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Abstract

State-of-the-art deep neural networks are trained with
large amounts (millions or even billions) of data. The ex-
pensive computation and memory costs make it difficult to
train them on limited hardware resources, especially for
recent popular large language models (LLM) and com-
puter vision models (CV). Recent popular dataset distil-
lation methods are thus developed, aiming to reduce the
number of training samples via synthesizing small-scale
datasets via gradient matching. However, as the gradient
calculation is coupled with the specific network architec-
ture, the synthesized dataset is biased and performs poorly
when used for training unseen architectures. To address
these limitations, we present dataset quantization (DQ), a
new framework to compress large-scale datasets into small
subsets which can be used for training any neural network
architectures. Extensive experiments demonstrate that DQ
is able to generate condensed small datasets for training
unseen network architectures with state-of-the-art compres-
sion ratios for lossless model training. To the best of our
knowledge, DQ is the first method that can successfully dis-
till large-scale datasets such as ImageNet-1k with a state-
of-the-art compression ratio. Notably, with 60% data from
ImageNet and 20% data from Alpaca’s instruction tuning
data, the models can be trained with negligible or no per-
formance drop for both vision tasks (including classifica-
tion, semantic segmentation, and object detection) as well
as language tasks (including instruction tuning tasks such
as BBH and DROP).

1. Introduction
Deep neural networks have shown superior performance

in a wide range of fields such as computer vision [22, 21,
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Figure 1: Lossless dataset compression with Dataset
Quantization (DQ) framework. On both vision and lan-
guage tasks. In the plot, we use ResNet18 as backbone for
all tasks and LLaMA-7B for all language tasks with instruc-
tion fine-tuning.

15] and natural language processing [14, 3]. Their per-
formance depends heavily on the amount of training data.
For example, recent state-of-the-art models [32, 55, 12, 59]
on ImageNet-1K takes three billion data for pre-training.
This is hardly affordable for researchers with limited com-
putational resources. However, are all the data in the large
dataset beneficial or necessary to the training? Is it pos-
sible to remove some redundant samples without degrad-
ing the training performance? What is the performance of
the pretrained models with less data on downstream tasks?
In this paper, we conduct extensive experiments and con-
duct detailed explorations on those questions. To address
the first question, several Dataset Distillation (DD) algo-
rithms [62, 60, 30, 61, 53, 4, 16, 52, 35] are proposed re-
cently to reduce the training dataset size by synthesizing a
new set of data that is significantly smaller than the origi-
nal one. With the new synthesized dataset, the training cost
is reduced significantly, while yielding comparable results
with the models trained on the original datasets.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: Our proposed dataset quantization outperforms existing dataset distillation and coreset selection methods
significantly. (a) Model training accuracy from DD (DC [62] and DM [61]), coreset selection (Craig [39], GradMatch [29],
and GC [26]), and our proposed DQ across different data keep ratios. ‘Hours’ denotes the time for compressing ImageNet
dataset with 60% data keep ratio. (b) Visualization of the samples diversity of GraphCut and DQ, where ρ is the data keep
ratio (better in color). (c) Cross-architecture visualization of the feature distributions among the dataset generated by a dataset
distillation methods ‘distribution matching’ (DM) and DQ on ResNet-18 on CIFAR-10 bird class. Compared with DM, our
proposed DQ effectively captures the whole dataset distribution for all the architectures, thus generalizing better.

Although having made significant progress, two limita-
tions make those algorithms hard to be deployed in an in-
dustrial environment: i) Poor generalization capability.
They all rely on specific metrics to match the synthetic and
real samples [63, 61]. Thus the synthetic datasets are in-
evitably biased by the model architecture involved in the
metric computation, resulting in poor performance when
used for training unseen model architectures. For exam-
ple, as shown in Fig. 2c, the dataset synthesized based
on ResNet-18 [22] suffers a 59.4% accuracy drop when
used for training Swin-Tiny [36] (81.2% vs 21.6%). ii)
Low scalability to larger datasets. Different from other
deep learning tasks that optimize the parameters of a given
architecture, dataset distillation aims to optimize the syn-
thetic set, the computational cost is quadratically propor-
tional to the size of the synthetic set. When the size is large,
the computational cost becomes unaffordable. For example,
as in Fig. 2a, previous SOTA method DM [61] needs 28,
000 GPU hours to distill ImageNet-1K with 60% data
processing.

