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Abstract

One critical challenge in 6D object pose estimation from
a single RGBD image is efficient integration of two different
modalities, i.e., color and depth. In this work, we tackle this
problem by a novel Deep Fusion Transformer (DFTr) block
that can aggregate cross-modality features for improving
pose estimation. Unlike existing fusion methods, the pro-
posed DFTr can better model cross-modality semantic cor-
relation by leveraging their semantic similarity, such that
globally enhanced features from different modalities can
be better integrated for improved information extraction.
Moreover, to further improve robustness and efficiency, we
introduce a novel weighted vector-wise voting algorithm
that employs a non-iterative global optimization strategy
for precise 3D keypoint localization while achieving near
real-time inference. Extensive experiments show the effec-
tiveness and strong generalization capability of our pro-
posed 3D keypoint voting algorithm. Results on four widely
used benchmarks also demonstrate that our method outper-
forms the state-of-the-art methods by large margins. Code
is available at https://github.com/junzastar/DFTr Voting.

1. Introduction

6D object pose estimation aims to recognize the 3D po-
sition and orientation of objects in the camera coordinate
system. It is a widely studied task in both computer vi-
sion and robotics for its critical importance to many real-
world applications, such as robotic grasping and manipu-
lation [16, 37], augmented reality [1, 52] and autonomous
navigation [14, 63]. Although significant progress has been
made in recent years, critical challenges remain due to many
factors such as varying illuminations, sensor noise, heavy
occlusion, and the highly reflective surface of objects. Re-
cently, along with the dramatic growth of RGB-D sensors,
methods based on RGB-D data has attracted more atten-
The * indicates equal contribution.
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Figure 1. An illustration of typical challenges for object pose
estimation, e.g. texture-less material, surface reflection, and inter-
object occlusion.

tion, due to the fact that extra geometry information in
the depth channel is complimentary to the color informa-
tion for better alleviating difficulties in 6D pose estimation
[24, 26, 59, 63].

However, so far, how to efficiently integrate these two
modalities, i.e., color and depth, for better 6D pose estima-
tion remains an open question. Prior works [9, 36, 61, 63]
use the depth information as an additional clue to refine the
final pose or concatenate the extracted RGB and geometric
features directly for pose estimation. However, such meth-
ods do not make full use of the 3D geometry information
and are sensitive to severe occlusions, and also ignore the
global feature representation. Current methods are still lim-
ited, whether a simple point-wise fusion encoder [20, 58]
or a k-Nearest Neighbor (k-NN) based feature query tactic
[19], where inter-modality global semantic correlations are
not considered. Such fusion strategies are more likely to be
disturbed severely when the object has highly reflective sur-
faces also without any texture cues, e.g., metal objects, as
shown in Fig. 1, because (1) the lack of one modality data
will directly cause the failure of CNN or PCN (point cloud
network) feature extraction, (2) the occlusion between ob-
jects results in data loss, and (3) the k-NN based feature
clustering approach is sensitive to noise since the integrated
features are likely absent on the query object.

Furthermore, given the fused representative RGB-D fea-
tures, how to robustly estimate the object pose parameters
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in challenging scenarios is another open problem. Works
like [8, 42, 45, 61, 63] propose to regress the final pose
parameters directly using the MLP-likes prediction mod-
ule. However, such methods often need a highly cus-
tomized post-procedure for pose refinement. Conversely,
the correspondence-based methods [3, 5, 7, 10] estimate
pose by optimizing the pre-established correspondence, so
they can achieve robust performance without the post-
refinement procedure. Such methods can be subdivided
into dense and sparse keypoint-based correspondence. Due
to less computation cost and less hypothesis verification,
sparse keypoint-based approaches have been widely used
[19, 20]. However, most existing approaches, which output
the point-wise translation offsets pointing to the keypoint
directly without any scale constraint, is not conducive to
network learning since the offset will change in scale due to
the object’s size, thus severely degrading the keypoint local-
ization accuracy. Besides, the keypoints voting method de-
ployed in prior works, like MeanShift [15], is highly time-
consuming for the iterative steps, which also limits perfor-
mances in real-time applications.

In this work, we propose a Deep Fusion Transformer
network for effective RGB-D fusion to estimate object 6D
pose. The core of our network is to design a novel cross-
modality fusion block named Deep Fusion Transformer
(DFTr). It implicitly aggregates distinguished features of
two modality data by reasoning about the global seman-
tic similarity between appearance and geometry informa-
tion. Given two modality features from encoding or decod-
ing layers of the network, our DFTr constructs a long-term
dependence between them to extract cross-modality corre-
lation for global semantic similarity modeling by using a
transformer-based structure. We argue that the global se-
mantic similarity modeling can alleviate perturbations in
feature space caused by missing modality data and noises.
Subsequently, with the learned fused RGB-D features, we
adopt the keypoint-based workflow [19, 20] for 6D pose es-
timation, for their robustness to occlusion. Different from
existing 3D keypoints voting methods, we propose to learn
the 3D point-wise unit vector field and introduce an ef-
fective and non-iterative weighted vector-wise voting algo-
rithm for 3D keypoints localization. In this way, the offsets
with length constrained are easier for the network to learn
and the inference speed is greatly improved while keeping
comparable even superior location accuracy.

