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Abstract

We present ClothesNet: a large-scale dataset of 3D
clothes objects with information-rich annotations. Our
dataset consists of around 4400 models covering 11 cat-
egories annotated with clothes features, boundary lines,
and keypoints. ClothesNet can be used to facili-
tate a variety of computer vision and robot interaction
tasks. Using our dataset, we establish benchmark tasks
for clothes perception, including classification, bound-
ary line segmentation, and keypoint detection, and de-
velop simulated clothes environments for robotic interac-
tion tasks, including rearranging, folding, hanging, and
dressing. We also demonstrate the efficacy of our Clothes-
Net in real-world experiments. Supplemental materi-
als and dataset are available on our project webpage
at https://sites.google.com/view/clothesnet.

1. Introduction
Clothes-related activities, such as folding, laundry, and

dressing, play an essential role in our everyday lives.
However, achieving autonomous performances of these
tasks poses significant challenges in robotics due to the
high-dimensional state representation and complex dynam-
ics [32, 34, 33]. Directly training robots to learn these skills
in real-world scenarios can be costly and unsafe. An alter-
native approach is to develop simulated environments with
rich assets where robots can master these skills before trans-
ferring to real-world scenes.

This learning paradigm often demands large-scale ob-
jects with simulation environments for robots to inter-
act with, utilizing data-driven approaches. While there
is a growing number of large-scale 3D dataset reposito-
ries [7, 47, 53, 25], only a limited number offer 3D cloth-
ing models. For instance, Deep Fashion3D [54] comprises
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Figure 1. We present ClothesNet consisting of 4400 clothes mesh
models covering 11 categories. We annotate ClothesNet with
clothes features, boundary lines, and keypoints. To the best of our
knowledge, it is the first large-scale dataset with rich annotations
for clothes-centric robot vision and manipulation tasks. We also
set up the simulation environment for robotic manipulation tasks,
including the hanging, folding, rearranging, and dressing.

around 2000 3D models reconstructed from real garments
across ten categories. SIZER dataset [45] includes approx-
imately 2000 scans, including 100 subjects wearing 10 gar-
ment classes. However, these scanned 3D models are not
suitable for loading into robotic simulations for tasks in-
volving substantial deformation due to data representation
or mesh quality. CLOTH3D [4] presents a substantial col-
lection of synthetic 3D models with clothing. Garment-
Nets [9] generates six garment category meshes based on
CLOTH3D dataset. Nonetheless, specific categories, such
as socks, masks, hats, and ties, are absent from these efforts.

Regarding cloth simulation, differentiable cloth
simulation[28, 22, 41] demonstrates strong potentials,
providing differentiable operations to calculate the gradient
information to enhance the cloth dynamics and mitigate
the high-dimensional of state and action space. They
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provide differentiable operations to calculate the gradient
information to enhance the cloth dynamics and mitigate the
challenges posed by the high-dimensional of state and ac-
tion space. With the availability of these cloth simulations,
there are increasing research interests in deformable object
understanding. However, they either lack the coupling
mechanism with articulated rigid bodies or lead to unde-
sired penetration between cloth-cloth and cloth-articulated
rigid body interations. This issue significantly degrades
the quality and accuracy of simulations. Addressing this,
Yu et al. [49] introduce DiffClothAI, a differentiable cloth
simulation with intersection-free frictional contact and
the differentiable two-way coupling between cloth and
articulated bodies.

In this paper, we introduce ClothesNet: a large-scale
dataset for clothes with rich annotations tailored for robot
vision and manipulation tasks. The dataset contains 4400
3D mesh models from 11 coarse categories annotated with
clothes features, edge lines, and keypoints. We design
clothes robotic manipulation tasks based on the differen-
tiable cloth simulation DiffClothAI. We perform benchmark
algorithms for clothes classification, edge line segmenta-
tions, and keypoint detections. Finally, we demonstrate the
usefulness of our dataset by enabling a dual-arm robot to
fold clothes in the real-world experiment.