To address these limitations, we explore a different di-
rection from synthesizing samples based on our empiri-
cal observations that the samples selected by coreset meth-
ods [27, 19, 8, 1, 42] could be used to train unseen network
architectures (i.e. good cross-architecture generalization).
However, as the data keep ratio is small, the selected sam-
ples tend to lose the diversity, leading to a low performance
for model training. As in the first row in Figure 2b, coreset
methods tend to sample data points in a biased region. This
led to a significant accuracy drop when used for model train-

ing. As shown in Fig. 6 in the following section, our pro-
posed DQ is able to achieve 10% (75.7% vs 85.2%) higher
accuracy over the previous SOTA coreset method.

In this paper, we aim to develop a method that com-
bines the advantages of Dataset Distillation methods and the
Coreset methods: a unified dataset compression method that
generates compact datasets useful for training various net-
work architectures while maintaining state-of-the-art train-
ing performance under all data keep ratios. We start with
investigating the reason behind the poor performance of the
coreset selection method [45] under low data keep ratio,
and we find it lies in the one-time selection strategy, re-
sulting in a low diversity of the selected data. This will
lead to a significant performance drop as shown in Fig. 2b.
More detailed analysis on previous coreset selection meth-
ods [26, 29] can be found in Sec. 3.1 and in the Appendix.

We thus propose a new pipeline to overcome the afore-
mentioned issues of the coreset algorithm and term it
Dataset Quantization (DQ). Specifically, DQ first divides
the entire dataset into a set of non-overlapping bins recur-
sively based on the submodular gains [26] that aims to max-
imize the diversity gains as defined in Eqn. 1. Then, a
small portion of data samples is uniformly sampled from all
bins. In this manner, the selected samples are optimized to
cover as much as possible the entire dataset with the inter-
data diversity maximized. We prove mathematically that
the dataset selected by DQ indeed has larger diversity than
the coreset selection based methods. Motivated by recent
patch-based image representation [15, 20, 66], we measure
the importance scores of patches and save the most impor-
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tant ones to reduce the storage cost. At the training stage,
we reconstruct training images via important patches and a
pre-trained MAE [20] model.

Different from dataset distillation methods, as shown
in the second row in Fig. 2c, the quantized dataset main-
tains a high coverage over the entire data in the latent fea-
ture space across different model architectures. The valida-
tion accuracy is also significantly higher than those models
trained with DD algorithms (e.g., 34.4% higher for ViT-
Tiny). Compared with DD methods, DQ only takes 72
GPU hours to quantize ImageNet data with 60% keep
ratio, which is 388× (28, 000 vs 72 GPU hours) faster,
while achieving much higher performance on large data
keep ratios. On the other hand, when comparing to core-
set selection methods, as shown in Fig. 2a and 2b, DQ se-
lects samples with larger diversity and achieves better per-
formance when the data keep ratio is low (10% data kept).

We conduct extensive experiments and show that the pro-
posed dataset quantization method is able to generate com-
pact datasets that can be used to train unseen models such
as model families from ViT, ResNet and MobileNetV2,
LlaMA, etc.

Specifically, for vision tasks, on CIFAR-10 and
ImageNet-1K, only 60% of the data are used to train the
models to achieve a comparable model performance as
those trained with full datasets. for language tasks, on
BBH and DROP benchmark, only 2% instruction data are
needed to achieve comparable model performance as those
trained with full datasets. We further verify that the model
weights pre-trained on the quantized dataset can be general-
ized into downstream tasks such as object detection and seg-
mentation. As shown in Fig. 6, the ResNet-50 [22] model
pre-trained on 60% ImageNet also achieves negligible per-
formance drop when finetuned on COCO [34] (39.0% vs
39.2%) and ADE20K [64] (42.3% vs 42.5%).

Our main contributions are summarized as:

• We propose a new framework, Dataset Quantization
(DQ), to compress datasets into a small compact one
that can be used for training unseen network architec-
tures with state-of-the-art compression performance.

