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Abstract

Modern retrieval system often requires recomputing the
representation of every piece of data in the gallery when
updating to a better representation model. This process is
known as backfilling and can be especially costly in the real
world where the gallery often contains billions of samples.
Recently, researchers have proposed the idea of Backward
Compatible Training (BCT) where the new representation
model can be trained with an auxiliary loss to make it back-
ward compatible with the old representation. In this way, the
new representation can be directly compared with the old rep-
resentation, in principle avoiding the need for any backfill-
ing. However, follow-up work shows that there is an inherent
trade-off where a backward compatible representation model
cannot simultaneously maintain the performance of the new
model itself. This paper reports our “not-so-surprising” find-
ing that adding extra dimensions to the representation can
help here. However, we also found that naively increasing
the dimension of the representation did not work. To deal
with this, we propose Backward-compatible Training with
a novel Basis Transformation (BT 2). A basis transforma-
tion (BT) is basically a learnable set of parameters that
applies an orthonormal transformation. Such a transforma-
tion possesses an important property whereby the original
information contained in its input is retained in its output.
We show in this paper how a BT can be utilized to add only
the necessary amount of additional dimensions. We empiri-
cally verify the advantage of BT 2 over other state-of-the-art
methods in a wide range of settings. We then further extend
BT 2 to other challenging yet more practical settings, in-
cluding significant changes in model architecture (CNN to
Transformers), modality change, and even a series of updates
in the model architecture mimicking the evolution of deep
learning models in the past decade. Our code is available at
https://github.com/YifeiZhou02/BT-2.
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Figure 1. Illustration of BT 2 The backbone produces a representa-
tion (light green ovals) that is encouraged to match the new model’s
representation, ϕ′

new, via a matching and classification loss. A
subset of this then goes through a BT transformation, which retains
the information (purple triangles) from the new representation. At
the same time, the new representation is then projected into a layer
(pink ovals) which is combined with part of the BT-transformed
new representation (the three purple triangles). This layer then goes
through a BT transformation that is then encouraged to match the
old model’s representation, ϕold, in effect, resulting in a backward
compatible representation as the BT transformations have to inher-
ently retain information from both ϕ′

new and ϕold. This is akin to
the BCT procedure. The two purple triangles (i.e., what we referred
to as the additional dimensions) that are not part of this are used
to capture extra information in the new representation that may
not be compatible. The resulting ϕnew is then the representation
used for all subsequent queries and new gallery samples. Refer to
Section 3.4 on the definitions of ϕ1,2,3,4,5.

Modern visual retrieval systems retrieve similar images
from a pool of stored data (referred to as gallery) with a given
image (referred to as query). This is often done by training a
model to encode all the images in the gallery and storing the
resulting representations. A given query is encoded with the
same model and its representation is used to retrieve the im-
ages with the most similar representations from the gallery.
As better representation model design becomes available,
practitioners often desire to update the representations in the
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gallery with the new model to achieve better performances.
The issue is that if the new model has been trained indepen-
dently from the old model, the representations generated by
the new model will not be compatible with those generated
by the old model, which necessitates re-calculating the repre-
sentations of the gallery set, a process known as “backfilling”
[31]. This process gets very costly or even impossible for
real world galleries which often contain billions and billions
of images.

Shen et al. [31] therefore proposes a framework to train
the new model while being compatible with the old model,
known as Backward Compatible Training (BCT), with the
hope of removing the need for backfilling. They propose
to add an “influence loss” to the training objective of the
new model to heuristically induce a backward-compatible
representation. However, as pointed out by [29], adding this
influence loss can significantly hurt the performance of the
new model when compared to its independently trained coun-
terpart. To mitigate this issue, subsequent works [46, 24, 47]
have proposed various more sophisticated influence losses,
but these endeavors have achieved limited success. Indeed,
as shall be detailed in Section 3.2, it may be impossible to
find a new representation model that is at the same time
backward compatible yet achieves the fullest potential of the
new model. In view of this, another line of work in which
researchers utilize a light-weight transformation of the old
representation into the new representation [37, 29, 33] looks
promising. However, despite their effort to make the trans-
formation light-weight, it still requires a costly procedure of
applying a neural network to update billions of images in the
gallery.

In this paper, we present findings that the conflict between
backward compatibility and new model performance can be
mitigated by expanding the representation space to simul-
taneously accommodate both the old model and the best
independently trained new model. To motivate this, one can
first consider an upper bound solution along this direction,
where the representation of the old model is concatenated
with that of an independently trained new model - being inde-
pendently trained, the new model is no more limited by the
backward compatibility requirement. Subsequently, queries
and new samples added to the gallery are now encoded with
the concatenated representations. During retrieval, since it
is easy to distinguish between the gallery samples that are
still of the old representations and those with the concate-
nated representations due to the difference in size, we can
simply truncate the new representation from the query when
comparing with the old representations in the gallery. This
upper bound solution is “perfectly” backward compatible
but suffers from two critical drawbacks: (1) it significantly
increases computations due to the additional number of for-
ward passes when computing the query representation, and
(2) it begets a significant dimension expansion as a result of
the concatenation. In fact, both (1) and (2) can get especially

severe after multiple model updates.
Nevertheless, such an upper bound solution provides us

with the inspiration to consider adding dimensions to the
representation as necessary while conducting BCT. We first
tried naively adding dimensions (e.g., directly adding an
extra 32 dimensions while training a BCT model) to the new
representation, but found that this did not lead to a clear
advantage as shown in Section 4. Instead, we conjecture and
show that what would be more desirable is to add dimensions
for the purpose of storing any information that is not com-
patible between the old and new representation. Towards
this end, we propose a novel Backward-compatible Training
with Basis Transformation (BT 2) that exploits a series of
learnable basis transformations (BT) to find the information
in the new representation that is incompatible with the old
representation. Because a BT is basically an orthonormal
transformation, the output of a BT retains the entirety of the
information stored in the input (see Lemma 3). With this in
mind, we introduce some clever manipulation with BT that
helps to exactly “force” incompatible information in the new
representation into the additional dimensions, while keeping
the compatible information in the BCT representation. Fig. 1
provides a conceptual explanation of our BT 2 design.