In summary, the main contributions of this work are:

• We propose an effective cross-modality feature aggre-
gation network for 6DoF object pose estimation, in
which a novel Deep Fusion Transformer (DFTr) block
is designed and employed on a multi-scale level for ro-
bust representation learning.

• We propose an effective weighted vector-wise voting

algorithm, in which a global optimization scheme is
deployed for 3D keypoint localization. We replace
the original clustering method with the proposed algo-
rithm in PVN3D [20] and FFB6D [19] framework, our
approach is 1.7x faster than PVN3D and 2.7x faster
than FFB6D when keeps a comparable even superior
performance on the YCB dataset.

• We conduct extensive experiments on MP6D [11],
YCB-Video [4], LineMOD [21], and Occlusion
LineMOD [2] public benchmarks. Our method
achieves dramatic performance improvements over
other state-of-the-art methods without any post-
refinement procedures.

2. Related Works
2.1. RGB-D Fusion-based Pose Estimation

Traditional approaches [33, 36, 61] employ the coarse-
to-fine strategy, which computes the initial poses from RGB
images and regards the depth map as compensatory cues
used in subsequent pose-refinement procedures. Others
[35, 36, 40] treat the depth information as an extra chan-
nel of RGB images or convert it into a bird-eye-view (BEV)
image and are fed to a CNN-based network. However,
these methods are time-consuming because of the expensive
pose-processing step, and also the spatial geometric struc-
ture information is not fully explored. Instead, works like
[57, 58, 63, 67] leverage two separate branch networks to
extract appearance and geometric features and then deploy
’later fusion’ tactics for pose computing. These methods are
more effective but sensitive to modality data loss. Recently,
FFB6D [19] propose a novel ’early fusion’ module to en-
hance the communication between the two feature extrac-
tion branches but sensitive to local noises. To this end, we
introduce a novel cross-modality fusion transformer block
for deep implicit local-global RGB-D features aggregation.

2.2. Keypoints-based Pose Estimation

The classical way of this kind of method [23, 32, 43] es-
tablishes 2D-3D or 3D-3D correspondences in feature space
and then recovers pose parameters by utilizing the PnP or
Least-Squares Fitting algorithm. These methods require
handcrafted feature descriptors which are designed on the
surface of the object. However, they cannot handle texture-
less objects and are not robust to complex scenarios. An-
other category is regression-based methods [30, 50, 54],
which directly regresses the coordinate of the keypoints
by using neural networks. For better robustness to highly
occluded scenes, furthermore, the pixel/point-wise voting
methods [20, 47, 49, 62] are proposed to vote for the key-
points position. Keypoints-based methods can achieve sat-
isfactory performance even in complex scenes, i.e. inter-
class occlusion caused by object stacking and self-modality
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data loss caused by the surface reflection. However, the ac-
curacy and inference efficiency of keypoints localization is
severely limited due to the current iteration and scale-free
based keypoints voting scheme. In this paper, we present a
stronger keypoints voting method by utilizing a global non-
iterative optimization strategy with scale constraints.

3. Methodology
Given an RGB-D image of a test scene, the objective of

this task is to estimate a transformation matrix between the
target object coordinate system and the camera coordinate
system. This transformation consists of an orientation com-
ponent R ∈ SO(3) and a translation component t ∈ R3. To
this end, what we need to do is to design an effective deep
model that can fully integrate cross-modality cues to satisfy
the mapping ψ, which is formulated as follows:

[ψ(Θ): I(Io, Do) 7→ Frgbd] ↬ O(R, t), (1)

where Θ, I(·), F , and O(·) denote parameters of the deep
model, the input set, the aggregated features, and the output
set respectively.

3.1. Overview

As illustrated in Fig. 2, we propose the DFTr net-
work for 6D object pose estimation. The network first
extracts appearance features and geometric features from
Io ∈ RH×W×3 and Po ∈ RN×3 by using CNN and point
cloud network respectively, where N and (H,W ) denotes
the number of scene points and the size of RGB image.
And a DenseFuion [58] module is added for inter-modality
pointwise local features aggregation. Before obtaining the
final learned feature from these two branches, deep fusion
transformer blocks are employed in each layer for cross-
modality communication. It models the global semantic
similarity between appearance and geometric features, and
the highlighting features from the corresponding modality
are integrated into its own branch to enhance their represen-
tation learning. Moreover, instead of the explicit utilization
of RGBD correspondence for feature aggregation [19], we
employ an implicit strategy by adding positional embedding
on the whole feature elements sequence. With the extracted
pointwise fused features, an instance segmentation module
is utilized to obtain the mask of each object, and a weighted
vector-wise voting module is adopted to localize the per-
object 3D keypoints in the scenario with the predicted vec-
tor field. Finally, a 3D-3D correspondence-based algorithm
is employed to recover the pose parameters.