• We propose a scalable and efficient dataset compres-
sion algorithm that can be used for large dataset such
as ImageNet-1K. With Dataset Quantization, we are
able to remove 40% data from ImageNet-1K dataset
and 80% data from the Alpaca instruction dataset with
no training performance loss.

• We verify that the models trained with a compressed
dataset can be used for downstream tasks. The models
pre-trained with 60% of data on ImageNet-1K achieve
no performance on COCO for object detection and
ADE20K for segmentation.

2. Related work
In this section, we review two representative related

methods: dataset distillation and coreset selection. We also
introduce limitations and analysis of these two kinds of
methods.

2.1. Dataset distillation

Dataset distillation (DD) [54] is the first method that pro-
poses to synthesize a small amount of informative samples
from a large dataset. Specifically, it optimizes the synthetic
samples by minimizing the loss on the original training sam-
ples of the models trained on the synthetic ones. After-
wards, a series of techniques have been proposed such as
Dataset condensation (DC) [63], DSA [60] and IDC [31].
These methods propose to match the loss gradient calcu-
lated from the original and synthetic data. CAFE [53] and
DM [61] introduce a feature distribution matching strategy
to reduce the potential bias from large-gradient samples. A
recent work [4] tries to minimize the difference of training
trajectories between original and synthetic samples.

2.2. Coreset selection

Coreset selection has been actively explored for com-
pressing datasets, which aims to select a subset of the
most representative samples out of the target dataset. The
previous methods have proposed different selection crite-
ria: geometry-based [8, 1, 44, 46], uncertainty-based [10],
error-based [50, 41], decision-boundary-based [18, 38],
gradient-matching [39, 28], bilevel optimization [29] and
submodularity-based methods [26]. Among them, the Con-
textual Diversity (CD) [1], Herding [57], and k-Center
Greedy [44] try to remove the redundant samples based
on their similarity to the remaining samples. Cal [38] and
Deepfool [18] argue that the coreset should be selected
based on their difficulties for learning. Craig [39] and
GradMatch [28] try to find an optimal coreset that has the
similar gradient values with the whole dataset when training
them on a network. Glister [29] introduce a validation set to
maximize the log-likelihood with the whole dataset, where
involves a time-consuming bilevel optimization. FL [26]
and Graph Cut (GC) [26] consider the diversity and infor-
mation simultaneously.

2.3. Limitations and analysis

DD methods are hard to be applied on large datasets
or architectures, such as ImageNet-1K or ResNet series,
mainly due to the following limitations: (i) Poor general-
izability. As shown in Fig. 2b, the synthesized images
only work well on the same model architecture providing
the optimization supervision, while fail training on other
model architectures. (ii) Poor scalability. As the green
line shows in Fig. 2a, they saturate fast as the data keep
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Table 1: Comparisons of the Dataset Distillation (DD),
Coreset selection and our proposed Dataset Quantization
(DQ). DQ combines the advantages of DD and coreset se-
lection and is better at compressing datasets for training
modern deep neural networks.

Method Arch. Scalable Time Diverse Data
generalized Efficient Efficient

DD ✗ ✗ ✗ ✓ ✓
Coreset ✓ ✓ ✓ ✗ ✗
DQ ✓ ✓ ✓ ✓ ✓

ratio increases and can never reach the performance of the
original datasets. (iii) High computational cost for large
datasets. As shown in the mini table in Fig. 2a, compress-
ing the whole ImageNet into 60% subset requires 28K GPU
hours in total.

The above shortcomings are overcame by the coreset
selection methods. However, the diversity of the coreset
samples is not guaranteed under low data keep ratio, lead-
ing to worse performance than DD methods at low-data
regime [63], as shown in Fig. 2a and Fig. 4a. Tab. 1 summa-
rizes the differences among DD, coreset selection and DQ.
Across all the five aspects, our proposed dataset quantiza-
tion method consistently performs better.