In summary, our contributions are three-fold:

• We show that the dilemma between backward compat-
ibility and new model development can be reconciled
with extra dimensions.

• We propose BT 2 that exploits a series of learnable
changes of basis to effectively exploit the extra dimen-
sions, and verify its empirical advantage over other
state-of-the-art methods in a wide range of backward
compatibility tasks.

• We extend BT 2 to more challenging and practical sce-
narios that have not been considered by existing works
to the best of our knowledge. These include significant
changes in model architecture, compatibility between
different modalities, and even a series of updates in
the model architecture mimicking the history of deep
learning in the past decade.

2. Related Works
Model Compatibility and Backward Compatibility.
Model compatibility has received an increasing amount of at-
tention in the research community due to its practical utility
[24, 37, 6, 35], where the goal is to learn a shared represen-
tation space in which representations from different models
can be directly compared. In particular, backward compat-
ibility was introduced in [31], where the authors proposed
an influence loss that tries to move the new and old repre-
sentations closer. Subsequent works either introduce a trans-
formation module [17, 29, 37] or enhanced regularization
loss functions [24, 46, 47]. However, some key disadvan-
tages associated with these approaches include that some
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of them depend on an auxilliary loss that prevents the new
model from reaching its fullest potential, while others still
require a lightweight backfilling. For the latter, a recent
work known as Forward Compatible Training (FCT) [29]
has been proposed that trains a lightweight transformation
module to transform the old representations into new rep-
resentations for backward compatibility. However, a key
difference between this paper with FCT is that FCT still re-
quires lightweight backfilling and a side-information model
(which hopefully contains sufficient information to train the
transformation module) but those are not required in this
paper.

Continual Learning and Transfer Learning. The field of
backward compatible representation learning is also related
to continual learning [8, 2, 5, 30, 1] and transfer learning
[51, 49, 26, 50, 23]. However, these two fields have different
focuses. Continual learning focuses on training a model to
perform well on a new task without forgetting the old task,
and transfer learning focus on transferring a model to per-
form well on a different domain with the original training
domain. On the other hand, backward compatible represen-
tation learning focuses on the same task, i.e., representation
learning, such that the representation from the improved new
model can be directly used to compare with the old model.

3. Methodology
To facilitate discussions, we follow standard notations

in this field, using ϕ1/ϕ2 to represent the retrieval perfor-
mance of using ϕ1 for representing queries while using ϕ2

for representing samples in the gallery. We also denote the
representations from the old and final new model as ϕold

and ϕnew respectively. ϕ′
new is the independently trained

new model representation while ϕnew is the final new model
representation after combining ϕold and ϕ′

new. Our goal
is to learn the best ϕnew possible (either when more data
and/or better model architectures becomes available) while
respecting the following commonly accepted criterion for
backward compatible representations [31, 37].

3.1. Problem Setup
Definition 1 (Backward Compatibility). ϕnew is backward
compatible with ϕold, if ∀xi, xj from the distribution of in-
terest,

d(ϕnew(xi), ϕold(xj)) ≥ d(ϕold(xi), ϕold(xj)),∀yi ̸= yj ,

d(ϕnew(xi), ϕold(xj)) ≤ d(ϕold(xi), ϕold(xj)),∀yi = yj ,

where d is a distance measure, and yi, yj are the correspond-
ing labels of xi, xj .

Alternatively, to relax the above criterion that enforce the
constraints on every data point, if there is some empirical
metrics M(ϕ1, ϕ2) (for example, top1 accuracy for ϕ1/ϕ2),

we consider backward compatibility as M(ϕnew, ϕold) >=
M(ϕold, ϕold). In addition, we desired another key property
when learning ϕnew:

Definition 2 (Not Hurting New Model). ϕnew is said to be
not hurting the new model if, ∀xi, xj from the distribution of
interest:

d(ϕnew(xi), ϕnew(xj)) = d(ϕ′
new(xi), ϕ

′
new(xj)).

Similarly, if we relax it with an empirical metric M , the def-
inition becomes M(ϕnew, ϕnew) >= M(ϕ′

new, ϕ
′
new). In

this paper, we adopt the the negative dot product as distance
metric for simplicity:

d(a, b) = −a⊤b

Note that in this paper, all final representations are normal-
ized, so this dot product is equivalent to cosine similarity up
to a constant multiplier.

3.2. Backward Compatibility vs ϕnew Performance
We argue that only adding an influence loss [31, 46, 24]

fails to reliably guarantee backward compatibility without
hurting the new model, and this idea is formalized in Lemma
1. The implication of this Lemma 1 can be considered as
an inherent trade-off between backward compatibility and
ϕnew performance, which inspires us to “hold” incompatible
information of the new model on the additional orthogonal
dimensions to avoid this conflict.

Lemma 1. There exist cases where backward compatibility
will significantly limit the potential of the new model while
using negative cosine similarity as the distance metric.