In summary, we make the following contributions:

• We create ClothesNet, which contains 4400 3D mesh
models from 11 coarse categories, annotated with
clothes features, boundary lines, and keypoints. To the
best of our knowledge, it is the first large-scale dataset
with rich annotations for clothes-centric robot vision
and manipulation tasks.

• We develop clothes perception tasks and benchmark
data-driven methods to demonstrate the usefulness of
ClothesNet, including clothes classification, boundary
line segmentation, and keypoint detection.

• We develop clothes manipulation tasks, including fold-
ing, hanging, rearranging, and dressing based on a dif-
ferentiable cloth simulation DiffClothAI.

• We conduct comprehensive experiments both in sim-
ulation and real-world setting to demonstrate the effi-
cacy of our ClothesNet.

2. Related Work

We review related literature, including 3D datasets of
clothes, simulation task suits, robotic perception, and ma-
nipulation for clothes. We describe how we are different
from previous work.

2.1. 3D Garment Datasets

While there are an increasing number of large-scale 3D
dataset repositories such as ShapeNet [7], PARTNET [35],
SAPIEN [47], Thingi10K [53], and ABC [25], only a few
datasets consist of 3D models of clothes. BUFF dataset [50]
contains high-resolution of 4D scans of clothed humans. It
does not provide separate models for body and clothing.
MGN [5] introduces a garment dataset obtained from 3D
scans, covering five cloth categories with a few hundred of
samples. SIZER dataset [45] contains approximately 2000
scans, including 100 subjects wearing 10 garment classes
and use ParserNet to extract garment layers from a single
mesh. Deep Fashion3D [54] contains around 2000 3D mod-
els reconstructed from real garments under 10 categories
and 563 garment instances. CLOTH3D [4] consists of a
large dataset of synthetic 3D humans with clothing. Gar-
mentNets [9] generate six garment categories meshes based
on CLOTH3D. We create ClothesNet Asset, which contains
4400 3D mesh models from 11 categories. A subset of
ClothesNet is processed to ensure that these models can be
loaded into the differentiable cloth simulation, transform-
ing static 3D clothes mesh into deformable clothes. It pro-
vides potential supervision signals to develop data-driven
approaches to learn and understand the dynamics between
clothes and clothes coupled with articulated rigid bodies.

2.2. Differentiable Cloth Simulations

Physically-based cloth simulation is an active research
field with diverse applications spanning computer vision,
garment design, graphics, and robotics. In recent years,
a number of differentiable cloth simulations [29, 40, 22]
has emerged. Although simulating clothing involves com-
plex high-dimensional state and action space, the gradi-
ents of the clothes’ next state with respect to the current
clothes state and action indicate how to improve the ac-
tion and state such that the clothes’ next state moving to-
wards desired/target state. Du et al. [14] design a differen-
tiable soft-body simulator Differentiable Projective Dynam-
ics (DiffPD) leveraging on Projective Dynamics [6]. Later,
Li et al. extends the DiffPD with dry frictional contact to
develop a cloth simulation called DiffCloth [31]. However,
DiffPD and DiffCloth do not support the two-way coupling
between cloth and rigid bodies. Qiao et al. [41] build a
differentiable simulation on top of ARCSim [37] support-
ing arbitrary meshes and the coupling of deformable object
and rigid bodies but not with articulated bodies. Recently,
Yu et al. [49] develop a differentiable simulation called Diff-
ClothAI with intersection-free frictional contact and the dif-
ferentiable two-way coupling between cloth and articulated
bodies. We design the simulated clothes environment bases
on DiffClothAI [49] with intersection-free contact modeling
and the coupling with articulated rigid bodies, such as the
robotic arm and gripper.
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2.3. Clothes Simulation Task Suite

The field of deformable object simulation environments
has witnessed significant progress. SoftGym [30] presents
tasks involving ropes and a rectangular cloth object. Re-
form [27], while focusing on linear objects and plastic ma-
terials [23], lacks support for thin-shell objects like cloth
and garments. DEDO [1] provides a suite encompassing di-
verse task classes, such as hanging various deformable ob-
jects onto rigid hooks and hangers, buttoning with cloth,
throwing a rope onto target poles, and putting items onto
a mannequin. AssistiveGym [15] offers a specific assistive
dressing task featuring a hospital gown. We develop the
clothes simulation environment based on DiffClothAI [?]
and build environments for clothes folding, hanging, rear-
ranging, and dressing.