3. Method
As mentioned in Sec. 2, the synthetic dataset based on

DD methods performs poorly for training unseen network
architectures as the matching metrics are coupled with the
utilized network. We are thus motivated to explore a data
selection strategy that is not sensitive to model architec-
tures. In this section, we first introduce preliminaries about
the coreset selection method and theoretically analyze its
limitation. In particular, we choose the GraphCut based
method [26] as an example. Then, we present details of
our proposed dataset quantization (DQ) method.

3.1. Preliminary of coreset selection

Coreset-based algorithms [5, 45, 25] address the limita-
tions of DD methods. However, almost all coreset selection
methods only select a single subset from the entire dataset in
a one-stop manner. We empirically observe that it inevitably
introduces severe selection bias—the samples lying in the
high-density regions of the dataset distribution are more of-
ten selected than others—and yields selection results with
limited variety. We provide more detailed theoretical anal-
ysis for the observation.

Theoretical Analysis for Coreset Selection. As men-
tioned in Sec. 2.2, almost all coreset selection methods
utilize a heuristic metric to select samples, which is hard
to avoid selecting some samples that have similar perfor-

mances under the heuristic metric. GraphCut [26], a recent
state-of-the-art method, we choose it as an example to an-
alyze the coreset selection process. D = {(xk, yk)}Mk=1

denotes M labeled samples. We default to select K sam-
ples from D to form a coreset. The coreset is initialized
as S1

1 ← ∅ and updated as Sk
1 ← Sk−1

1 ∪ xk. Note that,
Sn denotes n−th bin, Sk

n represents first k samples of n−th
bin and xk is the k−th selected sample. We define the fea-
ture extractor as f(·). In GraphCut, samples are selected via
maximizing submodular gains [26] P (xk) in feature space,
which is defined as follows,

P (xk) =
∑

p∈Sk−1
1

||f(p)− f(xk)||22︸ ︷︷ ︸
C1(xk)

−
∑

p∈D\Sk−1
1

||f(p)− f(xk)||22︸ ︷︷ ︸
C2(xk)

,

(1)
where Sk−1

1 denotes the set of selected samples and
D\Sk−1

1 represents the remained set. GraphCut aims to
maximize P (xk): it expects to maximize the diversity be-
tween xk and the selected set while minimizes the distance
between xk and the remained set. Thereby S1 is expected to
be a coreset covering the original distribution while main-
taining largest diversity. However, as K ≪ M , the sum
value of C1(xk) is far smaller than C2(xk). The distance
between xk and the remained set takes the dominant posi-
tion in the gain calculation. Thus the diversity of selected
K samples is not guaranteed as expected. Especially when
the data keep ratio is low.

Mathmatically, supposing the average feature is at the
origin, we define the maximum radius of set Sk−1

1 as
Rk−1

1 = maxp∈Sk−1
1
||f(p)||2, we prove the continuous so-

lution of the next selected sample xk needs to satisfy

||f(xk)||22 ≤ (
2k

M − 2k
)2(Rk−1

1 )2. (2)

As M ≫ k, the exact solution of f(xk) is within (Rk−1
1 )2

or as an outlier point that is as close as possible to the
boundary of ball Rk−1

1 . The theoretical analysis well aligns
the visualization in Fig. 2b. The diversity of selected sam-
ples is hard to be guaranteed for coreset selection. We pro-
vide more detailed proof in Appendix.

From the above analysis, the main reason of poor coreset
diversity of GraphCut is M ≫ k (i.e. over-large denomina-
tor) in Eq. (2). There naturally rises an idea of recursively
selecting from D for several times. Assume that we select
S2 from dataset D\S1 again. The maximum radius of set
Sk−1
2 can be denoted as Rk−1

2 = maxp∈Sk−1
2
||f(p)||2. As

the most compact subset has been selected in S1, Rk−1
2 is

obviously larger than Rk−1
1 . On the other hand, in the sec-

ond selection round, the denominator in Eq. (2) is reduced
from (M − 2k) to (M −K − 2k). Therefore, the diversity
of selected samples in the second round would be enhanced,
according to the following equation.

