next, the output features of the image encoder will take
participate in the future feature composition, while the out-
put of the filter block is only used for motion matrices con-
struction. The existence of the filter block helps the model
to filter out irrelevant features from the image encoder out-
put and allows the construction of motion matrices to focus
more on motion-related features. See Table 2 for the abla-
tion study about the filter block.

3.3. Motion Matrix Construction

Given the output of the filter block gi ∈ RH
S ×W

S , i ∈
{1, 2, ..., T}, we denote the feature patch at (h,w), w ∈
{0, 1, 2, W

S − 1}, h ∈ {0, 1, 2, H
S − 1} as gh,wi , where H

and W are the input images’ height and width, and S is the
downsampling ratio to the original image; thus H

S and W
S

are respectively the feature map’s height and width.
For two consecutive frames’ feature {gi, gi+1}, we cal-

culate the cosine similarity for each and every pair of fea-
ture patches to construct a 4D motion matrix Mi,i+1 ∈
RH

S ×W
S ×H

S ×W
S . We denote the element of the matrix

Mi,i+1 at (hi, wi, hi+1, wi+1) as Mhi,wi,hi+1,wi+1

i,i+1 , and let

M
hi,wi,hi+1,wi+1

i,i+1 = Dc(g
hi,wi

i , g
hi+1,wi+1

i+1 ). (3)

In the equation, Dc is the cosine similarity, ghi,wi

i is the
feature patch of frame i with the index of (hi, wi), and
g
hi+1,wi+1

i+1 ) is the feature patch of frame i+1 with the index
of (hi+1, wi+1). With a feature patch at (hi, wi) of gi as an

example, the matrix Mhi,wi

i,i+1 ∈ RH×W can be regarded as a
heatmap that reflects how much impact ghi,wi

i has on gi+1,
or more intuitively, the motion tendency of ghi,wi

i (see Fig-
ure 5 for illustration). It is similar to the definition of optical
flow [17], which determines the movement of a pixel or su-
perpixel. The difference between optical flow and motion
matrix is that motion matrix does not strictly define a one-
to-one relationship between the pixels or superpixels of the
current frame and those of the next frame. It is a more prac-
tical assumption in the video prediction task that one current
feature patch may influence several future feature patches.

3.4. Matrix Prediction

Given the motion matrices of the past T frames
{M1,2,M2,3, ...,MT−1,T }, the matrix predictor Ψ predicts
the future matrices {MT,T+1,MT,T+2, ...,MT,T ′}. In-
stead of predicting the motion matrices between the consec-
utive frames, we predict the ones between the last observed
frame IT and every future frame IT+j , j ∈ {1, 2, ..., T ′}, as

{M̂w,h
T,T+j} = Ψ({Mw,h

i,i+1}),∀i ∈ {1, 2, ..., T − 1}, (4)

where Mw,h
i,i+1 ∈ RH×W , w ∈ {1, 2, ..., W

S } and h ∈
{1, 2, ..., H

S }. This design aims to reduce the accumula-
tive error during feature composition and is validated by the
long-term prediction setting shown in Table 3. Since for this
work, we focus on testing the function and performance of
the MMVP framework, we report the use of a simple 3D
fully convolutional architecture to implement Ψ. Fellow re-
searchers can choose to easily replace the implementation
of Ψ with more advanced temporal modules if they wish to
pursue better performances.

Figure 4: All scales of image features and the original
frames can join the future composition with predicted mo-
tion matrices through pixel unshuffle and shuffle operations.
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3.5. Multi-scale Future Composition

The future composition step generates information for
the future frames using the observed information and the
motion matrices. It is formulated as

X̂T+j =

T∑
i=1

(Xi ×
T−1∏
n=i

Mn,n+1 × M̂T,T+j). (5)