3.3. Learnable Basis Transformation
We make heavy use of basis transformation (BT). A BT

is essentially a learnable change of basis represented by
an orthonormal matrix, P . P can be parameterized as the
exponential of a left skew-symmetric A, so that P = eA,
where the upper entries in A are learnable parameters. This
design is made possible by the following Lemma 2.

Lemma 2. If A is a left skew-symmetric matrix, P = eA is
orthonormal where P = eA is defined as:

P = eA =

∞∑
k=0

Ak

k!

Intuitively, for any representation ϕ(x), applying a change of
basis on ϕ(x) to get Pϕ(x) should not lose any information
and will not hurt the quality of the ϕ. This intuition can be
formalized by the following Lemma 3.

Lemma 3. If P is an orthonormal matrix of dimension
m×m, ∀ϕ(x1), ϕ(x2) that are m dimensional vectors:

ϕ(x1)
⊤ϕ(x2) = (Pϕ(x1))

⊤(P (ϕ(x2))
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Algorithm 1 Dimension Reduction by Learnable Change of
Basis
Require: Learnable backbone F with output dimension m+

n, learnable projection layer f mapping from dimension
m + n to d, BT block B1 of m × m and B2 of n × n.
Constant C and image x.
ϕ1 ← F (x)

ϕ2 ← f(ϕ1), ϕ2 ← ϕ2

∥ϕ2∥
ϕ3 ← ϕ1[:m]

∥ϕ1[:m]∥
ϕ4 ← CB1ϕ3

ϕ5 ← B2

[
ϕ2

ϕ4[: n− d]

]
ϕnew ←

[
ϕ5

ϕ4[n− d :]

]

3.4. Merging ϕ′
new and ϕold with BT

With all the premises set up in the previous sections, we
will now describe our proposal on achieving both criteria in
definition 1 and 2. Further, we would like to to minimize
the additional dimensions required to do that (Lemma 1) as
well as ensuring that ϕnew requires only a single forward
pass to obtain. Our proposal utilizes the BT (Lemma 2) as
described in Fig. 1. We conjecture that although new and old
models might differ in their model architecture or training
data, they should still encode a lot of information in common.
Therefore, we propose to train ϕnew to automatically pick
out the information from ϕ′

new not compatible with ϕold,
and only encode this extra information on the dimension
orthogonal to ϕold. This can be realized by restricting our-
selves to using only learnable change of basis, thanks to the
information-preserving property detailed in Lemma 3.

Referring to Fig. 1, we mainly add two BT layers. Con-
cretely, suppose ϕ′

new, ϕold are of dimension m,n respec-
tively, and we allow a dimension expansion of d, so that
ϕnew has a dimension of m+d in our budget. Our backbone
produces ϕ1 of dimension m+ n, and the first m dimension
(referred to as ϕ3) is trained to mimic ϕ′

new with the same
loss that is used to train ϕ′

new. Notably, there is no backward
influence loss on ϕ3 so that it is hoped ϕ3 can be as good as
independent ϕ′

new.
After that, we pass the entire ϕ1 into the projection layer

to produce a ϕ2 of dimension d which will be some addi-
tional features of ϕold that are not used by ϕ′

new. ϕ3 is passed
into the first BT layer B1 to get ϕ4, allowing us to split ϕ3

into compatible information with the old representation (the
first n− d dimensions) and incompatible information (the
remaining m− n+ d dimensions). The first n− d dimen-
sion is concatenated with ϕ2 and passed into the second BT
layer B2 to mix the information of ϕ2 and from ϕ4 to get
ϕ5. Similarly, ϕ5 is trained to mimic ϕold and there is no
new model training loss so it is hoped that ϕ5 can be as
compatible to the old representations as possible. Lastly,

ϕ5 is concatenated with the remaining m − n + d dimen-
sion of ϕ4 to get the final ϕnew of dimension m+ d. Basis
transformations B1 and B2 are designed such that all the
information is preserved from ϕ3 that is trained to match an
independent model ϕ′

new. Algorithm 1 detailed our proposed
method, with additional normalization details to ensure the
information of ϕ′

new dominates the information of ϕold in
the final representation ϕnew via the factor C. Note that this
does not cause ϕnew/ϕold to suffer since we truncate ϕnew

when comparing to ϕold, effectively eliminating the extra
incompatible information between ϕ′

new and ϕold.
Intuitively, the BT layers serve the purpose of retaining

the entirety of the information between the input and the
output, which as as result means that ϕ5 is akin to a BCT
procedure. It also means that any incompatible information
between ϕ′

new and ϕold is “forced” into ϕ4[n − d :] as a
result of the training.

4. Experiments
We provide experimental results that (1) benchmark our

method with existing backward compatible representation
learning methods based on both criteria in definition 1 and 2,
(2) demonstrate our method’s ability to handle cases such as
data changes or what [31] referred to as open classes (e.g. the
old model is trained on 500 Imagenet classes while the new
model on 1000 Imagenet classes, with both using the same
architecture), significant changes in model architecture (e.g.,
ResNet to pretrained Transformers), different modalities,
and a series changes of model architecture (mimicking the
historical development of deep learning), and (3) ablating the
effect of the number of extra dimensions on the performance
of our method.

4.1. Datasets

This work makes use of the following datasets:

• Cifar-100[20]: Cifar-100 is a popular image classifica-
tion dataset consisting of 60000 images in 100 classes.
We use Cifar-50 to refer to the partition consisting of
all the images from the first 50 classes.

