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Abstract

With the rapid advances in high-throughput sequencing
technologies, the focus of survival analysis has shifted from
examining clinical indicators to incorporating genomic pro-
files with pathological images. However, existing methods
either directly adopt a straightforward fusion of patholog-
ical features and genomic profiles for survival prediction,
or take genomic profiles as guidance to integrate the fea-
tures of pathological images. The former would overlook
intrinsic cross-modal correlations. The latter would discard
pathological information irrelevant to gene expression. To
address these issues, we present a Cross-Modal Transla-
tion and Alignment (CMTA) framework to explore the in-
trinsic cross-modal correlations and transfer potential com-
plementary information. Specifically, we construct two par-
allel encoder-decoder structures for multi-modal data to in-
tegrate intra-modal information and generate cross-modal
representation. Taking the generated cross-modal represen-
tation to enhance and recalibrate intra-modal representa-
tion can significantly improve its discrimination for com-
prehensive survival analysis. To explore the intrinsic cross-
modal correlations, we further design a cross-modal at-
tention module as the information bridge between different
modalities to perform cross-modal interactions and transfer
complementary information. Our extensive experiments on
five public TCGA datasets demonstrate that our proposed
framework outperforms the state-of-the-art methods. The
source code has been released †.

1. Introduction

Survival analysis is a crucial topic in clinical progno-
sis research, which aims to predict the time elapsed from a
known origin to an event of interest, such as death, relapse
of disease, and development of an adverse reaction. Ac-

*Corresponding author
†https://github.com/FT-ZHOU-ZZZ/CMTA

curate survival prediction is essential for doctors to assess
the clinical outcomes for disease progression and treatment
efficiency. Traditionally, survival analysis relies on short-
term clinical indicators [15, 44] and long-term follow-up
reports [1, 4], which are time-consuming and impractical in
clinical applications. In recent years, medical image anal-
ysis has made significant progress, driven by the success
of deep learning techniques. Consequently, an increasing
number of researchers are working to model the connection
between imaging features and survival events.

Radiology involves the use of medical imaging technolo-
gies such as X-rays, CT (Computerized Tomography) scans,
MRI (Magnetic Resonance Imaging) scans, and ultrasound
to visualize internal structures and detect abnormalities. Ra-
diological images can provide valuable macroscopic infor-
mation such as lesion location, morphological texture, and
tumor metastasis, which can help predict the prognosis for
the patient [14, 32, 28]. However, due to its lower sensi-
tivity, radiology is not widely considered as the gold stan-
dard in cancer diagnosis. To improve diagnosis accuracy,
the pathological examination will be conducted to sample
lesion tissues and acquire pathological images, also known
as whole slide images (WSIs). Pathological images can
provide information about microscopic changes in tumor
cells and their microenvironment. Generally, multi-instance
learning (MIL) is the most commonly used paradigm in
pathology-based survival analysis [46, 40, 42, 30, 7], which
can identify and highlight important regions within the
pathological image that contribute to the survival event,
revealing insights into the underlying pathological pheno-
types of disease. Recently, with the rapid advances in high-
throughput sequencing technologies, more and more ac-
cessible large-scale genomics datasets provide an unprece-
dented opportunity to deeply understand the survival events
from the molecular perspective [21, 12, 13].

Although survival analysis using single-modality has
achieved promising results, combining multi-modal data
from different perspectives can provide complementary in-
formation for each other. Intuitively, it can increase the sen-
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sitivity of survival analysis by detecting subtle changes that
may not be visible within the single-modality. The most
straightforward method is to integrate all features learned
from multi-modal data together [5, 8, 3]. Obviously, these
methods neglect the potential correlations and interactions
between multi-modalities, which is crucial for informa-
tion sharing and feature fusion in medical image analysis.
Thereby, the attention mechanism has been introduced to
capture the shared context in multi-modalities. For exam-
ple, some researchers utilized clinical reports [22, 33] or
genomic profiles [39, 9] as guidance for models to focus
on the relevant parts of pathological images. Under the su-
pervision of advanced knowledge, models can identify use-
ful phenotypes and discover possible biomarkers associated
with specific gene expression or clinical outcomes.

The above-mentioned cross-modal interaction methods
are plausible when the reference modality is superior to
other retention modalities. However, in some cases, the
performance of pathology-based survival analysis is bet-
ter than genomics-based or report-based methods. In such
cases, if we still leverage the worse modality as the ref-
erence to supervise the feature learning of better retention
modalities, the more discriminative information in retention
modalities will be contaminated by mediocre information
in the reference modality. Moreover, the original purpose
of multi-modal medical image analysis is to integrate the
complementary information contained in multi-modal data
and make more accurate predictions. These attention-based
cross-modal interaction methods will discard pathological
information irrelevant to gene expression or clinical reports.