(
2k

M − 2k
)2(Rk−1

1 )2 ≤ (
2k

M −K − 2k
)2(Rk−1

2 )2. (3)
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Figure 3: An overview of the proposed DQ framework. We first divide the whole dataset D into N non-overlapping bins
Sn. Then, the S∗ is aggregated from N bins by a sampling function. After that, to further reduce the redundancy from each
image, DQ drops a fraction of patches with the lowest information and reconstruct samples at the training stage via MAE.

Based on Eq. (3), the twice selection can be easily ex-
tended into recursive selection, so the dataset is divided into
several bins with different diversity levels. The visualiza-
tions of recursive selection are shown in the center of Fig. 3,
which also aligns with our analysis well. We provide more
visualizations in the Appendix.

3.2. Overview of DQ

Based on the above observation and analysis, we pro-
pose Dataset quantization (DQ), a novel framework to quan-
tize large-scale datasets for lossless training, where data
efficiency, scalability and computation cost are well con-
sidered. In this paper, we first divide the dataset into
several non-overlapping bins by maximizing submodular
gains [26]. Specifically, as shown in Fig. 3, given a dataset
D, small informative bins are sampled from D recursively
with a pre-defined bin size K, yielding a set of small bins
[S1, . . . ,Sn, . . . ,SN ] with N = M/K. Each bin Sn =

{(x(n)
j , y

(n)
j )}Kj=1 ⊂ D is constrained under both inter-

data diversity and representativeness of the original feature
distribution during the recursive selection. As analyzed in
Sec. 3.1, the bins generated in early steps are mainly con-
strained by the distance to the remained set, while the latter
bins are more constrained by the inter-data diversity. To
better capture the distribution of the full dataset and bal-
ance the influence from the above two perspectives, we then
integrate a coreset S∗ for training from these bins via uni-
form sampling. Eventually, the redundant information is
removed by dropping non-informative patches from the im-
ages to further reduce the storage burden.

Dataset bin generation Each bin is selected by maxi-
mizing the submodular gain [26] claimed in Eq. (1). DQ
recursively selects bins from D, where the selection of i-th
sample in the n-th bin is formulated as follows,

xk ← argmax(
∑

p∈Sk−1
n

C1(xk)−
∑

p∈D\S1∪···∪Sk−1
n

C2(xk)),

(4)
where C1(xk) and C2(xk) have been defined in Eq. (1),
D\S1∪· · ·∪Sk−1

n denotes the rest of the data in the dataset
after selecting (k − 1) samples in n-th bin. We iteratively
select the x with the largest submodular gain to form bin
Sn, as detailed in Algorithm 1. The generated bins contain
different samples from each other, and each has an emphasis
on trade-offs between representativeness and diversity.

Bin sampling After generating the dataset bins with var-
ious characteristics, to obtain diverse and informative sub-
set, a sampler g(·, ·) is used to sample a certain portion from
each bin and form the final compact set. The process is for-
mally defined as:

S∗ = g(S1, ρ) ∪ · · · ∪ g(Sn, ρ) ∪ · · · ∪ g(SN , ρ), (5)

where ρ denotes the data keep ratio. We set g(·, ·) as the
uniform sampler by default.

Furthermore, we remove the redundant data within each
sample by dividing them into patches. Motivated by the
Masked Auto-Encoder (MAE) [20], which recovers images
with only some patches of them, we drop less important
patches to reduce the number of pixels utilized for describ-
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Algorithm 1 Data bin generation.

Input: original dataset D, bin number N , bin size K, the
score function P (·).
For n = 1, . . . , N −1 {Indices of sequentially selection}

S1
n ← ∅, S0

n ← ∅ {Initialization of Sn}
For k = 1, . . . ,K {Find K most informative sam-

ples for Sn}
For xi ∈ D\Sk

n, calculate submodular gains
P (xi) using Eq. 1

x∗ ← argmaxx∈D\Sk
n
P (xi)

Sk
n ← Sk−1

n ∪ x∗

Output: N dataset bins S1, . . .Sn, . . .SN .

ing each image. We set θ as the patch drop ratio and evalu-
ate its sensitiveness in experiments section. When the data
is required for training, the patches are passed through a
strong pre-trained MAE decoder to reconstruct the images.
The detailed patch dropping strategy is presented in the Ap-
pendix.