As the equation indicates, instead of only using the infor-
mation of the last observed frame, we use all observed in-
formation for future composition and lower the weight of
earlier frames through repeated multiplication of the mo-
tion matrices. The X in the equation represents the ob-
served information of the past frames. The information
can be the output features of the image encoder with dif-
ferent scales fi ∈ RHs×W s×C , where C is the feature
length; the information can also be the observed frames
Ii ∈ RH×W×3. Since the motion matrices are constructed
from a certain scale of image features, there will be incom-
patibilities between the matrices and some features. To en-
able matrix multiplication between the motion matrices and
the observed features (at any scales) or images, we borrow
the pixel unshuffle and shuffle operations from [39]. The
pixel unshuffle operation reshapes features or images into
the identical scale as the motion matrices for matrix mul-
tiplication. Afterward, the pixel shuffle operation reshapes
the results of the matrix multiplication back to the original
scales of the features or images. See Figure 4 for demon-
stration. This whole process involves little information loss.
In Table 6, we examine the multi-scale feature composition
design. We find out that in general, the system achieves
better performance when more scales of features take part
in the feature composition.

3.6. Future Decoding

The future decoding procedure is used for aggregating
and processing the composed features to formulate the fi-
nal output. Since in the feature composition procedure, all
scales of features are able to compose their corresponding
scales of features for future frames, we adopt the decoder
structure of UNet [37] with RRDB blocks [44] in the end
to implement MMVP’s image decoder. This design allows
the composed features from all scales of image features, as
well as the original images, to contribute to the final output.
We use MSE loss to supervise the framework training.

4. Experiment

In this section, we evaluate MMVP quantitatively and
qualitatively against existing state-of-the-art methods on
various publicly available datasets. In addition, we analyze
MMVP through a set of ablation studies on the UCF Sports
dataset to better illustrate our design logic.

4.1. Datasets

We briefly review three widely used datasets and their
configurations for MMVP evaluation.

Table 1: Experiment settings for each dataset.

Dataset Resolution Train Test
UCF Sports 512× 512 4 → 1 4 → 6

KTH 128× 128 10 → 20 or 40 10 → 20 or 40
Moving MNIST 64× 64 10 → 10 10 → 10

UCF Sports [36] contains 150 video sequences col-
lected from various sports scenes with 10 different action
types including running, kicking, and diving. It is re-
garded as a challenging dataset given its low frame rate
(10 fps), high resolution (480 × 720), and complex mo-
tion patterns. The video sequences in this dataset contain
both rapid foreground (e.g. athletes) and background move-
ments (e.g. the camera motion). We perform two different
training/validation splits of this dataset, splits from STRPM
[5] and our own splits, to facilitate different evaluation pur-
poses. We use the STRPM splits for performance compar-
ison with other methods (Table 4). In STRPM, long video
sequences are cut into several short clips; for a particular se-
quence, some of its clips may be put into the training split,
and others into the validation split. To avoid the appear-
ance features of certain sequences in the validation set to
be exposed in the training set, and to thoroughly evaluate
MMVP’s capability of video prediction, we generate our
own splits for UCF Sports, which choose 90% of the video
sequences from each action type to form the training sam-
ples, and the rest 10% to form the validation samples.

Notably, within the same validation set, the difficulty
level of different samples varies a lot. Some easier video
clips contain static backgrounds and slow-moving objects,
while others are more difficult for involving drastic cam-
era movement and/or fast-moving objects. To better under-
stand the model’s prediction ability in different scenarios,
we apply certain thresholds of the structural similarity in-
dex measure (SSIM) between the last observed frame and
the first future frame to divide the UCF Sports validation
set into three subsets: the easy (SSIM ≤ 0.9), intermediate
(0.6 ≤ SSIM < 0.9), and hard subsets (SSIM < 0.6), which
respectively take up 66%, 26%, and 8% of the full set.

We use our own UCF Sports splits in the ablation studies
(Sec. 4.3). For comparisons, we also train and test STIP [4]
(extension of STRPM [5]) and SimVP [12] on our own UCF
Sports splits; see Table 6.

KTH [38] contains videos of 25 individuals performing
six types of actions, i.e., walking, jogging, running, box-
ing, hand-waving, and hand-clapping. Following previous
works [43, 46, 12], we use persons 1-16 for training and
persons 17-25 for validation. The videos in KTH are in
grayscale, but the challenging part of this dataset is its ex-
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periment setting, which requires the system to output 20 or
40 frames given only 10 past frames.