2.4. Robotic Perception for Clothes

Classification and attribute recognition To date, deep
learning methods have been widely applied for clothes clas-
sification and attribute recognition tasks, achieving great
success with many applications in fashion field [21, 8, 51].
We annotate clothes with various attributes and class labels.
Fig. 1 shows a brief overview.

Segmentation Deep Fashion3D [54] introduces feature
line annotation which is specially tailored for 3D garments.
These feature lines denote the most prominent features of
interest, e.g., the open boundaries, the neckline, cuff, waist,
etc. that associates with strong priors. The feature line has
been shown to useful for mesh generations [54]. Gabas et
al. [17] demonstrates that the physical edges give impor-
tant clues to determine clothes type and shape as well as to
find good grasping points for many manipulation tasks. In
ClothesNet, we provide a similar annotation for the bound-
ary line. We hypothesize that feature lines are informative
for a broad range cloth insertion tasks, such as human dress-
ing or hanging. Robots need to identify these boundary
edges before inserting the garments into human arms/legs
or inserting a hanger into the shirts or other clothes.

Self-supervised/Unsupervised Keypoint Detection Due
to the high dimensional state of clothes, 2D/3D keypoint
have been widely adopted as an effective representation for
various clothes-related tasks. For 2D keypoint, Kulkarni et
al. [26] proposed to discover concise keypoints through
learning from raw video frames in a fully unsupervised
manner. Jakab et al. [24] propose a method for learning key-
points detectors for visual objects (such as the eyes and the
nose in a face) without any manual supervision. The use of
3D keypoints for control is extensively studied in computer
vision and robotics [48, 43]. These 3D keypoints are de-
veloped and tested for rigid bodies. We provide the results

using Skeleton Merger [43].

Clothes Reconstruction and Modeling So far, various
approaches have been proposed to infer the clothes meshes
or other parameters from real observations such as im-
ages, videos, and point clouds. Zheng et al. [52] proposed
3D clothing reconstruction method to recover the geometry
shape and texture of human clothing from a single 2D im-
age. Sundaresan et al. [44] presented a clothes modeling
approach called DiffCloud to estimate clothes meshes from
point clouds with differentiable simulation and rendering.
Wang et al. [46] proposed a piecewise linear elastic material
model for cloth, then fit the material model to real cloths by
applying controlled forces and measuring the deformation
response. Our dataset contains clothes’ textures to facilitate
the line of works.

2.5. Robotic Manipulation for Clothes

There is a rich literature on robotic manipulation of de-
formable objects. Here we review related manipulation
tasks including folding, rerrangment, and dressing. For a
broad review, we refer to [55]. Seita et al. [42] proposed
to train robots to learn to rearrange and manipulate de-
formable objects such as cables, fabrics, and bags with goal-
conditioned transporter networks. Corona et al. [13] pro-
posed the search for two grasping points that allow a robot
to bring the garment to the target pose. Avigal et al. [2] pre-
sented a framework for learning efficient bimanual folding
policies for garments. Maitin-Shepard et al. [32] presented
a vision-based grasp point detection algorithm to detect the
corners of garments relying on only geometric cues that are
robust to variation in texture. Hayashiet al. [19, 20] de-
velop an approach for a bimanual robot to wrap the fabric
around a cylinder. Clegg et al. [11] described the dress-
ing process as a sequence of primitive actions and devel-
oped a set of feedback controllers to chain the primitive ac-
tions. Clegg et al. [10] presented to use the haptic feed-
back control and deep reinforcement learning (DRL) for
robot-assisted dressing by simultaneously training human
and robot control policies as separate neural networks using
physics simulations. Our simulated robotic environments
facilitate learning cloth-related manipulation skills.