3.2. Deep Cross-Modality Feature Embedding

Taking an RGB-D image as input, we first convert the
depth image into a point cloud Po ∈ RN×3 by using the
camera intrinsic matrix. And then two branch networks are

applied to extract features from Io and Po respectively. For
each layer, the learned color and geometric features would
be fed into a DFTr block for cross-modality information ag-
gregation. To this extent, multi-scale local and global infor-
mation from these two modality data can be integrated into
the feature extraction flow of the two branches even in the
early stage of networks.

Deep fusion transformer block. The DFTr block aims
to explore the inherent correspondence between these two
modality features. Prior works, such as [58] and [20], first
fuse RGB and geometric features in a pixel-wise concate-
nation manner, and generate a global feature vector which
is then stacked to each concatenated feature to facilitate
the global representative. Another fusion way [19] ex-
pands the searching scope of the neighborhood for a query
pixel (point), and gathers these K nearest pixels (points) to
generate a non-local feature by passing it to a max pooling
layer. The generated features are then concatenated to their
corresponding point (pixel) feature one by one. However,
this kind of fusion strategy does not make full use of the
global feature representation and is highly dependent on the
quality of input data. In other words, the performance of the
algorithm tends to be dramatically disturbed when uncer-
tainly occurs in one of the input modality data, i.e., missing
data due to the object surface reflection. Moreover, RGBD
image misalignment caused by sensor calibration error is
also one of the potential peril of this explicit fusion strategy.
Instead, we design a novel bidirectional cross-modality fu-
sion block, in which we treat the elements of RGB and ge-
ometric features as long sequence tokens and model them
globally to implicitly integrate these features.

Specifically, we propose to implement the DFTr block
with a transformer-based architecture, since it showed
promising results in various vision tasks, and is proven to
enjoy the ability to capture long-range dependencies in the
data. We utilize this property to enhance the global rep-
resentative of the model. As shown in Fig. 3, given the
RGB feature map FI ∈ RĤ×Ŵ×C and geometric fea-
ture map Fp ∈ RN̂×C of the i-th layer from the two
feature extraction branches respectively, we first employ a
dual-branch inter-modality interaction operation by cross-
attention module, and then a transformer-based module is
utilized to model the sequence of the gross elements of these
two modality data. In detail, inspired by [6], they introduce
an effective image patch-wise cross-information aggrega-
tion strategy for the classification task. We deploy their in-
sight to cross-modality feature integration. We first flatten
the feature map FI and Fp to form a sequence and then use
max pooling to generate global features Fmax

I ∈ R1×C and
Fmax
p ∈ R1×C . Then following the terminology in [56],

we compute the query Q, key K, and value V matrices for
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DFTr-Pose: Deep Bidirectional Cross Modality Fusion Transformer for 6D Object Pose Estimation
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Figure 2. An overview of our proposed method. Taking the RGB-D images as input, two branch networks are utilized to extract color and
geometric features respectively. Between them, the deep fusion transformer blocks are integrated for cross-modal features aggregation.
With the fused features, two prediction heads are utilized to obtain segmented masks and vector fields. By using the weighted vector-wise
voting algorithm, the accurate keypoints are obtained and the final poses are computed by a least-squares fitting algorithm.
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Figure 3. An illustration of the deep fusion transformer block.

the input features by linear transformations as follows:

(Qmax,K, V ) = F
(max)
in · (Wmax

q ,Wk,Wv), (2)

where Wmax
q ,Wk and Wv all ∈ RC×C are learnable pro-

jection matrices. Fin ∈ RNin×C denotes the flattened fea-
ture of FI (Fp), where Nin = ĤŴ (N̂ ). Fmax

in ∈ R1×C

denotes the pooling feature Fmax
p (Fmax

I ). We then per-
form the multi-head cross-attention operation to infer the
refined feature Fout as follows:

CAi = C-Attention(Qmax
i ,Ki, Vi) = σ(Qmax

i (Ki)
T /

√
dk)Vi,

(3)
Fout = MultiHead(Q,K, V ) = Concat(CA1, ...,CAh)W

O,
(4)

where 1/
√
dk is a scaling factor and dk = C/h. σ(·) is the

standard softmax normalization function. WO ∈ RC×C

is the projection matrix, h denotes number of heads. Then
we add the output feature Fout from the cross-attention
module to each element of the origin input feature FI (FP )

to obtain feature FP 7→I (FI 7→P ), which are stacked into
one sequence in spatial dimension as the input of follow-
ing transformer-based module:

Frgbd = FP 7→I ⊕ FI 7→P , (5)

where FP 7→I = FI + R(FP 7→I
out ) and FI 7→P = FP +

R(F I 7→P
out ), R denotes the repeat operation, + is element-

wise addition, and ⊕ is the concatenate operation.
After the bidirectional cross-attention module, we obtain

the feature sequence Frgbd ∈ RL×C , where L = ĤŴ +

N̂ . We then feed Frgbd into a transformer-based module
TrM(·), as shown in Fig. 3. As mentioned above, in order
to implicitly encode the spatial information between differ-
ent feature elements of the two feature sequences, we insert
a learnable positional embedding into the DFTr block fol-
lowing [17, 56]. Given the input feature sequence Frgbd,
for each layer TrMℓ(·), the output Fℓ = TrMℓ(Frgbd) is
formulated as follows:

F
′

ℓ = MSA(LN(F
′

0 )) +F
′

0 , (6)

Fℓ = MLP(LN(F
′

ℓ )) +F
′

ℓ , ℓ = 1...L (7)

where F
′

0 = Frgbd + σpos, σpos ∈ RL×C is the position
embeddings. MSA, LN, and MLP denote multiheaded self-
attention, layernorm, and Multi-Layer Perceptrons respec-
tively. The final feature sequence Fℓ is then split into two
feature sequencesF

′

I andF
′

P by following the initial permu-
tation order, which is integrated into the original modality
branch as complementary features.

Dense RGB-D feature fusion. Through the proposed
DFTr block and two feature extraction branches, we get
dense features from the two modality inputs. We follow
[19] to obtain the pair-wise RGBD feature, which is then fed
into the Densefusion [58] module to generate dense fused
features. This early and later fusion strategy has shown a
remarkable performance in our experiments. The generated
features are utilized to predict instance masks and keypoints
vector field for subsequent pose estimation.
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3.3. Weighted Vector-Wise Voting for 3D Keypoints
Localization and Pose Estimation

In most pose estimation methods, for better performance,
the keypoints of the object are predicted first rather than
the pose parameters directly [19, 20]. We also follow this
workflow but further introduce a novel 3D keypoint local-
ization algorithm to improve the accuracy and efficiency of
the model. Concretely, we first utilize the predicted mask
and keypoints vector field to locate 3D keypoints and then
employ a correspondence-based approach to estimate object
pose parameters.

Instance-level 3D keypoint localization. Given the
dense fused features, we deploy two head networks for in-
stances segmentation and keypoints vector field prediction.
As a powerful guidance signal in the training phase, vari-
ables with clear boundaries or constraints are more con-
ducive to network learning. In this way, instead of regress-
ing point-wise offsets to the predefined keypoints directly,
we propose to predict the unit vector that represents the di-
rection from the point pi to a 3D keypoint kj of the object,
like [47] in 2D. More specifically, given the segmented ob-
ject 3D points Po = {pi|i = 1...M} ∈ RM×3 and its cor-
responding vector field Vo = {vj |j = 1...K} ∈ RK×M×3

from the prediction head, where K is the number of key-
points. For a keypoint kj , we formulate this problem as
follows:

D(kj ;Po, Vo−j , c) =

M∑
i=1

D(kj ;P
i
o, V

i
o−j , ci)

=

M∑
i=1

ci(P
i
o − kj)

T (I − V i
o−j(V

i
o−j)

T )(P i
o − kj),

(8)

where Vo−j ∈ RM×3 denotes the j-th predicted keypoint
vector field, and ci is the weight of each vector learned by
the proposed network. We solve this optimization problem
by minimizing the sum of squared distancesD(·). Thus, the
objective is:

k̂j = argmin
kj

D(kj ;Po, Vo−j , c) (9)

Taking derivatives with respect to kj , we have ∂D/∂kj =∑M
i=1 −2(I−V i

o−j(V
i
o−j)

T )(P i
o−kj) = 0. Finally, we can

get a linear system of equations:

Akj = b, (10)

A =

M∑
i=1

(I−V i
o−j(V

i
o−j)

T ), b =

M∑
i=1

(I−V i
o−j(V

i
o−j)

T )P i
o,

(11)
We then obtain kj by applying the Moore-Penrose pseu-
doinverse for Eq. 10: kj = k̂j = A†b. Compare to the

MeanShift [15] clustering algorithm employed by [19, 20],
our method can obtain the weighted least squares solution
without any iterations. Experiments show that our method
can achieve superior efficiency and comparable, or even bet-
ter accuracy in the inference phase.

Keypoint-based object pose estimation. Given the pre-
dicted 3D keypoints {kj}Kj=1 and the corresponding 3D
keypoints {k∗j }Kj=1 in the object coordinate system, a cor-
respondence based method [55] is adopted to compute the
pose parameters.

Overall multi-task loss function. We supervise our net-
work with the following loss function:

L = λ1Lseg + λ2Lvecf , (12)

where Lseg and Lvecf are the instance segmentation loss
and keypoints vector field prediction loss respectively.
where Lvecf = 1

M

∑
i(Lkpsci −w · log(ci)), i = 1...M , ci

denotes the weight of each vector,w is a balancing hyperpa-
rameter, which is set to 0.015 in our experiments. For Lseg

and Lkps, we use Focal Loss [41] and L1 Loss as in [20]
respectively. We set λ1 = λ2 = 1.0 in our experiments.