• Imagenet-1k [9]: Imagenet-1k is a large-scale image
recognition dataset for ILSVRC 2012 challenge. It has
1000 image classes with approximately 1.2k images per
class. We follow the same partition as [29] where we
use the images from the first 500 classes as Imagenet-
500. *

4.2. Evaluation Metrics

Cumulative Matching Characteristics (CMC). CMC cor-
responds to the top-k accuracy, where we sort the gallery

*We use the class split from https://gist.github.com/aaronpolhamus-
/964a4411c0906315deb9f4a3723aac57 .
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representations by their similarity to the query representa-
tion. It is considered correct if a match with the same class
is in the first k gallery representations. We report CMC top-1
and top-5 for all models.
Mean Average Precision (mAP). mAP is a standard met-
rics that summarizes precision and recall metrics by taking
the area under the precision-recall curve. We compute the
average precision in the recall range [0.0, 1.0].

4.3. Baselines
We benchmark against the following baselines to validate

our method.
Independent. For this baseline, it is basically the two mod-
els ϕ′

new and ϕold without accounting for any backward
compatibility. ϕold/ϕold and ϕ′

new/ϕold respectively pro-
vide a rough upper and lower bound for ϕnew/ϕold, while
ϕ′
new/ϕ

′
new provides a rough upper bound for ϕnew/ϕnew.

Backward Compatible Training (BCT). BCT was intro-
duced in Shen et al. [31]. As the first attempt for backward
compatibility, it is frequently adopted as the baseline in many
recent papers[29, 33, 17]. Specifically, BCT utilizes a clas-
sification loss but adds an “influence loss” during training
to achieve backward compatibility. Denoting wϕ as the new
representation model, wc a trainable classification head, and
wc

old the fixed classification head that was trained with the
old representation head, the following loss terms are used in
BCT:

LBCT (ϕ,w
c, x) = L(wc, ϕ|x) + λL(wc

old, ϕ|x),

where λ is a hyperparameter to tune, and both L(wc, ϕ|x)
andL(wc

old, ϕ|x) represent a classification loss with wc/wc
old

as the classification head and ϕ as the representation. Back-
ward propagation trains ϕ and wϕ.
BCT with 32 Extra Dimensions (BCT(+32)). To ensure
a fair comparison with our method, where we add 32 di-
mensions, we create a variant of BCT with the dimension
expanded by 32. We use the same loss function as BCT
except that we pad the missing dimension of wc

old with 0.
Regression-alleviating Compatibility Regularization
(Contrast). This is a recently proposed method with a more
sophisticated auxiliary loss [46] to replace influence loss:

Lra−comp(ϕnew, x) =

log(1 +

∑
k∈B−p(x) expϕnew(k) · ϕold(k)/τ

expϕnew(x) · ϕold(x)/τ

+

∑
k∈B−p(x) expϕnew(k) · ϕnew(k)/τ

expϕnew(x) · ϕold(x)/τ
),

where B is the mini-batch for training, p(x) is the set of
samples in the minibatch with the same label as x, and τ is a
temperature hyperparameter.
BT 2 (Ours). We use a dimension expansion of 32, and
a classification loss that is the same as that used to train

Method Case CMC mAP@1.0top1-top5

Independent
ϕold/ϕold 33.6-55.4 24.4
ϕ′
new/ϕold 0.8-4.9 1.5

ϕ′
new/ϕ

′
new 62.7-74.6 49.9

BCT ϕbct
new/ϕold 23.5-60.4 23.9

ϕbct
new/ϕ

bct
new 56.1-70.8 43.6

BCT (+32) ϕ
bct(+32)
new /ϕold 22.1-61.3 23.8

ϕ
bct(+32)
new /ϕ

bct(+32)
new 56.1-71.3 44.1

Contrast ϕcontrast
new /ϕold 26.1-61.8 25.1

ϕcontrast
new /ϕcontrast

new 57.9-75.2 36.7

BT 2 (Ours) ϕbt2

new/ϕold 38.7-67.1 28.0
ϕbt2

new/ϕ
bt2

new 64.4-78.7 53.2

Table 1. Backward compatible experiments on Cifar-50 to Cifar-
100 with only data change. Both the old model and the new model
uses Resnet50-128 architecure.

ϕ′
new, and a combination of cosine similarity loss and BCT

influence loss for matching loss for ϕold. Specifically, we
use the following loss as “ϕ′

new training loss” for ϕ3:

Lϕ′
new

(ϕ3, w
c
ϕ3
, x) = L(wc

ϕ3
, ϕ3|x) + λ1(1− ϕ⊤

3 ϕ
′
new),

where λ1 is a hyperparameter and ϕ′
new is an independently

trained model, both ϕ3 and wc
ϕ3

are trained. Similarly, we
use the following loss as “ϕold matching loss”:

Lϕold
(ϕ5, x) = λ2L(wc

old, ϕ5|x) + λ3(1− ϕ⊤
5 ϕold),

where λ2, λ3 are two hyperparameters and wc
old is the fixed

classification head used to train ϕold. C is taken to be 2. For
transformer-based models, we found it helpful to apply the
classification loss to the final representation ϕnew instead of
ϕ3.

4.4. Implementations Details
Experiments on Table 1, 2, 3. Experiments for these ta-
bles are carried out on 8x Nvidia 2080Ti. For all baselines
and methods, transformer models are finetuned with sgd
optimizer with a learning rate 0.01 and batch size 64 for
25 epochs, while ResNet50 models are trained with adam
optimizer with a learning rate 0.001 and batch size 256 or
128 for 100 epochs.
Experiments on Table 4, 5, 6, 7. Experiments for these
tables are carried out on 8x Nvidia A100. For all baselines
and methods, transformer models are finetuned with sgd
optimizer with a learning rate 0.01 and batch size 512 for 25
epochs, while AlexNet, ResNet50 models are trained with
adam optimizer with a learning rate 0.001 and batch size
2048 for 100 epochs. VGGNet-13 with batch normalization
is trained with adam optimizer with a learning rate 0.001 and
batch size 1024 for 100 epochs.