In light of these observations, we propose a novel Cross-
Modal Translation and Alignment (CMTA) framework to
explore the intrinsic cross-modal correlations and transfer
potential complementary information. Concretely, we con-
struct two parallel encoder-decoder structures for multi-
modal data to extract intra-modal representation within
single-modality and generates cross-modal representation
from cross-modal information. To explore the potential
cross-modal correlations, we leverage a cross-modal atten-
tion module as the information bridge between different
modalities to perform cross-modal interaction and transfer
complementary information. The cross-modal representa-
tion is utilized to enhance and recalibrate intra-modal rep-
resentation. Finally, all intra-modal representations are in-
tegrated to yield the final survival prediction. The main con-
tributions of this paper can be summarized as follows:

• We propose a novel Cross-Modal Translation and
Alignment (CMTA) framework for survival analy-
sis using pathological images and genomic profiles,
where two parallel encoder-decoder structures are con-
structed for multi-modal data to integrate intra-modal
information and generate cross-modal representation.

• We introduce the attention mechanism to design a
cross-modal attention module, which is embedded into
the encoder-decoder structure to explore the intrinsic
cross-modal correlations, perform the potential inter-
actions and transfer cross-modal complementary infor-
mation between different modalities.

• We conduct extensive experiments on five public
TCGA datasets to evaluate the effectiveness of our
proposed model. The experimental results show that
our model consistently achieves superior performance
compared to the state-of-the-art methods.

2. Related Work
2.1. Survival Analysis using Single-modality

Survival prediction can provide valuable information for
doctors to assess the clinical outcomes for disease progres-
sion and treatment efficiency. Traditional survival analy-
sis relies on single-modal clinical data, such as short-term
clinical indicators [15, 18, 20, 44], long-term follow-up re-
ports [1, 4, 35], various radiological images [14, 32, 28, 36]
and gigapixel pathological images [46, 40, 42, 7, 30]. Typi-
cally, radiology-based methods would utilize feature learn-
ing techniques to extract quantitative features from radio-
logical images and correlate them with survival outcomes.
The pathology-based methods would leverage the MIL
paradigm to can identify and highlight important instances
(i.e., patches or regions) within an image that contribute to
the survival event. Pathology can significantly improve the
performance of survival prediction in comparison with radi-
ology. However, the performance still cannot satisfy the re-
quirements of clinical applications. With the rapid advances
in high-throughput sequencing technologies, genomic pro-
files have shown high relevance as a measure for disease
modeling and prognosis [11, 6, 25, 43, 29]. That opens a
novel pathway for more accurate survival prediction.

2.2. Survival Analysis using Multi-modality

Multi-modal data can provide various insights into pa-
tient’s condition at the macroscopic, microscopic, and
molecular levels. Each modality has its strengths and weak-
nesses. By integrating information from different modali-
ties, we can obtain more comprehensive understanding for
the patient’s condition, leading to more accurate diagnosis,
treatment planning, and better prognosis prediction. For ex-
ample, Cheerla et al. [5] developed an unsupervised method
to encode multi-modal patient data into a common feature
representation, and then used these feature representations
to predict single-cancer and pan-cancer prognosis. Chen et
al. [8] proposed a Pathomic Fusion framework to integrate
histology images and genomic features for building objec-
tive image-omic assays for cancer diagnosis and progno-
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Figure 1. Illustration of Cross-Modal Translation and Alignment (CMTA) framework. There are two parallel encoder-decoder structures,
in which encoders are used to extract intra-modal representations (p and g) and decoders are used to generate cross-modal representations
(p̂ and ĝ). There is a cross-modal attention module between encoder and decoder to explore intrinsic cross-modal correlations and transfer
potential cross-modal information. Finally, intra-modal and cross-modal representations are fused to make survival predictions.

sis. Braman et al. [3] presented a Deep Orthogonal Fusion
model to encourage each modality to provide independent
prognostic information. Chen et al. [9] proposed a Multi-
modal Co-Attention Transformer framework that identifies
informative instances from pathological images using ge-
nomic features as queries. Although these methods have
achieved impressive results in survival analysis using multi-
modality, the straightforward fusion of multi-modal features
would overlook potential cross-modal correlations, and us-
ing genomic profiles as guidance would discard pathologi-
cal information irrelevant to gene expression. These meth-
ods violate the original purpose of integrating the comple-
mentary information contained in multi-modal data.

3. Method

In this section, we present the overall description of our
proposed Cross-Modal Translation and Alignment (CMTA)
framework for survival analysis, as illustrated in Figure 1.
First, we introduce the problem formulation for survival
analysis incorporating pathological images with genomic
profiles. Then, we detail the data processing and feature
extraction for each modality. After that, we elaborate on the
key components of our proposed framework one by one.