4. Experiments and Results
4.1. Experiments Settings

Datasets. We evaluate our method on four bench-
mark datasets. MP6D [11] contains 77 RGBD video seg-
ments (20100 frames in total) which capture scenes with
high occlusion and illumination changes of 20 metal parts.
The selected metal parts are collected from natural in-
dustrial environments, and all objects are texture-less,
symmetric, of complex shape, high reflectivity, and
uniform color, which make this dataset challenge. We
follow [11] to split the training and testing set, and the
hole completion algorithm [34] is deployed following [20].
YCB-Video [4] has 92 RGBD videos. Each video captures
a subset of the 21 objects in varying scenes. We follow
prior works [19, 20, 58, 61] to prepare our training and test-
ing set, including data processing. LineMOD [21] consists
of 13 low-textured objects in 13 videos with annotated 6D
pose and instance mask. We use synthesis images in the
training phase following [19, 20, 47] and follow previous
works [47, 61] to split the training and testing set. Occlu-
sion LINEMOD [2] is a subset of the LINEMOD datasets
created by additionally annotating. Each scene has multi-
labeled instances with heavy occlusion, making pose esti-
mation a great challenge.

Evaluation Metrics. We use three metrics for our
method evaluation (i.e., the Average Distance of Model
Points (ADD) [22], the Average Closest Point Distance
(ADD-S) [61] and the Visible Surface Discrepancy (VSD)
[25]. For asymmetric objects, the ADD metric is utilized
to compute the mean distance between the two object point
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Table 1. Quantitative comparison results (ADD-S [61] AUC, VSD [25]) on the MP6D Dataset with the state-of-the-art frameworks. DF
(per-pixel) means DenseFusion (per-pixel).

Hodan [27] PointFusion [63] DCF [40] DF (per-pixel) [58] MaskedFusion [48] G2L-Net [12] PVN3D [20] FFB6D [19] Ours

Object ADDS VSD ADDS VSD ADDs VSD ADDS VSD ADDS VSD ADDS VSD ADDS VSD ADDS VSD ADDS VSD

Obj 01 83.42 73.14 84.33 73.45 86.06 74.09 89.35 75.35 88.95 76.01 89.51 78.39 90.28 85.06 93.28 80.35 95.44 94.93
Obj 02 80.23 70.35 81.01 72.36 85.36 73.42 87.78 76.84 89.19 75.98 89.03 80.04 91.88 88.43 92.83 81.47 96.51 94.12
Obj 03 65.78 35.69 64.74 35.95 65.33 36.08 72.45 39.51 70.03 37.55 74.93 38.42 76.67 35.68 79.51 43.50 84.93 57.36
Obj 04 70.56 57.52 72.50 55.01 73.95 55.90 77.98 60.96 74.68 58.13 85.39 60.55 88.13 68.34 84.98 64.93 92.02 79.95
Obj 05 69.78 51.35 68.96 51.39 67.19 52.37 71.23 54.62 75.69 55.92 72.13 56.82 73.46 58.96 76.33 60.20 86.24 71.23
Obj 06 72.36 55.84 70.66 55.82 71.65 54.21 75.34 57.15 78.31 59.01 85.08 62.95 87.16 76.39 83.98 63.70 96.10 88.96
Obj 07 80.79 74.95 81.12 76.31 82.07 75.58 88.63 83.58 85.25 81.32 89.09 89.37 94.81 94.63 94.94 90.29 97.51 97.94
Obj 08 80.71 67.98 81.37 69.80 82.39 68.29 84.78 70.12 85.38 69.71 90.10 72.91 93.76 73.21 89.76 74.73 96.75 87.12
Obj 09 69.8 38.27 65.98 34.32 68.27 35.22 73.67 40.52 75.46 38.44 79.91 41.59 82.71 40.92 81.25 46.63 91.23 70.15
Obj 10 75.32 65.69 77.19 66.08 79.10 67.92 80.54 68.65 77.62 69.98 86.03 71.32 86.16 76.21 88.92 71.07 94.98 90.92
Obj 11 72.56 43.88 71.98 41.99 70.96 42.35 79.65 44.71 75.91 45.36 82.01 46.09 81.21 56.09 84.87 47.12 92.36 78.46
Obj 12 74.13 44.57 76.32 45.23 77.03 46.07 78.88 46.78 76.98 45.17 77.93 47.91 79.00 45.97 84.82 54.86 89.99 66.21
Obj 13 78.63 48.41 77.05 49.02 75.15 48.31 80.12 50.26 80.58 49.33 85.38 51.98 86.69 52.22 85.42 52.57 95.04 85.34
Obj 14 76.89 49.68 77.90 52.39 76.98 50.23 80.89 51.28 81.15 48.92 84.54 48.39 87.06 49.09 87.99 56.16 94.13 65.08
Obj 15 64.53 8.68 67.36 6.08 66.23 8.19 68.45 10.81 66.30 8.98 72.92 11.94 74.17 17.96 75.01 13.08 86.97 40.29
Obj 16 69.88 35.88 72.28 38.69 73.08 39.15 75.81 40.78 73.86 38.71 79.38 41.49 81.35 40.80 83.95 41.01 92.14 71.13
Obj 17 77.42 65.11 85.93 67.00 84.68 68.91 89.16 69.02 88.11 71.25 92.08 74.35 93.47 85.86 93.19 71.22 94.25 94.58
Obj 18 75.63 73.85 81.46 76.19 80.91 77.49 83.23 78.65 85.94 77.93 88.13 76.92 87.57 74.82 91.73 81.35 94.69 92.47
Obj 19 72.89 50.54 76.82 50.98 78.07 52.04 81.98 52.36 79.37 54.98 85.31 60.18 88.82 63.76 87.28 58.01 95.03 87.24
Obj 20 72.65 50.18 75.91 55.39 74.20 54.39 76.59 53.58 78.93 53.29 81.41 59.17 88.10 59.26 85.75 58.53 93.92 92.08