4.5. Data Change
Cifar-50 to Cifar-100. In this experiment, the model for
ϕold is a ResNet50 with an output feature dimension of size
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Method Case CMC mAP@1.0top1-top5

Independent
ϕold/ϕold 43.1-58.3 30.9
ϕ′
new/ϕold 0.1-0.5 0.2

ϕ′
new/ϕ

′
new 67.9-81.4 52.3

BCT ϕbct
new/ϕold 41.3-64.4 33.3

ϕbct
new/ϕ

bct
new 63.7-79.0 51.2

BCT (+32) ϕ
bct(+32)
new /ϕold 37.4-64.4 30.0

ϕ
bct(+32)
new /ϕ

bct(+32)
new 65.7-80.1 52.0

Contrast ϕcontrast
new /ϕold 39.0-66.7 29.4

ϕContrast
new /ϕcontrast

new 65.6-81.2 47.6

BT 2 (Ours) ϕbt2

new/ϕold 47.8-68.0 33.8
ϕbt2

new/ϕ
bt2

new 66.5-80.9 54.4

Table 2. Backward compatible experiments on Imagenet-500 to
Imagenet-1k with only data change. Both the old model and the
new model uses Resnet50-128 architecure.

128, and trained on Cifar-50. The model for ϕnew is also a
ResNet50 but trained on the entire Cifar-100 dataset. For
retrieval, we use the Cifar-100 validation set as both the
gallery set and the query set.
Imagenet-500 to Imagenet-1k. Same as above except the
model for ϕold is trained on Imagenet-500, and that for ϕnew

on the entire Imagenet-1k dataset. For retrieval, we use the
Imagenet-1k validation set as both gallery and query.
Results. The results are shown in Table 1 and 2, where we
observe that BCT can indeed achieve backward compatibil-
ity on large-scale image classification datasets like Imagenet
and also achieves reasonable performance on ϕbct

new/ϕ
bct
new.

However, as has also been discussed in the previous litera-
ture, ϕbct

new/ϕ
bct
new is significantly influenced by the auxiliary

influence loss. Comparing to the upper bound of training in-
dependently, ϕ′

new/ϕ
′
new, BCT is only 63.7% and 56.1% for

CMC top 1 on Imagenet and Cifar-100 respectively. Further-
more, the backward compatibility of BCT can be unstable
in some of the datasets where we observe that ϕbct

new/ϕold

is only 23.5% for CMC top 1 on Cifar-100 while ϕold/ϕold

is 33.6%. Its unstable performance might be because the
influence loss in BCT does not directly encourage the model
to be compatible with the old representation, but rather to
be compatible with the old classification head, and the inher-
ent conflict between ϕbct

new/ϕold and ϕbct
new/ϕ

bct
new. We also

observe a similar pattern for Contrast, indicating that even
a more sophisticated influence loss may not suffice in over-
coming this issue. In contrast, with the extra dimension intro-
duced by BT 2, we observe a significant improvement across
the board. In particular, for CMC top 1 on Imagenet, BT 2

achieves 47.8% on ϕbt2

new/ϕold and 66.5% on ϕbt2

new/ϕ
bt2

new,
which are a 6.5% and 2.8% improvement over BCT respec-
tively. It shows that BT 2 can mitigate the trade-off between
backward compatibility and performance of the new model,
by exploiting extra dimensions. We would like to also note
that just naively adding new dimension like BCT (+32) did
not show a clear improvement over BCT, which highlights

Method Case CMC mAP@1.0top1-top5

Independent
ϕold/ϕold 33.6-55.4 24.4
ϕ′
new/ϕold 0.3-4.7 1.7

ϕ′
new/ϕ

′
new 89.5-94.3 87.5

BCT ϕbct
new/ϕold 45.7-83.7 32.9

ϕbct
new/ϕ

bct
new 88.7-93.5 85.7

BCT (+32) ϕ
bct(+32)
new /ϕold 44.9-86.2 32.7

ϕ
bct(+32)
new /ϕ

bct(+32)
new 88.6-93.7 84.8

Contrast ϕcontrast
new /ϕold 45.6-81.0 32.8

ϕcontrast
new /ϕcontrast

new 88.2-94.0 81.9

BT 2 (Ours) ϕbt2

new/ϕold 51.2-85.5 34.0
ϕbt2

new/ϕ
bt2

new 90.0-94.8 88.4

Table 3. Backward compatible experiments on cifar-50 to cifar-100
with both data change and model change. The old model uses
Resnet50-128 architecure, while the new model uses a transformer
“ViT-B16” [10] pretrained on full training set of Imagenet21K.

the importance of adding dimensions in a principled manner.

4.6. Model Change
Cifar-50 to Cifar-100 (ResNet50 to Transformer). The
setting of this experiment is similar to Cifar-50 to Cifar-
100 except that the new model is finetuned from “ViT-B16”
[10, 36] pretrained on entire Imagenet-21k training set.
Imagenet-500 to Imagenet-1k (ResNet50 to Transformer).
The setting of this experiment is similar to Imagenet-500
to Imagenet-1k except that the new model is from the same
“ViT-B16” [10] pretrained on entire Imagenet-21k training
set.
Results. The results are shown in Table 4. This is a chal-
lenging setting which, to be best of our knowledge, has not
been studied in the previous literature. We observe a similar
pattern to the data change setting. Designing sophisticated
backward compatible loss or naively adding dimensions, as
in the case of Contrast and BCT (+32), did not produce
any clear improvement. However, BT 2 outperforms BCT
by 12.5% and 2.1 % in terms of CMC top 1 on Imagenet
ϕbct
new/ϕold and ϕbct

new/ϕ
bct
new respectively.