4. Experiments
4.1. Datasets and Implementation details

Datasets We mainly evaluate the proposed dataset quan-
tization method on image classification datasets CIFAR-10
[33] and ImageNet-1K [13]. CIFAR-10 consists of tiny
colored natural images with the size of 32×32 of 10 cat-
egories. In CIAFR-10, 50,000 images are used for train-
ing and 10,000 images for testing. ImageNet-1K includes
128,1126 images from 1000 categories for training and each
category has 50 images for validation. Here, we report the
results on validation set. To better evaluate the transferabil-
ity of the pre-trained weights on the compressed dataset
from DQ, we also conduct experiments on downstream-
ing tasks including semantic segmentation and object de-
tection on ADE20K [64] and COCO [34]. We report mAP
and Seg-mAP on COCO. For segmentation experiments on
ADE20K, we report mIoU and aACC.

For large language model (LLM) instruction fine-tuning,
we use the alpaca dataset [49], which consists of 52k in-
structions. The alpaca dataset is generated by the self-
instruct [56] method. To evaluate the fine-tuned LLMs, we
follow the benchmark proposed in [9], which consists of
MMLU [23], BBH [48], DROP [17], and HumanEval [7]
datasets.

Implementation details Following the previous works
[30, 63], we mainly use ResNet-18 [22] as the model ar-
chitecture for the ablation studies, unless specified other-
wise. When verifying the generalization capability of the
compressed dataset, we use ResNet-18 as the feature ex-
tractor during data compression and use the compressed
dataset to train representative transformer and CNN archi-

tectures, including ViT [15], Swin transformer [36], Con-
vNeXt [37] and MobilenetV2 [43] models with their offi-
cial training recipes. For experiments of bin generation, we
use ResNet-18 and Vision Transformer (ViT-Base) models
to extract features of CIFAR-10 and ImageNet-1K, respec-
tively. The models are pre-trained on the corresponding full
dataset with 10 epochs. The number of dataset bins N is
set to 10 by default. And the drop ratio θ is set to 25. We
use pytorch-cifar1 and timm library [58] for model train-
ing on CIFAR-10 and ImageNet-1K datasets. We train 200
epochs for CIFAR-10 with a batch size of 128 and a cosine-
annealed learning rate of 0.1. We train ImageNet in DDP
manner with the default scripts of different architectures
from timm. For downstream tasks, we follow the default
setting of mmdetection [6] and mmsegmentation [11]. We
choose distribution matching [61] and graph cut (GC) [26]
as two strong baselines, as well as other well-established
dataset compression methods.

For LLM instruction tunning, we follow the training pro-
cess of alpaca [49]. We fine-tune the LLaMA-7B [51]
model on the sampled datasets with hyper-parameters in-
troduced in [65] for a smaller dataset. We use OpenAI’s
Embedding API [40] as the feature extractor during data
compression.

4.2. Analysis

In this section, we investigate the effects of different
components of DQ and provide apple-to-apple comparisons
among DQ, DM [61] and GC [26].

Hyper-parameter analysis. There are two hyper-
parameters for DQ: the number of bins N and the drop ratio
θ. We run the experiments with four different values of the
bin number: 1, 5, 10, and 20. As shown in Fig. 4c, the
performance drops significantly when the bin number is set
to 1. This is the same case of coreset selection where the
dataset distribution is not quantized. This gap comes from
the fact that a one-time subset selection has limited diver-
sity. When the number of bins is too large, our DQ degrades
into random selection, so the performance is worse than our
default setting. θ is the patch drop ratio. With a fixed dataset
bin number (N = 10), we vary the drop ratio and the results
are shown in Fig. 4d. It is observed that a large drop ratio
improves the model training performance at large data keep
ratio but the performance drops significantly at small data
keep ratio. We empirically observe that the combination of
N = 10 and θ = 25% give the best trade-off.