3.1. Problem Formulation

Let X = {X1, X2, · · · , XN} represent the clinical data
of N patients. Each patient data can be represented by a

4-tuples Xi = (Pi, Gi, ci, ti), where Pi is the set of whole
slide images, Gi is the set of genomic profiles, ci ∈ {0, 1}
is the right uncensorship status and ti ∈ R+ is overall sur-
vival time (in months). In survival analysis, let T be a con-
tinuous random variable for overall survival time. Our goal
is to develop a survival prediction model F that integrates
pathological images P and genomic profiles G to estimate
the hazard function fhazard(T = t|T ≥ t,X),

fhazard(T = t) = lim
∂t→0

P (t ≤ T ≤ t+ ∂t|T ≥ t)

∂t
. (1)

The hazard function represents the instantaneous rate of
occurrence of the event of interest at time t. In practical
applications, we tend to measure the probability of patient
surviving longer than a discrete time point t, rather than
estimating survival time directly. The survival function can
be obtained via the cumulative hazard function,

fsur(T ≤ t,X) =

t∏
u=1

(1− fhazard(T = u)). (2)

The hazard function can be estimated using various
statistical models. The most common method for esti-
mating hazard function is the Cox Proportional Hazards
model [38, 37, 45], in which hazard function fhazard can
be parameterized as an exponential linear function,

h(t|X) = h0(t)e
θX , (3)
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where h0(t) represents the baseline hazard function, θ rep-
resents the vector of coefficients for the covariates. Gener-
ally, θ is the learnable parameters of the last hidden layer in
the neural network.

3.2. Data processing and Feature Extraction

Pathological Images. Following the previous works [9,
26, 31], we adopt CLAM [27] to crop each WSI into a series
of non-overlapping 512×512 patches at 40× magnification
level. Then, ResNet-50 (pretrained on ImageNet) is used to
extract 1024-dim feature. Then, each patch feature is fed
into a fully connected layer to obtain d-dimension embed-
ding. For ease of notation, we drop i in referring to the i-th
patient. That means, the pathological images of each patient
can be represented as P = {p1, p2, · · · , pM} ∈ RM×d,
where M is the number of patches.

Genomic Profiles. Genomic profiles are the individual’s
most sensitive and identifiable information, including RNA
sequencing (RNA-seq), Copy Number Variation (CNV),
Simple Nucleotide Variation (SNV), DNA methylation, etc.
Due to the higher signal-to-noise ratio, some of them have
to be dropped in bioinformatics analysis. The genomic pro-
files used in this paper cover RNA-seq, CNV, and SNV. Fol-
lowing previous works [24, 9], the genomic profiles can be
grouped into the following genomic sequences: 1)Tumor
Suppression, 2) Oncogenesis, 3) Protein Kinases, 4) Cellu-
lar Differentiation, 5) Transcription, and 6) Cytokines and
Growth. Similar to pathomics, these grouped genomic se-
quences are fed into a fully connected layer to obtain d-
dimension embeddings. That means, the genomics of each
patient can be represented as G = {g1, g2, · · · , gK} ∈
RK×d, where K is the number of groups.

3.3. Pathology Encoder and Genomics Encoder

Recently, the self-attention mechanism has been proven
to be one of the most powerful tools for integrating informa-
tion and extracting features from the set-based data struc-
ture. Therefore, we introduce the self-attention mechanism
to construct an encoder for each modality to integrate intra-
modal information and obtain intra-modal representation.
Note that the size of sets in this paper is extremely large, es-
pecially patch sets P . Traditional global self-attention will
bring heavy computation burden. To tackle this issue, we
utilize the Nystrom attention [41] to approximate the global
self-attention.

Pathology Encoder. For the given patch sets P =
{p1, p2, · · · , pM}, we define a learnable class token p(0)

to gather information from all patch features. The initial
input of the pathology encoder is represented as P (0) =

{p(0), p(0)1 , p
(0)
2 , · · · , p(0)M } ∈ R(M+1)×d. We apply two

self-attention layers to perform information integration.
Additionally, there is another PPEG (Pyramid Position En-
coding Generator.) module [31] to explore the correlations

among different patches. The computation of the pathology
encoder can be formulated as follows,

P (1) = MSA(LN(P (0))) + P (0), (4)

P (2) = PPEG(P (1)), (5)

P (3) = MSA(LN(P (2))) + P (2), (6)

where MSA denotes Multi-head Self-attention and LN de-
notes Layer Norm. The output of this encoder is P (3) =

{p(3), p(3)1 , p
(3)
2 , · · · , p(3)M } ∈ R(M+1)×d. Let class token

p(3) be the intra-modal representation of pathology, mark-
ing it as p.

Genomics Encoder. For the given genomics G =
{g1, g2, · · · , gK}, we also define a learnable class token
g(0) to gather information from all the gene sequences.
The initial input of the genomics encoder is represented
as G(0) = {g(0), g(0)1 , g

(0)
2 , · · · , g(0)K } ∈ R(K+1)×d. The

structure of genomics encoder is similar to pathology en-
coder with exception to PPEG module. The computation of
the genomics encoder can be formulated as follows,

G(1) = MSA(LN(G(0))) +G(0), (7)

G(2) = MSA(LN(G(1))) +G(1). (8)

Let g(2) in output G(2) = {g(2), g(2)1 , g
(2)
2 , · · · , g(2)K } ∈

R(K+1)×d be the intra-modal representation of genomics,
marking it as g.