4.7. Modality Change
Setting. In addition to data and model change, we propose an
even more challenging scenario where the modality changes.
We consider the application of modality fusion, where a sin-
gle gallery of image representations can support both image-
to-image retrieval and text-to-image retrieval. In a standard
setting, this needs to be done with two separate models: one
trained for good image representations (with classification
loss on a large-scale image datasets for example) and the
other one trained to align the representations of images and
text in the same representation space. The first model is usu-
ally good only for image-to-image retrieval, while the second
model, although good for text-to-image matching, performs
much worse than the first model in terms of image to image
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Method Case CMC mAP@1.0top1-top5

Independent
ϕold/ϕold 43.1-58.3 30.9
ϕ′
new/ϕold 0.0-0.2 0.1

ϕ′
new/ϕ

′
new 78.0-87.5 72.4

BCT ϕbct
new/ϕold 41.1-69.5 33.0

ϕbct
new/ϕ

bct
new 74.8-86.7 66.5

BCT (+32) ϕ
bct(+32)
new /ϕold 40.5-69.4 32.9

ϕ
bct(+32)
new /ϕ

bct(+32)
new 75.1-87.1 66.8

Contrast ϕcontrast
new /ϕold 43.5-71.3 34.0

ϕcontrast
new /ϕcontrast

new 72.5-86.3 58.5

BT 2 (+32) ϕbt2

new/ϕold 53.6-74.5 37.5
ϕbt2

new/ϕ
bt2

new 76.9-88.2 70.4

Table 4. Backward compatible experiments on Imagenet-500 to
Imagenet-1k with both data change and model change. The old
model uses Resnet50-128 architecure, while the new model uses
a transformer “ViT-B16” [10] pretrained on full training set of
Imagenet21K.

retrieval. One such popular model is CLIP [27]. CLIP com-
prises of a pair of text and image encoder, both of which are
trained to align in representation. CLIP has been shown to
be very effective for text-to-image matching but its perfor-
mance on image-to-image matching lags behind. Denoting
the image encoder of CLIP as ϕclip−img and referring to Ta-
ble 5, the CMC top 1 on Imagenet ϕclip−img/ϕclip−img is
only 54.7% compared to using a specialized image-to-image
retrieval model ϕimg/ϕimg achieving 78.0%, where ϕimg is
a pretrained Visual Transformer “ViT-B16” [10] finetuned
on Imagenet-1k classification. We believe that BT 2 has the
potential to bridge this gap. Specifically, in the BT 2 setting,
we use the text encoder of CLIP, denoted as ϕclip−txt, as the
old model and the ViT-B16 as ϕ′

new.
We measure the performances of different baselines and

our method by ϕclip−text/ϕimg and ϕimg/ϕimg, which are
the performances of text-to-image and image-to-image re-
trievals respectively. For the former, we simulate text-to-
image by using a pretrained GPT2 [28] image captioning
model to automatically generate captions for all images in
Imagenet with “vit-gpt2-image-captioning” from [43]. Sub-
sequently, during evaluation, the queries are taken from the
same set of captions (for which we know the corresponding
images), then encoded (ϕclip−txt) before the nearest image
encodings are retrieved. Since we know the corresponding
class of the image of ϕclip−txt, we consider the retrieval
to be correct if the retrieved image is from the same class.
For comparison, we use ϕclip−txt/ϕclip−img to denote the
text-to-image retrieval performance with CLIP text model
and CLIP image model.
Results. First, we notice that the performance of
ϕclip−text/ϕclip−image, where we measure text-to-image
retrieval performance with CLIP text model and CLIP image
model, is relatively low compared to other models. This is
mainly because we use automatic image captioning instead

Method Case CMC mAP@1.0top1-top5

Independent

ϕclip−txt/ϕclip−img 11.7-25.0 7.0
ϕclip−txt/ϕimg 0.1-0.4 0.3

ϕclip−img/ϕclip−img 54.7-78.0 21.8
ϕimg/ϕimg 78.0-87.5 72.4

BCT ϕclip−txt/ϕbct
img 9.1-21.4 12.1

ϕbct
img/ϕ

bct
img 73.7-85.9 65.9

BCT (+32) ϕclip−txt/ϕ
bct(+32)
img 9.2-21.8 12.1

ϕ
bct(+32)
img /ϕ

bct(+32)
img 73.8-85.5 65.5

Contrast ϕclip−txt/ϕcontrast
img 13.0-30.0 8.8

ϕcontrast
img /ϕcontrast

img 48.0-68.2 23.1

BT 2 (Ours) ϕclip−text/ϕbt2

img 11.4-25.6 13.6
ϕbt2

img/ϕ
bt2

img 77.6-87.4 71.5

Table 5. Backward compatible experiments on Imagenet-1k with
modality change. The old model uses a pretrained CLIP text en-
coder with automatically generated text, while the new model uses
a transformer pretrained on full training set of Imagenet21K.