Generalizability of the compressed datasets. We in-
vestigate the generalizability of the compressed datasets for
training different architectures. Fig. 2c has demonstrated
DQ can well preserve the dataset distribution for various
architectures. We further look into the impact on the quan-
titative performance. We use DQ and DM to compress the

1https://github.com/kuangliu/pytorch-cifar
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Figure 4: Testing performance of DM [61], random selection, GC [26] and DQ on CIFAR-10 at (a) low and (b) high data
keep ratio; and sensitiveness of DQ performance w.r.t. (c) the bin number N and (d) patch drop ratio θ across varying data
keep ratios. All results are averaged over three runs. The x-axes represent the data keep ratio.

Table 2: Comparisons of cross-architecture generalization of DM and DQ on CIFAR-10. The R18 (first column) is the source
architecture used to obtain distilled data or S∗. All architectures are trained from scratch. The top-1 accuracy is reported.
CNext stands for the ConvNext architecture.

(a) DM on CIFAR-10.

ρ (%) R18 R50 ViT Swin CNext Avg.

10 74.0 35.0 21.6 25.1 41.8 39.5
20 82.2 36.2 25.5 30.1 48.3 44.5
30 82.8 43.9 23.1 27.3 47.9 45
100 95.6 95.5 80.2 90.3 73.0 86.9

(b) DQ on CIFAR-10.

ρ (%) R18 R50 ViT Swin CNext Avg.

10 84.1 82.7 58.4 69.2 52.8 69.4 (+29.9)
20 87.6 88.1 66.8 79.1 61.8 76.7 (+32.2)
30 91.0 90.8 72.0 84.4 64.2 80.5 (+35.5)
100 95.6 95.5 80.2 90.3 73.0 86.9

Table 3: Evaluation of dropping patches randomly and ours
with the drop ratio θ = 25%. Bold entries are best results.

ρ (%) 1 3 5 10 30 50

Random Acc. (%) 41.5 69.2 77.1 83.6 90.2 93.2
Ours Acc. (%) 42.3 70.4 77.8 84.0 90.6 93.5

Table 4: Evaluation of the GPU hours of DM and DQ. We
assign 0 to values that are negligible.

ρ (%) Bin creation 10 20 40 60 Total

DM 0 7 14 29 41 91
DQ 1 0 0 0 0 1

Table 5: Impacts of DQ on instruction tuning with LLaMA-
7B.

ρ (%) BBH DROP MMLU Human-Eval Avg.

2 32.9 27.6 36.6 8.5 26.3
20 32.7 26.7 39.8 9.2 27.1

100 32.9 26.3 41.6 10.0 27.7

dataset by 90%, 80% and 70% respectively, and use the gen-

erated dataset to train the selected models as detailed in Sec.
4.1. The results are shown in Tab. 2. As observed, under
all data keep ratios, the dataset generated by DM suffers a
significant performance drop when trained on unseen archi-
tectures. The drop is relatively small on CNN models and
larger on transformer-based models. When used for training
the ViT and Swin models, the performance drops by up to
70 percentage with DM generated dataset. In contrast, the
datasets compressed by DQ offer better performance. Tab.
2b shows the average benefits of DQ relative to DM in the
final column. In average, DQ performs better than DM by
a range of 29.9% to 35.5% under different data keep ratios.
It validates that the compression process of DQ is model-
agnostic, indicating better generalizability.

Compression scalability. We investigate how the per-
formance of different compression methods changes under
different data keep ratio. We use DQ, DM and GC to com-
press the CIFAR-10 dataset to the same ratio and then use
the compressed dataset to train ResNet-18 from scratch.
The results under low and high ratios are shown in Fig. 4a
and 4b, respectively. It is clearly observed that when the
data keep ratio ratio is extremely low (e.g. 1%), the coreset
based algorithm GC gives the lowest accuracy. Under high
data keep ratio, the dataset distillation-based method DM
saturates quickly and the final accuracy is 5% lower than
the random sampling. Under both cases, DQ achieves the
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highest accuracy when used for model training, demonstrat-
ing outperforming scalability.

Impact of the image patch attention. As mentioned
above, we calculate a patch importance score to drop less
important patches to decrease the redundancy of the origi-
nal dataset. Randomly removing these patches is a simple
and basic approach. We compare the efficacy of randomly
dropping patches versus using GradCAM-based drops. As
illustrated in Tab. 3, our method outperforms the random
strategy for all data retention ratios. More details are pro-
vided in the Appendix.