3.4. Cross-Modal Attention Module

In this part, we denote the instance tokens of pathol-
ogy encoder as /P = {p(3)1 , p

(3)
2 , · · · , p(3)M } ∈ RM×d,

and the instance tokens of genomics encoder as /G =

{g(2)1 , g
(2)
2 , · · · , g(2)K } ∈ RK×d. The cross-modal attention

module is designed to explore the potential cross-modal cor-
relations and interactions, as illustrated in Figure 2. This
module takes /P and /G as input to calculate two attention
maps Hp and Hg ,

Hp = softmax

(
(/GU)× (/PV)T√

d

)
= softmax

(
/GUVT /P

T

√
d

)
∈ RK×M ,

(9)

Hg = softmax

(
(/PV)× (/GU)T√

d

)
= softmax

(
/PVUT /G

T

√
d

)
∈ RM×K ,

(10)

where U ∈ Rd×d and V ∈ Rd×d are the learnable parame-
ters. Essentially, the attention map Hp presents association
status from genomics tokens to pathology tokens while the
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Figure 2. The structure of cross-modal attention module. This
module aims to explore potential correlations and interactions be-
tween multi-modal data.

attention map Hg presents association status from pathol-
ogy tokens to genomics tokens. With the help of atten-
tion maps, we can extract genomics-related information P
in pathology tokens and pathology-related information G in
genomics, respectively.

P = Hp × (/PWp) = Hp /PWp ∈ RK×d, (11)

G = Hg × (/GWg) = Hg /GWg ∈ RM×d, (12)

where Wp ∈ Rd×d and Wg ∈ Rd×d are the learnable
parameters. In such manner, we can explore the potential
cross-modal relationships and transfer complementary in-
formation between multi-modal data.

3.5. Genomics Decoder and Pathology Decoder

Due to the data heterogeneity gap between pathological
images and genomic profiles, it is unreasonable to directly
superpose P and G onto intra-modal representations p and
g. Therefore, we construct two decoders, i.e., pathology de-
coder and genomics decoder, to translate related informa-
tion into specific cross-modal representations. For simplic-
ity, pathology decoder has the same structure as genomics
encoder while genomics decoder has the same structure as
pathology encoder.

Pathology Decoder. For the genomics-related infor-
mation P = {ρ1, ρ2, · · · , ρK} in pathology, we define a
learnable class token ρ(0), and then apply two self-attention
layers to perform information translation.

P(1) = MSA(LN(P(0))) + P(0) (13)

P(2) = MSA(LN(P(1))) + P(1) (14)

Let ρ(2) in output P(2) = {ρ(2), ρ(2)1 , ρ
(2)
2 , · · · , ρ(2)K } ∈

R(K+1)×d be the cross-modal representation learned from
pathology, marking it as ĝ.

Genomics Decoder. For the pathology-related informa-
tion G = {ξ1, ξ2, · · · , ξM} in genomics, we also define a
learnable class token ξ(0), and apply two self-attention lay-
ers with PPEG module to perform information translation.

G(1) = MSA(LN(G(0))) + G(0), (15)

G(2) = PPEG(G(1)), (16)

G(3) = MSA(LN(G(2))) + G(2). (17)

Let ξ(3) in output G(3) = {ξ(3), ξ(3)1 , ξ
(3)
2 , · · · , ξ(3)M } ∈

R(M+1)×d be the cross-modal representation learned from
genomics, marking it as p̂.

3.6. Feature Alignment and Fusion

The cross-modal representations can provide comple-
mentary information that may not be visible within single-
modality. Therefore, we utilize the cross-modal represen-
tations to enhance and recalibrate intra-modal representa-
tions. And then, all feature representations are integrated
to yield the final survival prediction. Note that, gigapixel
pathological images cause that the model cannot be opti-
mized with mini-batch manner. The alternative optimiza-
tion strategy is to consider discrete time intervals and model
each interval using an independent output. The feature fu-
sion and survival prediction can be formulated as,

T1, · · · , Tt = sigmoid

(
MLP

(
p+ p̂

2
⊕ g + ĝ

2

))
(18)

where ⊕ denotes the concatenation operation. In practice,
professional pathologists and biologists can estimate partial
gene expression from pathological images or imagine possi-
ble pathological phenotypes from genomic profiles. Our de-
coders are designed for simulating this process to translate
cross-modal information. To ensure the quality of informa-
tion translation, we must impose alignment constraints on
cross-modal representations. In this paper, we utilize L1

norm to measure the distance between cross-modal repre-
sentations and intra-modal representations,

Lsim =
1

d
(||p− p̂||1 + ||g − ĝ||1) . (19)

Note that, intra-modal representations p and g MUST be
detached from the computational graph when we calculate
Lsim. That means this alignment optimization objective is
unidirectional (p̂ → p and ĝ → g). Otherwise, this model
will converge to learn redundant shared information and fail
to predict survival events.

