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Abstract

The success of deep neural networks for pan-sharpening
is commonly in a form of black box, lacking transparency
and interpretability. To alleviate this issue, we propose
a novel model-driven deep unfolding framework with im-
age reasoning prior tailored for the pan-sharpening task.
Different from existing unfolding solutions that deliver the
proximal operator networks as the uncertain and vague pri-
ors, our framework is motivated by the content reasoning
ability of masked autoencoders (MAE) with insightful de-
signs. Specifically, the pre-trained MAE with spatial mask-
ing strategy, acting as intrinsic reasoning prior, is embed-
ded into unfolding architecture. Meanwhile, the pre-trained
MAE with spatial-spectral masking strategy is treated as
the regularization term within loss function to constrain
the spatial-spectral consistency. Such designs penetrate the
image reasoning prior into deep unfolding networks while
improving its interpretability and representation capabil-
ity. The uniqueness of our framework is that the holis-
tic learning process is explicitly integrated with the in-
herent physical mechanism underlying the pan-sharpening
task. Extensive experiments on multiple satellite datasets
demonstrate the superiority of our method over the exist-
ing state-of-the-art approaches. Code will be released at
https://manman1995.github.io/.

1. Introduction

Pan-sharpening, a texture-rich panchromatic image-
guided multi-spectral image super-resolution task, is to rea-
son the unknown content at the pre-defined pixel posi-
tions according to the context of low-resolution (LR) multi-
spectral (MS) image and high-resolution (HR) panchro-
matic (PAN) image. Owing to the physical constraints,
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Figure 1: Motivation. Pan-sharpening is to reason the un-
known content at the pre-defined pixel positions according
to the context of low-resolution multi-spectral image and
high-resolution panchromatic image.

satellites usually adopt both MS and PAN sensors to ob-
serve scenes, providing the MS images with high spectral
but limited spatial resolution and the PAN images with high
spatial but low spectral resolution. To obtain observation
with both high spectral and high spatial resolutions, the pan-
sharpening technique has drawn increasing attention in both
image processing and remote sensing communities.

Many research efforts have been devoted to solving the
pan-sharpening problem, which can be categorized into
two groups: traditional optimization methods and deep
learning-based methods. Since an infinite number of HR-
MS images can be downsampled to produce the same LR-
MS image, reasoning the HR-MS images from the LR coun-
terparts is highly ill-posed. To solve the ill-posedness, vari-
ous natural images priors as regularization terms have been
developed in traditional optimization methods, e.g., low-
rank prior [29] and sparse image priors [44]. However, these
priors are not easy to be devised. Moreover, it is challenging
to optimize these methods, hampering the practical applica-
tions. Besides, due to the hand-crafted designs, their limited
representation ability results in unsatisfactory performance.

The powerful learning capability of deep neural net-
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Figure 2: Motivation. The comparison between prior un-
folding frameworks and ours.

works ignites renewed interest in this problem. As a pio-
neering work, PNN [18] employs three-layer convolution
neural networks to account for pan-sharpening learning.
Since then, more and more complicated and deeper archi-
tectures have been proposed to improve the performance
of pan-sharpening [25, 28, 30]. Despite the remarkable
progress, most of them focus on heuristically constructing
network architectures in a black box fashion without con-
sidering the underlying rationality of pan-sharpening task,
lacking transparency and interpretability.

To improve interpretability, model-driven deep unfold-
ing methods have been proposed. Xu et al. [26] propose
the first deep unfolding network for pan-sharpening. The
basic idea behind it is to formulate pan-sharpening as an
optimization problem and employ the proximal gradient de-
scent algorithm to solve it. The optimization process can be
reformulated as:

Ĥ = min
H

1

2
||L−DKH||22 + λΩ(H|P), (1)

where λ is a hyper-parameter to weight the first term (data
fidelity term accords with the degradation) and the second
term (regularization term Ω(·)). D, and K denote the down-
sampling and blur operators, respectively. L, P, and H re-
spectively represent the LR-MS image, PAN image, and
HR-MS image. Technically, the proximal gradient descent
algorithm can be approximatively expressed as an itera-
tive convergence problem by solving the following iterative

function:

H(k) = proxλ,Ω,P(H
(k−1) + δ(DK)T(L−DKH(k−1))),

(2)

where k and δ denote the iterative step and learning factor.
Motivation. In terms of the function proxλ,Ω,P that in-
volves the embedded prior term Ω(·), existing works usu-
ally heuristically employ diverse network architectures in
a black box fashion and deliver the proximal operator net-
works as the uncertain and vague priors, vislized in Figure
2. These methods thus lack clear physical meanings of the
prior terms. In addition, most deep unfolding-based meth-
ods [26, 27] cannot extract the pan-sharpening customized
prior with clear physical patterns well, which is caused by
weak interpretable prior operations. Hence, we argue that
the deep unfolding framework with sufficient interpretabil-
ity has the potential of improving performance.
Solution. The first function of pan-sharpening is to reason
the unknown information at the pre-defined pixel positions
using the context, detailed in Figure 1. In this work, we pro-
pose a novel model-driven deep unfolding framework for
pan-sharpening with interpretability. Inspired by the con-
tent reasoning ability of masked autoencoders (MAE) [9],
our framework endows the holistic learning process of deep
unfolding with the explicitly integrated with inherent phys-
ical mechanism underlying the pan-sharpening task. The
key insights of our framework are (1) we embed the pre-
trained MAE with spatial masking strategy into the unfold-
ing architecture, acting as intrinsic reasoning prior and (2)
we treat the pre-trained MAE with spatial-spectral masking
as the regularization term within loss function to constrain
the spatial-spectral consistency. Such new designs pene-
trate the image reasoning prior into deep unfolding network
while improving the interpretability and representation abil-
ity. Besides, our framework also outperforms existing state-
of-the-art approaches on multiple satellite datasets.

Our main contributions are summarized as follows:

• We propose to embed the pre-trained MAE into deep
unfolding architecture, resorting to its image reason-
ing ability for pan-sharpening. Such reasoning prior
makes the framework transparent and interpretable.

• We creatively treat the pre-trained MAE with spatial-
spectral masking strategy as regularization term within
loss function to constrain the spatial-spectral consis-
tency. The tailored regularization term with intrinsic
knowledge of spatial-spectral reasoning empowers the
unfolding framework.

• In contrast to previous works, our framework as the
first attempt pushes the frontiers of pan-sharpening to-
wards the designs of the deep prior term. It shows out-
standing performance on three satellite datasets, out-
performing the state-of-the-art algorithms.
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2. Related Work

Traditional Methods. Traditional pan-sharpening meth-
ods can be roughly divided into three main categories: CS-
based methods, MRA-based methods, and VO-based meth-
ods. The CS-based approaches separate spatial and spectral
information from the LRMS image and replace spatial in-
formation with a PAN image. Intensity hue-saturation (IHS)
fusion [3], the principal component analysis (PCA) methods
[13, 22], Brovey transforms [6], and Gram-Schmidt (GS)
orthogonalization method [14] are CS-based approaches.
These CS-based approaches are fast since LR-MS images
simply need spectral treatment to remove and replace spatial
components, but the resultant HR-MS images show severe
spectral distortion. The MRA-based methods inject high-
frequency features of PAN derived by multi-resolution de-
composition techniques into upsampled multi-spectral im-
ages. Decimated wavelet transform (DWT) [17], high-
pass filter fusion (HPF) [21], Laplacian pyramid (LP) [23],
smoothing filter-based intensity modulation (SFIM) [16],
and atrous wavelet transform (ATWT) [19] are typical
MRA-based methods that reduce spectral distortion and im-
prove resolution, but they heavily rely on multi-resolution
techniques, which may cause local spatial artifacts. In re-
cent years, VO-based methods are used because of the fine
fusion effect on ill-posed problems. These various con-
straints can only inadequately reflect the limited structural
relations of the images.

Deep Learning-based Methods. Deep learning-based
methods have been widely used for pan-sharpening [41, 27,
34, 35, 11, 32, 40, 43, 39, 36, 37, 33, 42]. PNN [18] uses
three convolutional units to directly map the relationship
between PAN, LR-MS, and HR-MS images. Inspired by
PNN, a large number of pan-sharpening studies based on
deep learning emerge. For example, PANNet [28] adopts
the residual learning module in Resnet [10]. MSDCNN [30]
adds multi-scale modules on the basis of residual connec-
tion. SRPPNN [2] refers to the design idea of SRCNN [4].

Recently, some model-driven deep models with physi-
cal meaning emerge. The basic idea is to use prior knowl-
edge to formulate optimization problems, then unfold the
optimization algorithms and replace the steps in the algo-
rithm with deep neural networks. For example, Xu et al.
[26] propose the model-based deep learning network MH-
Net and GPPNN for pan-sharpening, respectively. In terms
of the function design proxλ,Ω that takes for the embedded
prior term, existing works heuristically employ diverse net-
work architectures in the black-box fashion, thus resulting
in weak physical meanings. It motivates us to explore the
task-driven customized prior with clear physical patterns.