of manually annotated ones to caption the text descriptions
associated with each image, so many of them are not accu-
rate. Second, because of the challenge of modality change
and noise in the training data, BCT fails to achieve backward
compatibility (CMC top 1 on ϕclip−text/ϕbct

image is 9.1%
compared to 11.7% on ϕclip−txt/ϕclip−img) and the per-
formance on ϕbct

img/ϕ
bct
img is also significantly hurt by 4.4%

(CMC top 1 of 73.7% compared to 78.0%). On the other
hand, although Contrast achieves backward compatibility,
its image-to-image retrieval performance is extremely unre-
liable (CMC top 1 of 48.0% compared to 78.0%). Finally,
we observe that BT 2 is particularly robust in this setting
with rigorous backward compatibility (CMC top 1 11.4%
compared to 11.7%) and marginal loss in ϕbt2

img/ϕ
bt2

img (CMC
top 1 77.6% compared to 78.0%). We also want to note that
unlike the experiments of data change and model change, we
set the dimension of ϕbct

img and ϕclip−txt to be 512, same as
the dimension used in CLIP while still managing to keep the
dimension expansion of ϕbt2

img to 32. It shows that our BT 2

is extremely “dimension efficient” in the sense that we only
need to expand the dimension by 6.25%.

4.8. Series of Model Updates
The evolution of deep learning brought in an era of very

prolific scientific production, bringing us new and better
model designs and architectures every so often. From the
early days of the past decade (2010-2022) when AlexNet
[21] was first introduced, we have seen an evolution that sub-
sequently brought us VGGNet13 [32], ResNet50 [15], and
finally ViT [10]. There are of course numerous other model
designs but we will focus on this list of better-known archi-
tectures. The experiments in this section is as follow. We
first train a VGGNet13, ϕvgg, that is backward compatible
with AlexNet. Then, we train a ResNet50, ϕres, model that
is backward compatible with ϕvgg , and finally we train a ViT,
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Method Case CMC mAP@1.0top1-top5

Independent

ϕalex/ϕalex 46.6-66.3 29.1
ϕvgg/ϕvgg 63.2-79.0 49.6
ϕres/ϕres 67.9-81.4 52.3
ϕvit/ϕvit 78.0-87.5 72.4

BCT

ϕbct
vgg/ϕalex 54.4-74.1 36.2
ϕbct
vgg/ϕ

bct
vgg 58.4-75.4 47.0

ϕbct
res/ϕ

bct
alex 46.0-71.9 30.6

ϕbct
res/ϕ

bct
vgg 48.9-75.2 44.4

ϕbct
res/ϕ

bct
res 64.3-79.1 52.7

ϕbct
vit/ϕ

bct
alex 54.9-82.0 36.3

ϕbct
vit/ϕ

bct
vgg 57.5-84.1 50.5

ϕbct
vit/ϕ

bct
res 70.3-85.1 57.0

ϕbct
vit/ϕ

bct
vit 73.9-86.0 65.8

BT 2 (ours)

ϕbt2

vgg/ϕalex 56.5-75.6 37.1
ϕbt2

vgg/ϕ
bt2

vgg 61.0-77.2 48.5
ϕbt2

res/ϕ
bt2

alex 56.7-78.5 37.2
ϕbt2

res/ϕ
bt2

vgg 61.5-80.8 50.6
ϕbt2

res/ϕ
bt2

res 66.6-80.8 56.8
ϕbt2

vit/ϕ
bt2

alex 57.9-83.5 37.6
ϕbt2

vit/ϕ
bt2

vgg 62.5-86.5 52.7
ϕbt2

vit/ϕ
bt2

res 72.0-87.0 60.6
ϕbt2

vit/ϕ
bt2

vit 75.6-87.4 68.0

Table 6. Backward compatible experiments on a series of model
updates on Imagenet-1k. Our BT 2 adds 32 extra dimensions for
each update, all other models use an embedding size of 128.

ϕvit, that is compatible with ϕres. Therefore, ϕvit would
be a model that is backward compatible with all the earlier
models. All models are trained on Imagenet-1k training and
results are tested on Imagenet-1k validation set. Our BT 2

adds 32 extra dimensions for each update, while all other
models use an embedding size of 128.
Results. The results are shown in Table 6. Note that be-
cause BCT (+32) and Contrast did not show clear advan-
tage over BCT in previous experiments, we only compare
our method with BCT here. We first note the failure of
BCT in this challenging setting. In the first update from
AlexNet to VGGNet13, although backward compatiblility
is achieved (for Top1, ϕbct

vgg/ϕalex is 54.4% while indepen-
dent ϕalex/ϕalex is 46.6%), the performance of ϕbct

vgg/ϕ
bct
vgg

is significantly hurt (for Top1, ϕbct
vgg/ϕ

bct
vgg is 58.4% while in-

dependent ϕvgg/ϕvgg is 63.2%). Furthermore, after another
round of update in model architecture from VGGNet13 to
ResNet50, the model does not maintain a decent backward
compatibility with its former versions ϕalex and ϕbct

vgg with
a loss of 0.6% on ϕbct

res/ϕ
bct
alex and 4.3% on ϕbct

res/ϕ
bct
vgg com-

pared to independent ϕalex/ϕalex and ϕvgg/ϕvgg in Top1.
Although its backward compatibility is improved after up-
dating to ϕbct

vit possibly because of the power of pretraining
for ViT, it still hurts the performance of the new model sig-