We leverage NLL (negative log-likelihood) survival
loss [9] as the loss function of the survival prediction part.
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Methods
Modality Datasets

P. G. BLCA BRCA GBMLGG LUAD UCEC

SNN [19] ✓ 0.6339 ± 0.0509 0.6327 ± 0.0739 0.8370 ± 0.0276 0.6171 ± 0.0411 0.6900 ± 0.0389
SNNTrans [19] ✓ 0.6456 ± 0.0428 0.6478 ± 0.0580 0.8284 ± 0.0158 0.6335 ± 0.0493 0.6324 ± 0.0324

MaxMIL ✓ 0.5509 ± 0.0315 0.5966 ± 0.0547 0.7136 ± 0.0574 0.5958 ± 0.0600 0.5626 ± 0.0547
MeanMIL ✓ 0.5847 ± 0.0324 0.6110 ± 0.0286 0.7896 ± 0.0367 0.5763 ± 0.0536 0.6653 ± 0.0457
AttMIL [16] ✓ 0.5673 ± 0.0498 0.5899 ± 0.0472 0.7974 ± 0.0336 0.5753 ± 0.0744 0.6507 ± 0.0330
CLAM-SB [27] ✓ 0.5487 ± 0.0286 0.6091 ± 0.0329 0.7969 ± 0.0346 0.5962 ± 0.0558 0.6780 ± 0.0342
CLAM-MB [27] ✓ 0.5620 ± 0.0313 0.6203 ± 0.0520 0.7986 ± 0.0320 0.5918 ± 0.0591 0.6821 ± 0.0646
TransMIL [31] ✓ 0.5466 ± 0.0334 0.6430 ± 0.0368 0.7916 ± 0.0272 0.5788 ± 0.0303 0.6799 ± 0.0304

MCAT [9] ✓ ✓ 0.6727 ± 0.0320 0.6590 ± 0.0418 0.8350 ± 0.0233 0.6597 ± 0.0279 0.6336 ± 0.0506
M3IF [22] ✓ ✓ 0.6361 ± 0.0197 0.6197 ± 0.0707 0.8238 ± 0.0170 0.6299 ± 0.0312 0.6672 ± 0.0293
GPDBN [39] ✓ ✓ 0.6354 ± 0.0252 0.6549 ± 0.0332 0.8510 ± 0.0243 0.6400 ± 0.0478 0.6839 ± 0.0529
Porpoise [10] ✓ ✓ 0.6461 ± 0.0338 0.6207 ± 0.0544 0.8479 ± 0.0128 0.6403 ± 0.0412 0.6918 ± 0.0488
HFBSurv [23] ✓ ✓ 0.6398 ± 0.0277 0.6473 ± 0.0346 0.8383 ± 0.0128 0.6501 ± 0.0495 0.6421 ± 0.0445

DualTrans ✓ ✓ 0.6607 ± 0.0319 0.6637 ± 0.0621 0.8393 ± 0.0174 0.6706 ± 0.0343 0.6724 ± 0.0192
CMTA (Ours) ✓ ✓ 0.6910 ± 0.0426 0.6679 ± 0.0434 0.8531 ± 0.0116 0.6864 ± 0.0359 0.6975 ± 0.0409

Table 1. The performance of different approaches on five public TCGA datasets. “P.” indicates whether to use pathological images and
“G.” indicates whether to use genomic profiles. The best and second best results are highlighted in red and blue, respectively.

Unifying these two losses, we can obtain the total loss func-
tion of our CMTA framework,

Ltotal = Lsur + αLsim, (20)

where α is a positive hyper-parameter for reconciling the
contribution of alignment loss function.

4. Experiments

In this section, we conduct extensive experiments on five
public TCGA datasets to evaluate the effectiveness of our
model. We first introduce the datasets and evaluation met-
rics used in our study. Then, experimental results are com-
pared with some state-of-the-art methods to demonstrate the
superiority of our model. Finally, we conduct ablation stud-
ies to discuss the impacts of some key components.

4.1. Datasets and Evaluation Metrics

Datasets. The Cancer Genome Atlas (TCGA) ‡ is a pub-
lic database that contains genomic and clinical data from
thousands of cancer patients, covering 33 types of common
cancer. It has been used extensively in survival analysis to
identify genetic alterations and molecular pathways asso-
ciated with cancer survival. In this paper, we use progno-
sis data of five cancer datasets to evaluate our model, in-
cluding Bladder Urothelial Carcinoma (BLCA) (n = 373),
Breast Invasive Carcinoma (BRCA) (n = 956), Glioblas-
toma & Lower Grade Glioma (GBMLGG) (n = 569), Lung
Adenocarcinoma (LUAD) (n = 453) and Uterine Corpus
Endometrial Carcinoma (UCEC) (n = 480). For each

dataset, we adopt 5-fold cross-validation splits to evaluate
our model and other comparison methods.