ALL 74.20 53.08 75.54 53.67 75.93 54.01 79.84 56.28 79.38 55.80 83.51 58.54 85.42 62.18 86.29 60.54 93.01 80.23

Table 2. Quantitative evaluation results (ADD-S [61] and ADD(S)
[22] AUC) on the YCB-Video Dataset.

Refinement? Method ADDS ADD(S)

PoseCNN [61] 75.8 59.9
PointFusion [63] 83.9 -
DCF [40] 85.7 77.9
DF (per-pixel) [58] 91.2 82.9
PVN3D [20] 95.5 91.8
PR-GCN [66] 95.8 -
FFB6D [19] 96.6 92.7

w/o

RCVPose [60] 96.6 95.2
Ours 96.7 94.4

PoseCNN+ICP [61] 93.0 85.4
DF (iterative) [58] 93.2 86.1
MoreFusion [57] 95.7 91.0
PVN3D [20]+ICP 96.1 92.3
FFB6D [19]+ICP 97.0 93.1

w/

RCVPose [60]+ICP 97.2 95.9
Ours+ICP 97.3 94.8

sets transformed by the estimated pose [R, t] and the ground
truth pose [R∗, t∗], formulated as follows:

ADD =
1

N

∑
p∈O

||(Rp+ t)− (R∗p+ t∗)||. (13)

where p is a point of totally N points in the object O. The
ADD-S metric is designed for symmetric objects based on
the closest point distance:

ADD-S =
1

N

∑
p1∈O

min
p2∈O

||(Rp1 + t)− (R∗p2 + t∗)||.

(14)
The VSD metric is ambiguity-invariant to object symme-
tries, determined by the distance between the estimated and
ground truth visible object depth surfaces. For the MP6D

Figure 4. Performance of different methods at increasing occlu-
sion levels on YCB-Video dataset.

datasets, as in [11] and the BOP challenge [26], we report
the recall of correct poses at evsd < 0.3 with the tolerance
τ = 5cm and δ = 1.5cm. We also report the area under the
accuracy-threshold curve computed by varying the distance
threshold (ADD-S AUC) following [11, 20, 61]. For the
YCB-Video datasets, we report the ADD-S AUC and the
ADD(S) AUC following [19]. For the LineMOD and Oc-
clusion LineMOD datasets, we report the accuracy of dis-
tance less than 10% of the object’s diameter (ADD-0.1d) as
in [22, 47].

Implementation Details. For the image branch embed-
ding network, we employ a pre-trained ResNet34 [18] en-
coder followed by a four-level PSPNet [65] as the decoder.
The RandLA-Net [28] is used to extract geometric features
with randomly sampled 12800 points from the depth image
as input. Between each encoding and decoding layer, the
DFTr block is inserted to integrate two modality features.
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Table 3. Quantitative evaluation using the ADD-0.1d [22] metric on the LineMOD Dataset. Symmetric objects are in bold.

RGB RGB-D

PoseCNN
DeepIM
[38, 61]

PVNet
[47]

CDPN
[39]

DPOD
[64]

PointFusion
[63]

DenseFusion
[58]

G2L-Net
[13]

PVN3D
[20]

FFB6D
[19]