Computational cost analysis. Due to the synthesizing
strategy used in DM, a large tensor (i.e. initialization of
synthetic images) needs to be defined. As a result, both the
computational cost and memory consumption increase lin-
early to the size of the dataset. We directly measure the
GPU hours needed for synthesizing the dataset and the re-
sults are shown in Tab. 3. Once the data keep ratio changes,
the whole process of DM needs to be repeated. In contrast,
DQ only needs to quantize the whole dataset into several
bins. The following sampling step takes negligible GPU
computations (N.A. in Tab. 3).

4.3. Comparison with state-of-the-art methods

We compare our method to previous state-of-the-art
methods on both CIFAR-10 and ImageNet. We compare
our proposed DQ with 3 dataset distillation and 14 coreset
selection methods. The results are shown in Fig. 5. We
would like to highlight that the results of dataset distillation
methods are only shown on CIFAR-10 dataset. Due to the
extremely large computational cost, it is not feasible to ver-
ify those methods on the ImageNet-1K dataset intuitively.
The computational cost of dataset distillation methods can
be checked from Fig. 2a. To better understand the charac-
teristics of DQ, we also scope the performance comparisons
under low data keep ratios. DQ outperforms other coreset
selection and dataset distillation methods by a large margin,
which indicates that DQ provides stronger data efficiency
under the same data keep ratio. Our method is based on GC
algorithm, while outperforms GC by a large margin on all
data keep ratios. On both CIFAR-10 and ImageNet-1K, we
obtain lossless results when using only 60% data, setting
a new state-of-art for dataset compression. Actually, DQ
works as a play-and-plug module that could be combined
with most coreset selection methods.

4.4. Performance on language tasks

To evaluate the effectiveness of DQ on language tasks,
we choose four popular benchmarks of BBH, DROP,
MMLU, and Human-Eval, following Alpaca. The results
are shown in Tab. 5. As observed, with only 20% of the
instruction tuning data extracted with DQ, comparable per-
formance can be achieved as the model is finetuned with

full data.

4.5. Performance on downstream tasks

To further evaluate the data efficiency of DQ on down-
stream tasks, we finetune the pretrained models with dif-
ferent data keep ratios (from 20% to 80%) on COCO and
ADE20K datasets. Here, we make a comparison with ran-
dom selection strategy. As shown in Fig. 6, our proposed
DQ achieves comparable mAP and mIOU results as train-
ing on full data when the data keep ratio is 60%. Setting the
data keep ratio as 80% can achieve lossless results, which
indicates the samples selected by DQ are informative. From
20% to 40% data keep ratio, DQ achieve obvious higher re-
sults than random selection strategy. We would like to high-
light that this is not feasible for DM or other dataset dis-
tillation methods due to the unaffordable computation cost
to compress ImageNet and obtain the pre-trained model as
mentioned in Sec. 4.2.

4.6. Robustness Evaluation

In order to investigate the robustness of our proposed
DQ, we compared its performance with that of GC and
Random selection by evaluating their performance on the
CIFAR10-C dataset [24]. The results, depicted in Figure
6c, demonstrate that our proposed DQ method achieves su-
perior results at all data retention ratios. The performance
gap between GC and random selection narrows as the data
retention ratio increases, which can be attributed to the fact
that the samples selected by GC lack diversity. More de-
tailed results can be found in Appendix.

5. Conclusion
We present a new dataset compression pipeline, termed

dataset quantization (DQ), that is able to achieve lossless
compression and be used to train unseen network architec-
tures. We conduct extensive experiments showing that DQ
achieves new state-of-the-art compression ratios. For the
first time, we verify that models pre-trained with the com-
pressed dataset can be used for training downstream tasks
such as object detection and semantic segmentation. We
hope this work could motivate more research works toward
more generalizable dataset compression algorithms.

Limitations and future works Our DQ needs to select
samples recursively from the whole dataset, resulting in ex-
tra computational efforts. In the future, we aim to design a
more advanced DQ that only selects once from the whole
dataset. Meanwhile, we plan to explore DQ on other tasks,
such as video understanding [47], AIGC [2], and so on.
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