Evaluation Metrics. The c-index, also known as the
concordance index, is a metric used to evaluate the perfor-
mance of survival analysis models. It measures the ability
of a model to correctly order pairs of individuals in terms
of their predicted survival times. The c-index can be formu-
lated as follows,

c-index =
1

n(n− 1)

n∑
i=1

n∑
j=1

I(Ti < Tj)(1− cj) (21)

where n is the number of cases, Ti and Tj are the survival
times of i-th patient and j-th patient. I(·) is the indicator
function, which takes the value 1 if its argument is true, and
0 otherwise. cj is the right censorship status.

4.2. Comparisons with State-of-the-Art

To perform the more comprehensive comparison, we
implemented and evaluated some latest survival predic-
tion methods using the same 5-fold cross-validation splits.
These methods cover the single-modal learning paradigm
and multi-modal learning paradigm. Table 1 shows the ex-
perimental results of all methods on all five TCGA datasets.
It is worth noting that some of these methods can be re-
garded as the baseline of our model.

Baseline Models. 1) SNNTrans: This model is the vari-
ation of SNN (Self-Normalizing Network) [19], where we
apply the same self-attention structure with the genomics

‡https://portal.gdc.cancer.gov
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Modules or Constraints
Datasets

BLCA BRCA GBMLGG LUAD UCEC

w/o Cross-Modal Attention 0.6784 ± 0.0276 0.6397 ± 0.0612 0.8489 ± 0.0154 0.6371 ± 0.0245 0.6679 ± 0.0446
w/o Alignment Constraints 0.6730 ± 0.0209 0.6304 ± 0.0367 0.8473 ± 0.0200 0.6764 ± 0.0211 0.6643 ± 0.0500
w/o Tensor Detaching 0.6002 ± 0.0501 0.6416 ± 0.0486 0.8256 ± 0.0248 0.6399 ± 0.0315 0.6504 ± 0.0153
w/o PPEG module 0.6629 ± 0.0162 0.6627 ± 0.0423 0.8582 ± 0.0194 0.6815 ± 0.0337 0.6659 ± 0.0509
CMTA (All Components) 0.6910 ± 0.0426 0.6679 ± 0.0434 0.8531 ± 0.0116 0.6864 ± 0.0359 0.6975 ± 0.0409

Table 2. The experimental results after removing three key components: 1) Removing the cross-modal attention module; 2) Not imposing
the alignment constraints; and 3) Not detaching p and g when calculating Lsim.

encoder to integrate genomic information. This model is
the single-modal baseline using genomic profiles. 2) Trans-
MIL [31]: This method is one of the state-of-the-art MIL
frameworks, which has achieved superior results on some
public WSI classification benchmarks. In our study, we
modify its classifier to solve the survival prediction task.
This model is the single-modal baseline using patholog-
ical images. 3) DualTrans: This model is derived from
SNNTrans and TransMIL, which concatenates the intra-
modal representations learned by SNNTrans and TransMIL
to make survival predictions. This model is the multi-modal
baseline using pathomics and genomics.

Compared with Single-modal Models. As we can see
from Table 1, our proposed method consistently achieves
superior performance on all TCGA datasets. More con-
cretely, our model obtains c-index of 69.10% on BLCA,
66.79% on BRCA, 85.31% on GBMLGG, 68.64% on
LUAD, and 69.75% on UCEC, improving over the previous
best single-modal methods by 4.54%, 2.01%, 1.61%, 5.29%
and 0.75%, respectively. This comparison results also show
the advantages of survival prediction using multi-modality.

Compared with Multi-modal Models. The MCAT is
the previous state-of-the-art multi-modal method, which
leverages genomics as guidance to integrate pathological
information. Against MCAT, our model achieves the per-
formance increases of 1.83% on BLCA, 0.89% on BRCA,
1.81% on GBMLGG, 2.67% on LUAD and 6.39% on
UCEC. Note that MCAT would discard the discard patho-
logical information irrelevant to gene expression while our
method fully exploits all information contained in multi-
modal data. That means survival analysis using multi-
modality should focus on integrating complementary infor-
mation between different modalities, rather than exploit-
ing the abundant shared information. Besides, our model
also consistently outperforms other SOTA multi-modal
learning method by a large margin, including M3IF [22],
GPDBN [39], Porpoise [10] and HFBSurv [23].

Compared with Baseline Models. From observations,
it is obvious that DualTrans concatenating the intra-modal
representations learned by SNNTrans and TransMIL can
significantly improve the performance. It also shows the

Figure 3. Performance under different similarity metrics.

advantage of multi-modal data for accurate survival pre-
diction. In our model, we utilize the cross-modal repre-
sentations to enhance and recalibrate intra-modal represen-
tations. Then, we adopt the same feature fusion strategy
with DualTrans to yield final survival prediction. Com-
pared with DualTrans, our model achieves the performance
increases of 3.03% on BLCA, 0.42% on BRCA, 1.38% on
GBMLGG, 1.58% on LUAD and 2.51% on UCEC. The im-
provements demonstrate that it is effective to translate re-
lated information into specific cross-modal representations.