3. Methodology
3.1. Model Formulation

In general, pan-sharpening aims to obtain the HR-MS
image H from its degradation observation L = (H ⊗
K) ↓s +ns, where K and ↓s denote blur kernel and down-
sampling operation, and ns is usually assumed to be ad-
ditive white Gaussian noise (AWGN). The degradation pro-
cess by using the maximum a posterior (MAP) principle can
be reformulated as:

min
H

1

2
||L−DKH||22 + λΩ(H|P), (3)

where λ is a hyper-parameter to weight the first term (data
fidelity term accords with degradation) and the regulariza-
tion term Ω(.). We solve the optimization problem using
the half-quadratic splitting (HQS) algorithm. By introduc-
ing one auxiliary variables U, Eq. (3) can be reformulated
as a non-constrained optimization problem:

min
H,U

1

2
||L−DKH||22 +

η

2
||U−H||22 + λΩ(U|P), (4)

where η is the penalty parameter. When η approaches in-
finity, Eq. (4) converges to Eq. (3). Minimizing Eq. (4)
involves updating U and H alternately.
Updating U. Given the estimated HR-MS image H(k) at
iteration k, the auxiliary variable U can be updated as:

U(k) = argmin
U

η

2

∣∣∣∣∣∣U−H(k)
∣∣∣∣∣∣2
2
+ λΩ(U|P). (5)

We can derive the solution of Eq. (5) as

U(k) = proxΩ(.),λ,η(H
(k),P), (6)

where proxΩ(·) is the proximal operator corresponding to
the implicit local prior Ω(·).
Updating H. Given U(k), H is updated as:

H(k+1) = argmin
H

1

2
||L−DKH||22 +

η

2

∣∣∣∣∣∣U(k) −H
∣∣∣∣∣∣2
2
.

(7)

By applying the proximal gradient method [20] to Eq. (7),
we update H using the gradient decent method. Conse-
quently, the updated equation for H is

H(k+1) = H(k) − δ2∇f2(H
(k)), (8)

where δ2 is the step size, and the gradient ∇f2(H
(k)) is

∇f2(H
(k)) = (DK)T (DKH(k) − L) + η(H(k) −U(k)),

(9)

where T is the matrix transpose operation.
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Figure 3: The overall architecture of our proposed method. In detail, LR-MS image is firstly up-sampled and then performs
the stage-wise iteration, updating U and H in the overall K stages where the pre-trained MAE acting as reasoning prior pen-
etrates Deep Unfolding process. To promote the spatial-spectral consistency, the pre-trained extension version is employed
as the loss constraint. (Best viewed in color.)

3.2. Model Flowchart

As detailed in Figure 3, the proposed image reasoning
prior-embedded framework consists of four training stages:
Stage 1: Image Reasoning Prior Pre-training; Stage 2:
Spatial-Spectral Consistency Pre-training; Stage 3: Pene-
trating Reasoning Prior into Unfolding Network; Stage 4:
Spatial-Spectral Consistency Constraint as loss function.

3.3. Structure Flow

Based on the iterative algorithm, we construct deep un-
folding network for pan-sharpening as shown in Figure 3.
This network is an implementation of the algorithm for
solving Eq. (3). In terms of the function design proxλ,Ω
that takes for the embedded prior term Ω(.), we stand on
the shoulder of MAE proposed by He et al, where the MAE
is trained in a self-supervised manner and empowered with
the reasoning ability, acting as the image prior. Based on
the above analysis, the MAE is naturally treated as the prior
term Ω(.) and meets the function of pan-sharpening.

Stage 1: Based on the original MAE, we employ the
pure convolution neural network as the encoder and de-

coder to implement its network architecture with masking
patch strategies: (1) evenly divide the input image, ran-
domly sample the small subset of regions and mask the re-
maining ones while keeping the whole image architecture;
and (2) both the small subset of visible patches and mask
tokens are processed by the encoder and decoder that re-
constructs the original image in pixels. Note that the input
into the encoder is the whole image, not the image patch.