Moving MNIST [41] is a synthetic dataset. Each se-
quence in the dataset consists of two digits moving inde-
pendently within the 64 × 64 grid and bouncing off the
boundary. During the training time, by assigning different
initial locations and velocities to each digit, one can gen-
erate an infinite number of sequences, and train the sys-
tem to predict the future 10 frames from the previous 10
frames. For fair comparisons, we use the pre-generated
10000 sequences[12] for validation.

4.2. Metrics

We use the peak signal-to-noise ratio (PSNR) and struc-
tural similarity index measure (SSIM) to evaluate the image
quality of the predicted frames. We use the implementation
of PSNR and SSIM from the package scikit-learn [34]. For
the UCF Sports dataset, we use Learned Perceptual Image
Patch Similarity (LPIPS) [58] for better comparison with
existing methods. LPIPS represents the perceptual quality
of the predicted frames. It measures the feature distance of
corresponding image patches between the predicted frames
and the ground truth. Following the setting of these previ-
ous works, in the experiments on Moving MNIST, we use
the sum of the mean squared error (MSE) from the entire
frame to evaluate the image quality.

4.3. Ablation Study

We conduct the ablation study of future composition (Ta-
ble 6), filter block (3rd and 4th rows of Table 2), and hy-
perparameters for both the image encoder/decoder and the
matrix predictor (1st, 2nd, and 4th rows of Table 2) on our
splits of the UCF Sports dataset.

We first examine how the number of feature scales for
feature composition impacts the results. Since we use the
UNet structure with three times downsampling/upsampling
operations to encode, we have four different scales of fea-
tures for composition. For UCF Sports, the scales are
1, 1

2 ,
1
8 ,

1
16 . The motion matrices are constructed using fea-

tures of 1
8 scale. From Table 6 3rd to 5th rows, we observe

consistent performance boosts on all metrics and subsets
when we involve more scales of features for composition.
We then test if using images for feature composition also
boosts performance. By comparing the 5th and 6th rows of
Table 6, we can still see an increasing pattern. However,
since the scale of the image is identical to the largest scale
of the features, to avoid redundancy and possible conflicts,
we remove the features of the largest scale and produce the
results of the last row in Table 6. We then see a comparable
result to the one that uses all scales of features as well as the
image. We adopt the model setting of the last row for the
rest of the experiments.

As mentioned in Sec. 3.2, we do not directly use the out-

put of the image encoder to construct the motion matrices.
Instead, we add a filter block to filter out irrelevant features
and help the motion matrices focus more on describing the
temporal similarity regarding the motion-related features.
Table 2 shows that the model with the filter block generally
achieves better results on the UCF Sports validation set.

Table 2: Ablation study on UCF Sports with LPIPS metrics
(the lower the better), including the feature length of image
and motion, and the usage of the filter block (F-Block).

Img Motion F-Block Full Easy Intermediate Hard Param #
16 4 ✓ 0.1184 0.0592 0.1811 0.4168 0.70M
16 8 ✓ 0.1175 0.0600 0.1768 0.4122 0.71M
32 8 × 0.1124 0.0574 0.1729 0.3819 2.57M
32 8 ✓ 0.1062 0.0580 0.1569 0.3510 2.79M

STIPHR [4] 0.1626 0.1066 0.2271 0.4450 18.05M
SimVP [12] 0.1326 0.0584 0.1951 0.5600 3.47M

Furthermore, Table 2 also shows an ablation study on the
feature length of the appearance-related modules (image en-
coder and decoder) and the motion-related module (matrix
predictor). We define the configuration of the second row
as the MMVP-mini for Figure 1.

4.4. Motion Matrix Visualization

In Figure 5, we visualize the predicted motion matrices
for certain selected feature patches. In all the demonstrated
samples, the many-to-many relationships described by the
predicted motion matrices are able to accurately capture the
feature patches moving tendency. They show that the mo-
tion matrix can describe a wide range of motion patterns and
scenarios, including multiple objects (1st sample of UCF
Sports), the single person moving (KTH), multiple persons
moving and camera moving (2nd sample of UCF Sports),
and synthesized motions (Moving MNIST).