4.3. Ablation Studies

In this part, we conduct some extra experiments to fur-
ther discuss the impacts of different similarity metrics, com-
ponents, and constraints.

Impacts of Similarity Metrics. By default, we lever-
age L1 norm as the similarity metric to measure the dis-
tance between intra-modal representation and cross-modal
representation. In this part, we conduct some experiments
to evaluate the performances under other common simi-
larity metrics, i.e., MSE (mean squared error) loss, KL
(Kullback-Leibler) divergence, and Cosine similarity. The
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(a) BLCA (b) BRCA (c) GBMLGG (d) LUAD (e) UCEC

Figure 4. According to predicted risk scores, all patients are stratified into low risk group (blue) and high risk group (red). Then, we utilize
Kaplan-Meier analysis and Logrank test (p-value) to measure the statistical significance between low risk group and high risk group.

experimental results are shown in Figure 3. As we can
see from this figure, L1 loss consistently outperforms other
similarity metrics with the exception of GBMLGG dataset.
Specifically, there are no obvious performance differences
on GBMLGG dataset between different similarity metrics.
That is because glioma is a very special cancer, which has
been proven that five-year and ten-year survival rates are
highly correlated with some specific genes [34, 17, 2]. In-
corporating pathological images with genomic profiles may
not change these specific gene expressions.

Impacts of Modules and Constraints. We remove
some modules and constraints to investigate their impacts.
The experimental results are summarized in Table 2. 1)
The cross-modal attention module aims to explore poten-
tial correlations and interactions between multi-modal data.
After removing this module, the performance drops 1.26%
on BLCA, 2.82% on BRCA, 0.42% on GBMLGG, 4.93%
on LUAD and 2.96% on UCEC, which implies that high-
lighting related information is necessary when performing
information translation. 2) To ensure the quality of infor-
mation translation, we impose alignment constraints Lsim

on cross-modal representations. If we remove this penalty
term in model optimization, the performance will lose
1.80% on BLCA, 3.75% on BRCA, 0.58% on GBMLGG,
1.00% on LUAD, and 3.32% on UCEC, respectively. That
is, the unconstrained information translation process will
severely impair the discrimination of intra-modal represen-
tations and deteriorate the performance of survival predic-
tion. 3) To ensure the unidirectional alignment optimiza-
tion objective, we detach intra-modal representations p and
g from the computational graph when calculating loss func-
tion Lsim. If we remove this detaching step, the perfor-
mance will also significantly lose 9.08% on BLCA, 2.63%
on BRCA, 2.75% on GBMLGG, 4.65% on LUAD and
4.71% on UCEC, respectively. Without the detaching step,
our model will converge to learn redundant shared informa-
tion and fail to predict survival events. The degree of per-
formance deterioration relies on the proportion of shared in-
formation in multi-modal data, and less shared information
would result in more performance drop. 4) PPEG is one of
key modules in TransMIL, used to explore the position cor-

relations among different patches. Removing PPEG module
will result in performance drops of 2.81% on BLCA, 0.52%
on BRCA, 0.49% on LUAD and 3.16% on UCEC.

4.4. Survival Analysis

To further validate the effectiveness of CMTA for sur-
vival analysis, we stratify all patients into low risk group
and high risk group according mid-value of the predicted
risk scores from CMTA. After that, we utilize Kaplan-Meier
analysis to visualize the survival events of all patients, anal-
ysis results are shown in Figure 4. Meanwhile, we also uti-
lize Logrank test (p-value) to measure the statistical signif-
icance between low risk group (blue) and high risk group
(red). A p-value of 0.05 or lower is generally considered
statistically significant. As we can see from this figure, p-
value of all datasets are significantly smaller than 0.05.

5. Conclusion
In this paper, we proposed a novel Cross-Modal Transla-

tion and Alignment (CMTA) framework for survival anal-
ysis using pathological images and genomic profiles, in
which two parallel encoder-decoder structures are con-
structed for pathological features and genomic features to
integrate intra-modal information and generate cross-modal
representations, respectively. To explore the potential cross-
modal correlations and interactions, we designed a cross-
modal attention module as the information bridge between
different modalities. Using cross-modal representations
to enhance and recalibrate intra-modal representations can
significantly improve the performance of survival predic-
tion. Extensive experimental results on five public TCGA
datasets demonstrated the effectiveness of our proposed
model over state-of-the-art methods.

6. Acknowledgement
This work was supported by National Natural Science

Foundation of China (No. 62202403), the Research Grants
Council of the Hong Kong Special Administrative Region,
China (No. R6003-22) and Hong Kong Innovation and
Technology Fund (No. PRP/034/22FX).