Stage 3: UNet. Based on the pre-trained MAE encoder
fCMAE(.), we implement the whole architecture of UNet
that is presented in Figure 5. To be specific, the k-th iter-
ation H(k−1) is fed into the encoder part ECMAE(.) of the
pre-trained MAE to generate the reasoning feature repre-
sentation as

Hrs = ECMAE(H
(k−1)), (10)

Then, PAN image P is projected into the shallow feature
space by the convolution units as

Fp = Conv(P). (11)

Referring to the representation Hrs and the texture-rich
PAN information Fp, we further incorporate them to re-
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Figure 4: Motivation. Masked Autoencoders as the im-
age reasoning learners. During pre-training, a large random
subset of image patches is masked out, remarked as yellow
ones. The encoder is applied to the small subset of visible
patches. Mask tokens are introduced after the encoder, and
the full set of encoded patches and mask tokens is processed
by a decoder that reconstructs the original image in pixels.

Figure 5: The detailed structure of UNet.

construct the HR-MS image by the spatial-frequency infor-
mation transformation module SFT that derived from [38],
which is shown in Figure 5. The information transformation
process is detailed as

Ffuse = SFT(Hrsl,Fp). (12)

HNet. To transform the update process of H(k+1) in
Eq. (8) into a network. Firstly, we need to implement two
operations, i.e., Down ↓s and Up ↑s, using the network.
Specifically, Down ↓s is implemented by a spatial identify
transformation convolution operator, and an additional s-

Figure 6: Motivation. Masked Autoencoders as spatiotem-
poral learners. It masks a large subset of random patches in
spacetime. An encoder operates on a set of visible patches.
A decoder then processes the full set of encoded patches
and mask tokens to reconstruct the input. Except for patch
and positional embeddings, the encoder, the decoder, and
the masking strategy have no spatiotemporal inductive bias.

strides followed convolution module with spatial resolution
reduction:

DKH(k) = Conv(s) ↓ (KH(k)), (13)

where Conv ↓(s) aims to perform the s times down-
sampling. The latter operation Up ↑s is implemented by
a deconvolution layer containing the s-strides convolution
module with spatial resolution expansion and a convolution
module with spatial identify transformation:

UH(k) = Conv(s) ↑ (L−DKH(k)), (14)

where Conv ↑(s) aims to perform the s times up-sampling.

3.4. Optimization Flow

Stage 2: To highlight, the uniqueness of our proposed
method is that the entire learning process is fully and ex-
plicitly integrated with the inherent physical mechanism un-
derlying the pan-sharpening task. Specifically, based on the
MAE with spatial-spectral masking strategy that is tailored
with the spatial-frequency representation learner, we rede-
velop the MAE as the regularization term within the loss
function to constrain the spatial-spectral consistency of the
model output and its corresponding ground truth. As shown
in Figure 6, standing on the shoulders of the video-version
extension of masked Autoencoders [5] proposed by He et
al, we redevelop the masked image modeling as “learned
loss function” to constraint the spatial-spectral representa-
tion consistency by the following implementation details:

• randomly mask out spatial-spectral patches in the
ground truth image and then learn an autoencoder to
reconstruct them;

• the only spatial-spectral specific inductive bias is on
embedding the patches and their positions; all other
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Table 1: Quantitative comparison with the state-of-the-art methods. The best results are highlighted in bold.

Method
WordView II GaoFen2 WordView III

PSNR ↑ SSIM↑ SAM↓ ERGAS↓ PSNR ↑ SSIM↑ SAM↓ ERGAS↓ PSNR ↑ SSIM↑ SAM↓ ERGAS↓

SFIM 34.1297 0.8975 0.0439 2.3449 36.9060 0.8882 0.0318 1.7398 21.8212 0.5457 0.1208 8.9730
Brovey 35.8646 0.9216 0.0403 1.8238 37.7974 0.9026 0.0218 1.3720 22.506 0.5466 0.1159 8.2331
GS 35.6376 0.9176 0.0423 1.8774 37.2260 0.9034 0.0309 1.6736 22.5608 0.5470 0.1217 8.2433
IHS 35.2962 0.9027 0.0461 2.0278 38.1754 0.9100 0.0243 1.5336 22.5579 0.5354 0.1266 8.3616
GFPCA 34.5581 0.9038 0.0488 2.1411 37.9443 0.9204 0.0314 1.5604 22.3344 0.4826 0.1294 8.3964