Method Case CMC mAP@1.0top1-top5

Independent
ϕold/ϕold 43.1-58.3 30.9
ϕ′
new/ϕold 0.0-0.2 0.1

ϕ′
new/ϕ

′
new 78.0-87.5 72.4

BCT ϕbct
new/ϕold 41.1-69.5 33.0

ϕbct
new/ϕ

bct
new 74.8-86.7 66.5

BT 2 (+8) ϕ+8
new/ϕold 50.7-75.9 37.1

ϕ+8
new/ϕ

+8
new 74.8-87.0 66.0

BT 2 (+16) ϕ+16
new/ϕold 51.6-76.1 37.6

ϕ+16
new/ϕ

+16
new 76.4-88.1 69.0

BT 2 (+32) ϕ+32
new/ϕold 53.6-74.5 37.5

ϕ+32
new/ϕ

+32
new 76.9-88.2 70.4

BT 2 (+128) ϕ+128
new /ϕold 53.4-75.0 37.9

ϕ+128
new /ϕ+128

new 77.8-88.5 71.1

Table 7. Dimension ablation experiments on Imagenet-500 to
Imagenet-1k with both data change and model change. The old
model uses Resnet50-128 architecure, while the new model uses
a transformer pretrained on full training set of Imagenet21K. Our
BT 2 adds 32 extra dimensions for each update, all other models
use an embedding size of 128.

nificantly (for Top1, ϕbct
vit/ϕ

bct
vit is only 73.9% compared to

independent ϕvit/ϕvit with 78.0%). On the contrary, we
observe that by a strategic use of extra dimensions, our BT 2

maintains backward compatibility at each stage of the se-
quential updates and closes the gap between the performance
of the independent new models and the models trained with
BCT. In summary, BT 2 shows a clear advantage on all rows
across the board with gains up to 12.6%.

5. Ablations on Extra Dimensions
We now answer the question on how many additional

dimensions are needed for BT 2. We carry out ablation ex-
periments in the setting of ResNet50 to ViT (with both data
change and model change) on Imagenet-1k. All settings
are the same as in Section 4.6 except we vary the number
of extra dimensions in our BT 2. Results of the ablations
are shown in Table 7, where we compare BCT (no extra
dimension) with BT 2 extra 8, 16, 32, 128 dimensions. We
observe that BT 2 already shows a clear advantage over BCT
with as few as 8 extra dimensions, showing the effective-
ness of our proposed Basis Transformation Block. As extra
dimensions grow from 8 to 32, though less significant, we
observe an overall trend of gradual improvement both in
terms of ϕ+n

new/ϕ
+n
new and ϕ+n

new/ϕold. As a result, the CMC
top 1 of BT 2 (+32) is 2.9% and 2.1% higher than BT 2 (+8)
in terms of ϕ+n

new/ϕ
+n
new and ϕ+n

new/ϕold respectively. Finally,
we notice that the improvement from BT 2 (+32) to BT 2

(+128) is somewhat marginal by -0.2% and 0.9% in terms
of ϕ+n

new/ϕ
+n
new and ϕ+n

new/ϕold respectively. This shows that
some of the information of ϕ′

new and ϕold can be shared
so that we do not need as much as +128 to capture extra
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information from ϕ′
new.

6. Conclusions
We presented BT 2 in this paper, a method for backward

compatibility that makes use of additional dimensions effi-
ciently. In spite of this, one of the open questions following
this work is that the size of the representation will still grow
over time especially after multiple model updates. Even-
tually, system practitioners will have to fully backfill the
gallery to reset. However, we hope that BT 2 will “buy
enough time” to backfill real world galleries with ϕ′

new that
usually can contain millions of samples.
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[19] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning:
A survey. Symmetry, 11(9):1066, 2019. 11

[20] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100
(canadian institute for advanced research). 4

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012. 7

[22] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
Raj, and Le Song. Sphereface: Deep hypersphere embedding
for face recognition. CoRR, abs/1704.08063, 2017. 11

[23] Jie Lu, Vahid Behbood, Peng Hao, Hua Zuo, Shan Xue, and
Guangquan Zhang. Transfer learning using computational
intelligence: A survey. Knowledge-Based Systems, 80:14–23,
2015. 25th anniversary of Knowledge-Based Systems. 3

[24] Qiang Meng, Chixiang Zhang, Xiaoqiang Xu, and Feng Zhou.
Learning compatible embeddings. CoRR, abs/2108.01958,
2021. 2, 3, 11

[25] Kevin Musgrave, Serge J. Belongie, and Ser-Nam Lim. A
metric learning reality check. CoRR, abs/2003.08505, 2020.
11

11237



[26] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-
ing. IEEE Transactions on Knowledge and Data Engineering,
22(10):1345–1359, 2010. 3

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable vi-
sual models from natural language supervision. CoRR,
abs/2103.00020, 2021. 7, 11

[28] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. 2019. 7

[29] Vivek Ramanujan, Pavan Kumar Anasosalu Vasu, Ali Farhadi,
Oncel Tuzel, and Hadi Pouransari. Forward compatible train-
ing for large-scale embedding retrieval systems. Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, 2022. 2, 3, 4, 5, 11

[30] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and
Christoph H. Lampert. icarl: Incremental classifier and repre-
sentation learning. CoRR, abs/1611.07725, 2016. 3

[31] Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto.
Towards backward-compatible representation learning. In
2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6367–6376, 2020. 2, 3, 4, 5, 11

[32] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 7

[33] Shupeng Su, Binjie Zhang, Yixiao Ge, Xuyuan Xu, Yexin
Wang, Chun Yuan, and Ying Shan. Privacy-preserving model
upgrades with bidirectional compatible training in image re-
trieval, 2022. 2, 5

[34] Yumin Suh, Bohyung Han, Wonsik Kim, and Kyoung Mu
Lee. Stochastic class-based hard example mining for deep
metric learning. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7244–7252,
2019. 11
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