Ours

ape 77.0 43.6 64.4 87.7 70.4 92.3 96.8 97.3 98.4 98.6
benchvise 97.5 99.9 97.8 98.5 80.7 93.2 96.1 99.7 100.0 100.0
camera 93.5 86.9 91.7 96.1 60.8 94.4 98.2 99.6 99.9 100.0
can 96.5 95.5 95.9 99.7 61.1 93.1 98.0 99.5 99.8 100.0
cat 82.1 79.3 83.8 94.7 79.1 96.5 99.2 99.8 99.9 100.0
driller 95.0 96.4 96.2 98.8 47.3 87.0 99.8 99.3 100.0 100.0
duck 77.7 52.6 66.8 86.3 63.0 92.3 97.7 98.2 98.4 99.1
eggbox 97.1 99.2 99.7 99.9 99.9 99.8 100.0 99.8 100.0 100.0
glue 99.4 95.7 99.6 96.8 99.3 100.0 100.0 100.0 100.0 100.0
holepuncher 52.8 82.0 85.8 86.9 71.8 92.1 99.0 99.9 99.8 100.0
iron 98.3 98.9 97.9 100.0 83.2 97.0 99.3 99.7 99.9 99.9
lamp 97.5 99.3 97.9 96.8 62.3 95.3 99.5 99.8 99.9 100.0
phone 87.7 92.4 90.8 94.7 78.8 92.8 98.9 99.5 99.7 99.6

MEAN 88.6 86.3 89.9 95.2 73.7 94.3 98.7 99.4 99.7 99.8

Table 4. Quantitative evaluation using the ADD-0.1d [22] metric on the Occlusion-LineMOD Dataset. Symmetric objects are in bold.

Method PoseCNN
[61]

Pix2Pose
[46]

PVNet
[47]

Hu et
al.[29]

HybridPose
[51]

PVN3D
[20]

PR-GCN
[66]

FFB6D
[19]

RCVPose
[60]

Nguyen et
al. [44]

ZebraPose
[53]

Ours

ape 9.6 22.0 15.8 19.2 20.9 33.9 40.2 47.2 - 53.8 57.9 64.1
can 45.2 44.7 63.3 65.1 75.3 88.6 76.2 85.2 - 89.7 95.0 96.1
cat 0.9 22.7 16.7 18.9 24.9 39.1 57.0 45.7 - 45.1 60.6 52.2
driller 41.4 44.7 65.7 69.0 70.2 78.4 82.3 81.4 - 84.4 94.8 95.8
duck 19.6 15.0 25.2 25.3 27.9 41.9 30.0 53.9 - 87.2 64.5 72.3
eggbox 22.0 25.2 50.2 52.0 52.4 80.9 68.2 70.2 - 76.9 70.9 75.3
glue 38.5 32.4 49.6 51.4 53.8 68.1 67.0 60.1 - 89.9 88.7 79.3
holepuncher 22.1 49.5 39.7 45.6 54.2 74.7 97.2 85.9 - 83.3 83.0 86.8

MEAN 24.9 32.0 40.8 43.3 47.5 63.2 65.0 66.2 70.2 76.3 76.9 77.7

The final fused RGBD features are then fed into the head
network consisting of shared MLPs for instance segmenta-
tion and keypoints vector field prediction. The input of the
RGB embedding branch is a scene image with the size of
480×640×3, and a point set with a size of 12800×Cin as
the input for geometric representation learning, where Cin

denotes the input coordinate, color and normal information
of each point.

4.2. Comparison With State-of-The-Arts.

Evaluation on the MP6D dataset. Tab. 1 shows the
quantitative evaluation results for all 20 objects in the
MP6D dataset. We compare our method with other single-
view RGB-D fusion-based methods without iterative refine-
ment. As shown in the table, our method significantly out-
performs other approaches by a large margin. In particu-
lar, our model advances FFB6D [19] and PVN3D [20] by
6.72% and 7.59% respectively on the ADDS metric, and
achieves 19.69% and 18.05% improvement on the VSD
metric. These experimental results reveal the effectiveness
of our method. We further present qualitative comparison
results of FFB6D and our model in Fig. 5. Compared to
FFB6D, our method is more robust towards objects with
texture-less or heavy reflective surfaces as well as severe
occlusions.

Evaluation on the YCB-Video dataset. We then eval-
uate our approach on the YCB-Video dataset, as illustrated
in Tab.2. Our model surpasses FFB6D by 0.1% and 1.7%

Table 5. Effect of different model types on the MP6D Dataset.

B-w/ DF MS -w/o DF MS MML MMU ML

ADD-S 86.94 89.99 93.01 90.98 89.74 88.26
VSD 64.92 70.49 80.23 74.48 71.05 68.31

Params 40.6M 116.7M 138.6M 162.1M 172.4M 175M

on the ADDS and ADD(S) metrics respectively in terms of
average accuracy. With the extra iterative refinement (e.g.
ICP), our method can achieve the best performance on
ADD-S metric compared with RCVPose [60]. In Fig. 4, we
evaluate the robustness of our algorithm to occlusion. Our
approach is capable of maintain robust performance with
varying occlusion levels, compared with FFB6D [19] and
Uni6D [31]. We think that is because the global model-
ing of semantic similarity between two modalities helps the
network make full use of cues from visible parts of objects,
which is beneficial to locate 3D keypoints precisely from
the vector field. Fig. 5 also provides qualitative comparison
results, in which our approach performs more robustly with
better performances.