4.5. Comparison with SOTA Methods

We compare MMVP with existing SOTA methods on
three popular datasets: UCF Sports (STRPM [5] splits, Ta-
ble 4), KTH (Table 3), and Moving MNIST (Table 5).

On the UCF Sports dataset, we observe large perfor-
mance gains by MMVP compared to other methods. As
mentioned above, the motion patterns in UCF Sports are
the most complex of the three datasets due to many diffi-
cult cases, e.g., fast movement, camera moving, and motion
blur. But the two-stream design of MMVP has shown its
ability in such complex scenarios. Meanwhile, the video
resolution of UCF Sports is also the highest among the three
datasets. Most existing methods in Table 4 are inherently
not designed for high-resolution videos, which requires
larger network capacities to maintain appearance informa-
tion. Although STRPM [5] and STIP [4] proposed resid-
ual temporal modules designed for high-resolution videos
and they could largely surpass previous methods on both
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Figure 5: Predicted motion matrix visualization. We highlight the selected feature patch(es) at (h,w) in the last observed
frame IT in red and visualize their corresponding predicted motion matrices Mh,w

T,T+1 ∈ RH×W overlaying with the first
future frame IT+1. A brighter color indicates a higher predicted value. We select two samples for each dataset. From left to
right, samples originate in the validation set of UCF Sports, KTH, and Moving MNIST.

metrics, the appearance information loss in their methods
is still unavoidable. MMVP, nevertheless, allows the im-
age and multi-scale features to reach the decoder through
a feature composing procedure, successfully minimizes the
information loss, and achieves the best performance among
all methods across all metrics. MMVP’s success on the
UCF Sports dataset validates its readiness for real-world ap-
plications, and its scalability for high-resolution videos.

Another notable result is MMVP’s ability in long-term
information preservation; see Table 3. Despite having lower
video resolutions and less complex motion patterns than
UCF Sports, KTH as a real-world dataset still presents a
difficulty as it requires systems to do long-term prediction
given short-term observations. On the KTH dataset, MMVP
achieves the #1 performance on SSIM metrics for both ex-
periment settings with a small performance gap (27.54 to
26.35) in PSNR between the two settings. This is con-
tributed by the design that the matrix predictor of MMVP
predicts the temporal similarity matrices between the future
frames and the last observed frame instead of their prede-
cessors. Then, every predicted frame is composed of valid
observed information. It reduces accumulated errors and
ensures good performance for long-term prediction.

Compared to the performance gains on UCF Sports,
MMVP does not show much advantage on the Moving
MNIST dataset. One speculation is that with video predic-
tion research advancing, the problem of two-digits Moving
MNIST with low resolution (64×64) is nearly solved. With
sufficient training time [12], current video prediction sys-
tems may all be able to achieve promising results. To further
promote the growth of this field, researchers can consider
more challenging datasets and experiment settings.

Table 3: Performance comparison on the KTH dataset

Method
KTH10 → 20 KTH10 → 40

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑
MCnet (ICLR2017) [43] 0.804 25.95 0.73 23.89

ConvLSTM (NeurIPS2015) [40] 0.712 23.58 0.639 22.85
SAVP (arXiv2018) [25] 0.746 25.38 0.701 23.97
VPN (PMLR2017) [23] 0.746 23.76 – –

DFN (NeurIPS2016) [20] 0.794 27.26 0.652 23.01
fRNN (ECCV2018) [32] 0.771 26.12 0.678 23.77
Znet (ICME2019) [56] 0.817 27.58 – –
SV2Pi (ICLR2018) [1] 0.826 27.56 0.778 25.92
SV2Pv (ICLR2018) [1] 0.838 27.79 0.789 26.12

PredRNN (NeurIPS2017) [47] 0.839 27.55 0.703 24.16
VarNet (IROS2018) [22] 0.843 28.48 0.739 25.37

SVAP-VAE (arXiv2018) [25] 0.852 27.77 0.811 26.18
PredRNN++ (ICML2018) [45] 0.865 28.47 0.741 25.21

MSNET (BMVC2019) [26] 0.876 27.08 – –
E3d-LSTM (ICLR2019) [46] 0.879 29.31 0.810 27.24
STMFANet (CVPR2020) [21] 0.893 29.85 0.851 27.56

MMVP (ours) 0.906 27.54 0.888 26.35

Moreover, we analyze MMVP’s performance on data of
different difficulty levels using our own split of the UCF
Sports dataset. We define the difficulty of a video using the
SSIM between the last observed frame and the first frame
to be predicted. This is because a lower SSIM indicates a
larger difference between the two frames, and less possi-
bility for a system to take the shortcut by using the residual
information from past frames and not actually predicting the
motion. Table 6 shows the quantitative evaluation compared
with SimVP [12] and STIP [4]: as the difficulty level of the
validation subset increases, the performance gap between
MMVP and other methods also increases.