3. ClothesNet

We propose a large-scale 3D clothes model dataset that
contains around 4400 object models from 11 categories.
These categories are tops, dresses, gloves, masks, scarf/ties,
skirts, socks, hats, one-piece garments, trousers, and un-
derpants. An overview figure is shown in Fig. 2, indicat-
ing our dataset’s diversity and high quality. All models in
ClothesNet are meshes with textures, making them suitable
for vision-related tasks.
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Figure 2. The overview of our ClothesNet consisting of 4400 clothes mesh models covering 11 categories.

All models are gathered from CGTrader and other 3D
repositories with licenses to be redistributed for education
and research purposes. We apply a series of mesh opera-
tions to clean these 3D models and remove duplicate faces
and vertices. We transform quad meshes into triangular
meshes. For meshes with too large vertices, we down-
sample vertices numbers using the quadric edge collapse
decimation method [18]. We also perform the weld modi-

fier to mitigate the disconnected components issue, which
searches for vertices within a threshold and merges them.

ClothesNetM Differentiable cloth simulators exhibit no-
table advantages for implementing robotics manipulation
tasks for Clothes. We publish ClothesNetM, a subset of the
full ClothesNet dataset containing 3051 models. Each mesh
file in ClothesNetM satisfies the following three criteria.
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Table 1. ClothesNetM statistics. We report the class category labels, instances numbers, and the number of vertices. For the sake of
convenience in appearance, all data has been directly rounded to the nearest integer.

Category Instances Number of points Number of faces
Max Min Average Median Std Max Min Average Median Std

Trousers 350 22071 865 7416 7124 3243 43907 1662 14706 14117 6464
Dress 408 118344 1145 10380 8199 8984 235530 2121 20520 16167 17890
Mask 49 7046 433 2585 2034 1910 13456 790 4836 3926 3737

UnderPants 220 14770 546 2811 2361 2070 29046 962 5450 4609 4098
Hat 109 11319 139 2787 1859 2531 22510 216 5477 3649 5030

Skirt 369 109650 1078 8960 6008 9602 218205 2156 17719 11857 19114
One-piece 146 25787 2340 8297 7725 4220 51304 4514 16403 15226 8435

Glove 96 28053 377 4966 2643 5660 55650 719 9837 5235 11257
Tops 1151 76701 171 6314 5116 6538 152704 304 12419 10026 13026
Socks 86 34620 877 6333 4917 5100 69062 1720 12582 9771 10176

Scarf Tie 67 21650 115 5261 4958 4600 42632 154 10231 9912 9071
Avg 277 42728 735 6006 4813 4945 84910 1393 11827 9500 9834

Figure 3. The illustration of our annotation types.

1. There are no disconnected components: The whole file
is a single connected mesh so that the clothing will not
split apart when simulating large deformation.

2. Each garment is a triangle mesh.

3. No non-manifold edges: Each edge is shared by at
most two faces. Non-manifold edges is a common is-
sue in majorities of cloth simulation. Specifically, the
differentiable solver cannot construct single dihedral
angle constraint for the corresponding vertices [3].

All models in ClothesNetM can be directly loaded into
DiffClothAI. The quality of these models ensures realistic
clothes dynamics with large deformation. Table 1 summa-
rizes the statistics of ClothesNetM.

We annotate the following types of features: clothes cat-
egory, clothes features, clothes boundary, and clothes key-
point. Fig 3 visualizes our annotation types.

Categories We annotate each object’s category informa-
tion. Each mesh file is labeled as one of the categories (tops,
dress, gloves, mask, scarf/tie, skirt, socks, hat, one-piece
garments, trousers and underpants).

Feature Tags Some categories have diverse design
styles. We put feature-rich some categories with attribute
tags as follows.

• Tops: Whether the top has long sleeves, short sleeves,
or no sleeves. Whether it is hooded, gallus or collared.