Evaluation on the LineMOD dataset & Occlusion
LineMOD dataset. Tab. 3 and Tab. 4 show the quanti-
tative comparison results of the proposed method on the
LineMOD and Occlusion LineMOD datasets respectively.
Our approach achieves state-of-the-art performance on both
datasets, demonstrating its effectiveness and robustness to-
wards severe occlusion.
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FFB6D OursGround Truth FFB6D OursGround Truth

Figure 5. Qualitative comparison results on (a) MP6D dataset and (b) YCB-Video dataset.

Table 6. Effect of components of DFTr block on the MP6D dataset.
CMA: cross-modality attention, PE: positional embedding.

Pose Result

CMA PE ADDS VSD
87.73 63.75

✓ 91.46 77.48
✓ 89.97 71.59

✓ ✓ 93.01 80.23

Query Source Pose Result

RGB D ADDS VSD
✓ 91.57 76.94

✓ 90.13 73.89
✓ ✓ 93.01 80.23

4.3. Ablation Studies.

We comprehensively conduct the following ablation
studies on our design choice and explore the effect of in-
dividual components.

How many DFTr blocks do you need? In order to ver-
ify the fusion power of DFTr block, we select a dozen vari-
ous models, as shown in Tab. 5. Concretely, we define ds-n
and up-n as the n-th layer in the downsampling and upsam-
pling process respectively. B-w/ DF: baseline model only
with the DenseFusion module. MS-w/o DF and MS: with-
out/with DenseFusion module, add DFTr module to [ds-5;
up-1]. Similarly, MML, MMU and ML: add DFTr module
to [ds-4, 5; up-1], [ds-4, 5; up-1, 2] and [ds-3, 4, 5; up-1, 2]
on baseline model respectively. Compared with the base-
line model, networks with DFTr block can all show perfor-
mance gains. Among them, model MS exhibits the highest
improvement. We think that the deployment of the DFTr
in the deeper and high-dimensional feature maps can max-
imize the network to perceive the global information of the
scene and share it with every neuron. With the increase of
DFTr blocks, the performance is no longer improved be-
cause RGBD features have been fully integrated, resulting
in overfitting of the network.

Effect of components of the DFTr block. We ablate
the bidirectional cross-modality attention (CMA) and po-
sitional embedding (PE) components in the DFTr block to
validate their impact, as shown in Tab. 6 (left). Compared

Table 7. Effect of the weighted vector-wise voting (WVWV) algo-
rithm. ms/f: ms per frame. MS: MeanShift algorithm.

ADD-S ADD(S) Run-time

PVN3D 95.5 91.8 367 ms/f
PVN3D+WVWV 95.6 92.0 209 ms/f

FFB6D 96.6 92.7 295 ms/f
FFB6D+WVWV 96.4 92.9 109 ms/f

MS WVWV

KP err. (cm) 0.0379 0.0376
Run-time (ms/f) 50 18
ADD-S 92.98 93.01
VSD 80.12 80.23

with the base model, network with the CMA achieves sig-
nificant improvements. Combining with PE obtains the best
results. We believe that CMA can enhance the feature repre-
sentation of the DFTr block by filtering out non-salient fea-
tures and establishing connections between salient global
features across modalities. We also ablate the query source
in the CMA, as shown in Tab. 6 (right). Compared with
no CMA (only PE), querying from the RGB or Depth can
all boost performance, demonstrating its effectiveness in in-
tegrating cross-modal features. The combination of them
achieves the best results.

Effect of the weighted vector-wise voting algorithm.
We integrate the weighted vector-wise voting algorithm
(WVWV) into two state-of-the-art frameworks and evalu-
ate their generalization performance on YCB-Video, as in
Tab. 7 (left). Compared with the original methods, our key-
points voting algorithm is 1.7x faster than PVN3D and 2.7x
faster than FFB6D, with better performance on the ADD(S)
metric. The results reveal that WVWV benefits other frame-
works for pose estimation. We also compared the perfor-
mance of WVWV and MeanShift algorithm on MP6D, as
in Tab. 7 (right). Our method has higher accuracy and infer-
ence speed.

Time efficiency. In Fig. 6, we present comparison results
in terms of inference time and performance on YCB-Video.
Our method achieves better performance with on-par effi-
ciency (48 ms/frame) compared with Uni6D [31].
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Figure 6. Balance the speed and accuracy.

5. Conclusion
In this paper, we propose the DFTr network, a novel 6D

object pose estimator with a powerful deep fusion trans-
former block for cross-modalities feature aggregation. We
further introduce a new efficient weighted vector-wise vot-
ing algorithm for 3D keypoints detection, which employs
a non-iterative global optimization strategy to ensure loca-
tion accuracy and greatly reduce computing costs. Exten-
sive experiments on four benchmark datasets demonstrate
that our method achieves significant performance increase
over other SOTA approaches. This work can potentially
generalize to other RGBD-based applications, such as ob-
ject perception and robot manipulation.
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