PNN (RS’16) 40.7550 0.9624 0.0259 1.0646 43.1208 0.9704 0.0172 0.8528 29.9418 0.9121 0.0824 3.3206
PANNet (ICCV’17) 40.8176 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577 29.684 0.9072 0.0851 3.4263
MSDCNN (TGRS’21) 41.3355 0.9664 0.0242 0.9940 45.6874 0.9827 0.0135 0.6389 30.3038 0.9184 0.0782 3.1884
SRPPNN (TGRS’20) 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0106 0.5586 30.4346 0.9202 0.0770 3.1553
GPPNN (CVPR’21) 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361 30.1785 0.9175 0.0776 3.2596
MutNet (CVPR’22) 41.6773 0.9705 0.0224 0.9519 47.3042 0.9892 0.0102 0.5481 30.4907 0.9223 0.0749 3.1125
MANet (ECCV’22) 41.8577 0.9697 0.0229 0.9420 47.2668 0.9890 0.0102 0.5472 30.5451 0.9214 0.0769 3.1032

Ours 41.8735 0.9731 0.0220 0.9413 47.3931 0.9892 0.0089 0.5435 30.5560 0.9225 0.0733 3.0072

Figure 7: Visual comparison of the HR-MS images produced by different methods for processing the LR-MS image from the
WorldView-II dataset. Images in the last row visualize the mean squared error image between the output and ground truth.

components are agnostic to the spatial-spectral nature
of the problem. In particular, the encoder and decoder
are both vanilla Vision Transformers with no factor-
ization or hierarchy, and our random mask sampling is
agnostic to the spatial-spectral structures.

To generate pleasing pan-sharpening results, we con-
struct our training objective function using the mean ab-
solute error loss over image-level measurement, which is

defined as

Limg =

N∑
i=1

∥∥∥H(K+1)
i −Hgt,i

∥∥∥
1
, (15)

where H
(K+1)
i denotes the i-th estimated HR-MS image,

Hgt,i is i-th ground truth HR-MS image, and N is the num-
ber of training pairs.

Stage 4: Suppose that the pre-trained MAE model is
fmae(.) and its encoder part is Emae(.), it is employed as
the complementary loss function to the original image-level
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Table 2: The average quantitative results on the GaoFen2 dataset in the full resolution case.

Metrics SFIM GS Brovey IHS GFPCA PNN PANNET MSDCNN SRPPNN GPPNN MutNet MANet Ours

Dλ ↓ 0.0822 0.0696 0.1378 0.0770 0.0914 0.0746 0.0737 0.0734 0.0767 0.0782 0.0694 0.0681 0.0676
Ds ↓ 0.1087 0.2456 0.2605 0.2985 0.1635 0.1164 0.1224 0.1151 0.1162 0.1253 0.1118 0.1119 0.1112

QNR ↑ 0.8214 0.7025 0.6390 0.6485 0.7615 0.8191 0.8143 0.8251 0.8173 0.8073 0.8259 0.8266 0.8287

Figure 8: Qualitative visualization comparison of our method with other representative counterparts on a typical satellite
image pair from the GaoFen2 dataset. Images in the last row visualizes the MSE between the output and ground truth.

loss function Limg as

Lss =

N∑
i=1

||Emae(Hgt,i)− Emae(H
(K+1)
i )||1. (16)

The total loss function is remarked as

L = Limg + λ× Lss. (17)

where λ is weighted factor and set as 1 in our work.

4. Experiments
4.1. Settings

Datasets. Due to the unavailability of ground-truth MS im-
ages, we follow the previous works to generate the train-
ing set by employing the Wald protocol tool [24]. Specif-
ically, given the MS image H ∈ RM×N×C and the PAN
image PH ∈ RrM×rN×b, both of them are downsampled by
a ratio r, and then are denoted as L ∈ RM/r×N/r×C and
P ∈ RM×N×b, respectively. In the training set, L and p are
regarded as the inputs, while H is the ground truth. In our

work, three satellite images of WorldView II, GaoFen2, and
WorldView III are adopted to construct image datasets. For
each database, PAN images are cropped into patches with a
size of 128 × 128 while the corresponding MS patches are
with a size of 32× 32.
Baselines. Several state-of-the-art Pan-sharpening methods
are compared, including seven representative deep learning-
based methods: PNN [18], PANNET [28], MSDCNN [30],
SRPPNN [2], GPPNN [26], MANet [27], and MutNet [41]
and five promising traditional methods: SFIM [16], Brovey
[7], GS [14], IHS [8], and GFPCA [15].
Metrics. Several widely-used image quality assessment
(IQA) metrics are employed for performance measurement,
including PSNR, SSIM, SAM [31], ERGAS [1], and three
non-reference metrics Dλ, DS , and QNR for real-world
full-resolution scenes.
Implementations. In our experiments, all the designed
networks are implemented with PyTorch framework and
trained on the PC with a single NVIDIA GeForce GTX
3090 GPU. In the training phase, these networks are opti-
mized by the Adam optimizer [12] over 1000 epochs with
a mini-batch size of 4. The learning rate is initialized with
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5 × 10−4. When reaching 200 epochs, the learning rate is
decayed by multiplying 0.5.