Besides quantitative evaluation, we also showcase sev-
eral qualitative visualizations in Figure 6 and compare them
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Figure 6: Qualitative results on our own splits of the UCF Sports dataset.

Table 4: Performance comparison on UCF Sports STRPM split

Method
t = 5 t = 10

PSNR ↑ LPIPS×100 ↓ PSNR ↑ LPIPS×100 ↓
ConvLSTM (NeurIPS2015) [40] 26.43 32.20 17.80 58.78
BeyondMSE (ICLR2016) [30] 26.42 29.01 18.46 55.28
PredRNN (NeurIPS2017) [47] 27.17 28.15 19.65 55.34

PredRNN++ (ICML2018) [45] 27.26 26.80 19.67 56.79
SAVP (arXiv2018) [25] 27.35 25.45 19.90 49.91
SV2P (ICLR2018) [1] 27.44 25.89 19.97 51.33

E3D-LSTM (ICLR2019) [46] 27.98 25.13 20.33 47.76
CycleGAN (CVPR2019) [24] 27.99 22.95 19.99 44.93

CrevNet (ICLR2020) [55] 28.23 23.87 20.33 48.15
MotionRNN (CVPR2021) [51] 27.67 24.23 20.01 49.20

STRPM (CVPR2022) [5] 28.54 20.69 20.59 41.11
STIP (arXiv2022) [4] 30.75 12.73 21.83 39.67

DMVFN (CVPR2023) [19] 30.05 10.24 22.67 22.50
MMVP (Ours) 31.68 7.88 23.25 22.24

Table 5: Comparisons on Moving MNIST

Method MSE SSIM
ConvLSTM (NIPS 2015) [40] 103.3 0.707
PredRNN (NIPS 2017) [47] 56.8 0.867

PredRNN-V2 (Arxiv 2021) [48] 48.4 0.891
CausalLSTM (ICML 2018) [45] 46.5 0.898

MIM (CVPR 2019) [49] 44.2 0.910
E3D-LSTM (ICLR 2018) [46] 41.3 0.920
PhyDNet (CVPR 2020) [14] 24.4 0.947
CrevNet (ICLR 2020) [55] 22.3 0.949
SimVP (CVPR 2022) [12] 23.8 0.948

MMVP(ours) 22.2 0.952

Table 6: Ablation study on sources for future composition and the comparison with other SOTA methods on UCF Sports.

Method
Composition source Full set Easy (SSIM ≥ 0.9) Intermediate (0.6 ≤ SSIM < 0.9) Hard (SSIM < 0.6)

Param#
Img 1 1/2 1/8 1/16 SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS↓ SSIM ↑ PSNR ↑ LPIPS ↓

STIPHR [4] - 0.8817 28.17 0.1626 0.9491 30.65 0.1066 0.8351 23.97 0.2271 0.4673 15.97 0.4450 18.05M
SimVP [12] - 0.9189 29.97 0.1326 0.9664 32.87 0.0584 0.8845 25.79 0.1951 0.6267 18.99 0.5600 3.47M