• Trousers: Whether trousers length is long or short.

• Dress: Whether the dress length is long or short.
Whether the upper part of the dress exhibits the char-
acteristics described in the tops category.

• Skirt: Whether skirt length is long or short.

• Socks: Whether socks length is long or medium or
short.

Boundary line We annotate the boundary line of a
clothes mesh. These boundary lines are the open bound-
ary line such as the neckline, cuff and waist as shown in
Fig. 3. They are prominent features for clothes manipula-
tion tasks such as hanging and dressing. They are also im-
portant clues to identify clothes type and shape as well as to
find good grasping points for many manipulation tasks in-
cluding folding and rearranging [17, 54]. We annotate each
mesh’s vertices if the vertices belong to the boundary edge
by using filter in [36].

Keypoint Because of the high dimensional state of
clothes, the keypoint has been widely adopted as an effec-
tive representation for various clothes-related tasks. We also
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provide the keypoint annotations for our meshes. We first
sample points on the surface of meshes and then run a self-
supervised 3D keypoint detection algorithm called Skeleton
Merger [43] on the point clouds.

Physical Material Garments with distinct physical ma-
terials yield varied simulation results. For example, jeans
are considered larger stiffness than sweatpants. In differ-
entiable simulators like DiffClothAI, sweatpants exhibited
greater deformation compared to jeans by setting different
physical material parameters (stretch and bending stiffness
or other relevant factors). Fig. 4 shows the result for visu-
alization reflects these differences with two grasping points
on the waistband under gravity. Additionally, our differen-
tiable simulator enables the users to update physical param-
eters automatically, leveraging the differentiation function-
ing.

Figure 4. A visualization of different trousers with two grasping
points on the waistband under gravity.

4. Tasks and Benchmarks
We benchmark three clothes understanding tasks:

Clothes Classification, Boundary line Segmentation, Key-
point Detection. ClothesNet also support a wide variety
of robotic interaction tasks, including rearranging, folding,
hanging, and long-horizon tasks that require planning such
as dressing.

4.1. Classification and Segmentation

2D classification One basic clothes understanding task
is identifying the clothes category before performing any
advanced robotic vision and manipulation actions. We per-
form a clothes classification based on the 2D image ren-
dered from 3D meshes, and the detailed process is described
as follows.

We render 2455 3D garment meshes into 9820 2D
images at four different camera poses through the
Blender [12]. Eighty percent of the 2D pictures are used
as a training set, and the remaining twenty percent of im-
ages are used as a test set. Then we selected the commonly
used ResNet50 model to train and test the classification task
of rendered pictures. The classification results are listed in
Table 2 and the ResNet50 model achieves the classification
accuracy of 93.8%.

3D classification Leveraging depth sensors, 3D point
cloud data is another common modality to represent clothes.
We divide the ClothesNetM into a training set with 1984
meshes and a test set with 496 meshes. We sample 2048
points on the surface for each mesh using pymeshlab [36].

In this experiment, we select Pointnet [38] and Point-
net++ [39] as the models for the classification task. The ex-
perimental result of the classification accuracy is shown in
Table 2. The PointNet and PointNet++ models achieve the
classification accuracy of 80.4% and 87.5%, respectively.

3D segmentation For clothes, borders are often the most
interesting part of the clothes for various robotic tasks such
as hanging or dressing, so we performed a part segmenta-
tion experiment on the proposed dataset to identify the bor-
ders of clothes. Same as in 3D classification task, we split
ClothesNetM into eighty percent training sets and twenty
percent test sets.

In the 3D segmentation task, we sample 2048 points on
the surface of each clothes mesh. If a point is close to anno-
tated boundary line, then the point’s label is one indicating
it belongs to the boundary line. Otherwise, the point’s la-
bel is zero. After gathering the sampled point clouds and
ground truth segmentation labels, we feed the processed
data into the Pointnet [38] and pointnet++ [39] model for
training. We calculate mIoU for each category and compute
the average over all categories as the evaluation metric. The
experimental results are shown in Table 2. PointNet ex-
periment achieves the mIoU of 0.724 and PointNet++ ex-
periment achieves the mIoU of 0.797. We also visualize
the predicated quality of pointnet++ experiment as shown
in Fig. 5. Both Table and Figure reflect that our annotated
boundary line is reasonable and consistent, and deep net-
work models can learn to identify the boundary lines.