21492



References
[1] Caroline E Ahearne, Geraldine B Boylan, and Deirdre M

Murray. Short and long term prognosis in perinatal asphyxia:
An update. World journal of clinical pediatrics, 5(1):67,
2016. 1, 2

[2] Sarah Basindwah, Hisham Alkhalidi, Ahmed Abdelwarith,
and Sherif Elwatidy. Ten-year survival in glioblastoma pa-
tient with neurofibromatosis type 1: illustrative case. Journal
of Neurosurgery: Case Lessons, 3(4), 2022. 8

[3] Nathaniel Braman, Jacob WH Gordon, Emery T Goossens,
Caleb Willis, Martin C Stumpe, and Jagadish Venkataraman.
Deep orthogonal fusion: multimodal prognostic biomarker
discovery integrating radiology, pathology, genomic, and
clinical data. In Medical Image Computing and Computer
Assisted Intervention–MICCAI 2021: 24th International
Conference, Strasbourg, France, September 27–October 1,
2021, Proceedings, Part V 24, pages 667–677. Springer,
2021. 2, 3

[4] Ruggero Capra, Cinzia Cordioli, Sarah Rasia, Fabio Gallo,
Alessio Signori, and Maria Pia Sormani. Assessing long-
term prognosis improvement as a consequence of treat-
ment pattern changes in ms. Multiple Sclerosis Journal,
23(13):1757–1761, 2017. 1, 2

[5] Anika Cheerla and Olivier Gevaert. Deep learning with mul-
timodal representation for pancancer prognosis prediction.
Bioinformatics, 35(14):i446–i454, 2019. 2

[6] Nikhil Cheerla and Olivier Gevaert. Microrna based pan-
cancer diagnosis and treatment recommendation. BMC
bioinformatics, 18(1):1–11, 2017. 2

[7] Richard J Chen, Chengkuan Chen, Yicong Li, Tiffany Y
Chen, Andrew D Trister, Rahul G Krishnan, and Faisal
Mahmood. Scaling vision transformers to gigapixel images
via hierarchical self-supervised learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16144–16155, 2022. 1, 2

[8] Richard J Chen, Ming Y Lu, Jingwen Wang, Drew FK
Williamson, Scott J Rodig, Neal I Lindeman, and Faisal
Mahmood. Pathomic fusion: an integrated framework for
fusing histopathology and genomic features for cancer diag-
nosis and prognosis. IEEE Transactions on Medical Imag-
ing, 41(4):757–770, 2020. 2

[9] Richard J Chen, Ming Y Lu, Wei-Hung Weng, Tiffany Y
Chen, Drew FK Williamson, Trevor Manz, Maha Shady,
and Faisal Mahmood. Multimodal co-attention transformer
for survival prediction in gigapixel whole slide images. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4015–4025, 2021. 2, 3, 4, 5, 6

[10] Richard J Chen, Ming Y Lu, Drew FK Williamson, Tiffany Y
Chen, Jana Lipkova, Zahra Noor, Muhammad Shaban, Maha
Shady, Mane Williams, Bumjin Joo, et al. Pan-cancer in-
tegrative histology-genomic analysis via multimodal deep
learning. Cancer Cell, 40(8):865–878, 2022. 6, 7

[11] Yann Christinat and Wilhelm Krek. Integrated genomic anal-
ysis identifies subclasses and prognosis signatures of kidney
cancer. Oncotarget, 6(12):10521, 2015. 2

[12] Eskezeia Y Dessie, Jeffrey JP Tsai, Jan-Gowth Chang, and
Ka-Lok Ng. A novel mirna-based classification model of

risks and stages for clear cell renal cell carcinoma patients.
BMC bioinformatics, 22:1–16, 2021. 1

[13] Rounak Dey, Wei Zhou, Tuomo Kiiskinen, Aki Havulinna,
Amanda Elliott, Juha Karjalainen, Mitja Kurki, Ashley Qin,
FinnGen, Seunggeun Lee, et al. Efficient and accurate
frailty model approach for genome-wide survival association
analysis in large-scale biobanks. Nature Communications,
13(1):5437, 2022. 1

[14] Marco Francone, Franco Iafrate, Giorgio Maria Masci, Si-
mona Coco, Francesco Cilia, Lucia Manganaro, Valeria
Panebianco, Chiara Andreoli, Maria Chiara Colaiacomo,
Maria Antonella Zingaropoli, et al. Chest ct score in covid-
19 patients: correlation with disease severity and short-term
prognosis. European radiology, 30:6808–6817, 2020. 1, 2

[15] Yolanda Hagar, David Albers, Rimma Pivovarov, Herbert
Chase, Vanja Dukic, and Noémie Elhadad. Survival analysis
with electronic health record data: Experiments with chronic
kidney disease. Statistical Analysis and Data Mining: The
ASA Data Science Journal, 7(5):385–403, 2014. 1, 2

[16] Maximilian Ilse, Jakub Tomczak, and Max Welling.
Attention-based deep multiple instance learning. In Inter-
national conference on machine learning, pages 2127–2136.
PMLR, 2018. 6
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