MMVP

× × × ✓ ✓ 0.9000 28.31 0.1874 0.9375 30.43 0.1342 0.8759 25.36 0.2304 0.6593 19.90 0.4992 2.75M
× × ✓ ✓ ✓ 0.9284 30.14 0.1115 0.9667 32.79 0.0603 0.8937 26.11 0.1693 0.7159 20.71 0.3570 2.79M
× ✓ ✓ ✓ ✓ 0.9296 30.22 0.1064 0.9669 32.87 0.0576 0.8965 26.26 0.1571 0.7199 20.76 0.3555 2.80M
✓ ✓ ✓ ✓ ✓ 0.9296 30.29 0.1051 0.9675 32.99 0.0567 0.8958 26.22 0.1554 0.7175 20.76 0.3517 2.80M
✓ × ✓ ✓ ✓ 0.9300 30.35 0.1062 0.9674 33.05 0.0580 0.8970 26.29 0.1569 0.7203 20.84 0.3510 2.79M

with SimVP [12] which achieved the second-best perfor-
mance on our splits of the UCF Sports dataset. We espe-
cially select four samples in the hard and intermediate sub-
sets for visualization. The first sample in Figure 6 shows
a far-away object with long-distance movement. This is
caused by the low fps of the dataset. MMVP accurately
captures the displacement of the object while not losing
the color and shape of the object. The challenge of the
second sample in Figure 6 is also typical to UFC Sports,

i.e. fast movement with motion blur. MMVP is able to re-
cover the correct shape of the athletes’ feet even if they are
blurred in the observed frames. The third and fourth sam-
ples both show a fast camera movement, with and without
large foreground movements. Camera moving with com-
plex backgrounds is extremely difficult for video prediction.
Even SimVP, which generated high-quality images for most
of the datasets, barely captured the camera movements in
these two samples and caused drastic blurs. Benefiting from
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its appearance-agnostic motion prediction module, MMVP
achieved impressive performance in such cases.

5. Discussion

From Table 2 and Table 6 in Sec. 4, we observe that the
proposed MMVP framework can always achieve better or
comparable performance with significantly fewer parame-
ters compared to the other SOTA methods. To better un-
derstand the high efficiency of MMVP, we break down a
video prediction system into three components: i) content
encoder, which encodes the image sequences; ii) prediction-
related modules, which take charge of predicting features
for future frames based on the output of the content en-
coder; iii) content decoder, which decodes the output of
the predicted features output by the prediction-related mod-
ules. Then we examine the model size for each component
in three video prediction systems: STIP [4], SimVP [12],
and the proposed MMVP (configurations follow the second
row and the fourth row in Table 2); see Table 7.

In Table 7, prediction-related modules in STIP [4] and
SimVP [12] handle both motion and appearance features.
However, in MMVP, prediction-related modules specifi-
cally handle only the motion features, leaving all appear-
ance features to the content encoder and decoder. The
most noticeable fact from Table 7 is that in STIP [4] and
SimVP [12], the prediction-related modules take majority
of the model parameters (the ratios are 99.7% and 99.4% re-
spectively). In contrast, motion-related modules in MMVP
only take 14.5% and 15.9% of the parameters. This fact
supports our argument in Sec. 1 that decoupling motion
prediction and appearance maintenance effectively avoid
the cumbersome structures of the prediction modules and
largely improve the prediction efficiency. Another obser-
vation is that despite the small size, the prediction-related
modules in MMVP can still support high-quality motion
prediction. This validates the efficiency of the motion matri-
ces when describing the motion information, which results
in a lightweight design of the prediction module.

Table 7: Model size breakdown. The numerical values are
the number of parameters taken by each component in the
video prediction systems.

Method Content Encoder Prediction Modules Content Decoder Total
STIPHR [4] 29.86K 17994.8K 29.54K 18054.2K
SimVP [12] 7.5k 3447.1K 11.7K 3466.3K
MMVP-mini 369.4K 113.2K 228.3K 710.9K

MMVP 1472.2K 404.9K 911.9K 2789.0K

6. Conclusion

The proposed Motion-Matrix-based Video Prediction
framework (MMVP) is an end-to-end trainable two-stream

pipeline. MMVP uses motion matrices to represent
appearance-agnostic motion patterns. As the sole input of
the motion prediction module in MMVP, the motion ma-
trix can i) describe the many-to-many relationships between
feature patches without training for extra modules; ii) intu-
itively compose future features with multi-scale image fea-
tures through matrix multiplication. It helps the motion
prediction become more focused, and efficiently reduces
the information loss in appearance. Extensive experiments
demonstrate the superiority of MMVP compared to existing
SOTA methods in both the model size and performance.
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