4.2. Keypoint Detection

3D keypoint detection is important representation for
clothes. We perform keypoint detection on clothesNet and
predicted ten keypoints for each cloth, demonstrating that
our dataset is suitable for keypoint detection tasks and thus
helps for subsequent research.

We adopt Skeleton Merger [43], a keypoint detector, to
train on our clothesNet dataset and make predictions for
keypoints. As an unsupervised method, Skeleton Merger
shows comparable performance to supervised methods on
the KeypointNet dataset, using Pointnet++ [39] as a point
cloud processing module that can take into account both
global information and local details of point clouds. Fig.6
visualizes the keypoint detection results. It indicates that
Skeleton Merger [43] learns reasonable keypoints.

4.3. Manipulation Tasks

The ClothesNet dataset is a comprehensive and large-
scale dataset that provides extensive support for various
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Table 2. Summary of benmark experiment result
task Dress Glove Hat Mask One-piece Scarf Tie Skirt Socks Tops Trousers UnderPants Class avg Instance avg

2D classfi(resnet50): Acc 0.935 1.000 0.947 0.972 0.883 0.969 0.896 1.000 0.966 0.807 0.939 0.938 0.936
3D classfi(pointnet):Acc 0.688 1.000 0.938 0.900 0.528 0.875 0.602 0.773 0.890 0.783 0.869 0.804 0.796

3D classfi(pointnet++):Acc 0.683 1.000 0.938 1.000 0.681 0.938 0.878 0.955 0.962 0.683 0.911 0.875 0.870
3D Segment(pointnet):mIoU 0.759 0.666 0.696 0.578 0.748 0.540 0.814 0.752 0.750 0.851 0.813 0.724 0.757

3D Segment(pointnet++):mIoU 0.792 0.762 0.822 0.723 0.794 0.731 0.830 0.814 0.813 0.834 0.851 0.797 0.809

Figure 5. We visualize the boundary segmentation results of pointnet++ experiment. For each instance pair, the leftmost subfigure shows
the clothes. The middle figure is the predicted boundary segmentation result highlighted as red points, and the rightmost subfigure indicates
the ground-truth boundary segmentation annotations highlighted as red points.

Figure 6. We visualize the keypoint detection experiment. For each instance pair, the leftmost subfigure shows the clothes. The right
subfigure indicates the learned keypoints highlighted as red points.

robotic manipulation tasks, including but not limited to
grasping, rearranging, folding, hanging, and long-horizon
tasks, such as dressing, that require complex planning. The
dataset encompasses a wide range of object categories with
instance variances, enabling robust and accurate training of
robotic systems. The diverse nature of the dataset allows
for effective training of robotic systems, facilitating their
deployment in real-world scenarios.

Folding The goal of the garment folding task is to ma-
nipulate specific vertices of the garment mesh to achieve a
desired folded configuration. In the reinforcement learning

experiment, we use the off-policy algorithm TD3 [16]. To
simplify the training process, we use the position and ve-
locity of 20 key vertices as observations, which effectively
capture the movement and dynamics of the garment and re-
duce computational complexity. We selected eight control
vertices and manipulated them by specifying their displace-
ment, which served as the action. To encourage the agent to
move the garment vertices towards the desired folded con-
figuration, we designed a reward function that is formulated
as the negative Euclidean distance between the target and
the current position of 20 pre-selected vertices on the gar-
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(a) Rearranging (b) Hanging

Figure 7. Visualization of the hanging and rearranging tasks. The
initial shape of the clothes are highlighted using red color.

ment mesh. The task is considered complete when all 20
pre-selected vertices are within 3 centimeters of their re-
spective targets. The learning curve of the TD3 algorithm is
shown in Figure 8.

Figure 8. Learning curves. The horizontal axis represents the train-
ing steps and the vertical axis indicates the success rates of each
task.

Rearrangement For the object rearrangement task, we
load the washing machine on the ground, and our goal is
to put the garment into the washing machine. The setting
is visualized in Fig. 7. The task state and action space are
the same as in Folding. It shows that the rearrangement is
difficult than the folding task. The learning curves of the
TD3 algorithm is shown on our project website.

Hanging We load a hanger into the environment, and
our goal is to hang the garment on the hanger, as shown in
Fig. 7 by controlling some vertexes of the garment mesh.
We choose the position and velocity of each vertex of the
garment mesh as the state in the RL algorithm. We select
seven vertexes of the garment mesh as the control points
and control them by specifying their displacement, which is
also the action in our RL algorithm. We report the learn-
ing curve of TD3 algorithm in Fig. 8. The hanging task is
relatively sensitive to small perturbations, and we observe a
performance decrease if we continue to train the agent.

Dressing We load a human model and a ground into the
environment, and our goal is to dress the human with the
given garment mesh. We put the description and the video

in the supplementary material.
Differentiable simulation and coupling with articu-

lated rigid bodies In addition to the above classic rein-
forcement learning setting, our simulated clothes environ-
ments provide the differentiation operations to calculate the
gradients information, which enhances the learning pro-
cess. Our simulation provides the differentiable coupling
between clothes and articulated rigid bodies. We report
the different setting of these four tasks, including different
states and action descriptions, in our supplementary mate-
rial on the project website.

4.4. Real-world Experiments

Figure 9. A visualization of our real-world experiment. We col-
lect the point cloud from the RGB-D camera integrated within the
MOVO as its head and control the two arms of MOVO to fold the
t-shirt.

Folding We perform real-world experiments for cloth
manipulation. The experimental setup is shown in Fig. 9.
The t-shirt is put on the table, and the dual-arm Kinova
MOVO robot is used to fold the t-shirt. We collect the point
cloud from the RGB-D camera integrated within the MOVO
as its head. We segment the point cloud using color seg-
mentation to simplify the real-world experiment. More ad-
vanced learning-based segmentation is easy to be integrated
into the whole framework. We gather the keypoint results
by feeding the segmented point cloud into our keypoint de-
tection model. After the keypoints are detected, we control
the two grippers to grasp the clothes given the 3D position
of the keypoints. We assume the T-shirt is put on the table.
So the grasping approach is calculated so that the gripper
is grasping along the table. After the gripper is closed, the
grippers are controlled to move towards the other side of the

20435



t-shirt and then released the gripper. Detailed descriptions
and videos are put in the supplementary materials.

Figure 10. A visualization of our real-world experiment. For each
instance pair, the leftmost subfigure shows the raw points cloud on
real garments. The right subfigure indicates the predicted bound-
ary segmentation result highlighted as red points

Classification and Segmentation We gather 50 cloth
images in real-world from the Internet and 50 raw point
clouds on real garments in Deep Fashin3D [54], then feed
these images/point clouds into our trained models. The ac-
curacy of 2D classification and 3D classification are 82%
and 98%, respectively. We also visualize the boundary edge
segmentation results shown in Fig. 10, which looks reason-
able.

5. Conclusion
We introduce ClothesNet, a large-scale dataset of 3D

clothing objects annotated with rich information. The
dataset contains about 4400 models across 11 categories
and has been annotated with clothes features, boundary
lines, and keypoints. This dataset can be used for vari-
ous computer vision and robot interaction tasks. We es-
tablished benchmark tasks for clothes perception, such as
classification, boundary line segmentation, and keypoint de-
tection. We developed simulated clothes environments for
robot interaction tasks, such as rearranging, folding, hang-
ing, and dressing. We also conducted real-world experi-
ments to show the effectiveness of ClothesNet.
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