4.2. Comparisons

Evaluation on reduced-resolution scenes. The compari-
son results on three satellite datasets are reported in Table
1. As can be seen, our proposed method achieves the best
overall results than other pan-sharpening methods across
all the satellite datasets. Specifically, the average gains
of our method over the second-best MANet are 0.12dB,
0.32dB, and 0.10dB in terms of PSNR on WorldView-II,
GaoFen2, and WorldView-III datasets, respectively. In ad-
dition to PSNR, consistent improvements can be observed
in the other metrics, indicating lower spectral distortion and
spatial texture preservation. Our method outperforms other
compared methods by a large margin. The corresponding
visual comparisons shown in Figure 7 and Figure 8 also
support the above claim. More visual results can be found
in the supplementary material.
Evaluation on full-resolution scenes. In order to demon-
strate the real-world application, we further perform exper-
iments on 200 sets of full-resolution data obtained by the
additional Gaofen2. Due to the unavailability of ground-
truth MS images in real-world full-resolution scenes, the
commonly-used three non-reference metrics of Dλ, Ds, and
QNR are adopted for evaluation. The quantitative compar-
isons between representative deep learning-based methods
and our method are shown in Table 2. Our methods surpass
other pan-sharpening methods in all metrics.

Table 3: Quantitative results of the model with different
number stages.

Stage Number (K) PSNR↑ SSIM↑ SAM↓ ERGAS↓

1 41.2459 0.9655 0.0250 1.0123
2 41.4962 0.9679 0.0240 0.9838
3 41.7152 0.9722 0.0223 0.9506
4 41.8735 0.9731 0.0220 0.9413
5 41.8461 0.9697 0.0226 0.9421
6 41.7429 0.9733 0.0221 0.9506

Table 4: Quantitative results with the ablation of key com-
ponents.

UMAE LMAE PSNR↑ SSIM↑ SAM↓ ERGAS↓
41.4655 0.9669 0.0253 0.9724

✓ 41.6576 0.9681 0.0241 0.9679
✓ 41.8382 0.9695 0.0231 0.9423

✓ ✓ 41.8735 0.9731 0.0220 0.9413

4.3. Ablation Study

To explore the contribution of different hyper-parameters
and the key components, we conduct ablation studies on the
WorldView-II dataset.
Impact of the Stage Numbers. To investigate the impact
of the number of unfolded stages, we experiment proposed
method with varying numbers of stages K. Observing the
results from Table 3, we found that the model’s performance
has obtained considerable improvement as the number of
stages increases until reaching 4. When further increasing
the K, the results show a decreasing trend, which may be
caused by the difficulty of gradient propagation. We set
K = 4 as default stage number to balance the performance
and computational complexity.
Effect of Key Components. To investigate the contribution
of the devised modules in our network, we take the model
with K = 4 as the baseline and then conduct the compari-
son by observing the difference before and after removing
the components. The corresponding quantitative compar-
isons are reported in Table 4, where UMAE represents the
MAE within the UNet network and LMAE represents the
MAE within loss function. As can be observed, equipping
with both the MAE priors significantly improves the model
performance.

Figure 9: The feature visualization in Unet upon the itera-
tive stage increasing of deep unfolding network.

4.4. Effect of MAE prior

To verify the effect of the designed MAE prior, we
deepen into the feature maps of Frs, Ffuse. As illustrated in
section 3.3 that the MAE prior takes account for predicting
the missing information of Frs and then enhances the rep-
resentation Ffuse, with the stage increasing, the MAE-prior
reasoned feature Frs is gradually enhanced and the resulted
Ffuse becomes more informative, thus supporting the pow-
erful capability of the MAE prior, detailed in Figure 9.

5. Conclusion
In this paper, we proposed the first work to focus on

the designs of the deep prior term. We employ the learned
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MAE in a self-supervised manner acting as an image prior
and then embed the pre-trained MAE with reasoning abil-
ity to penetrate deep unfolding architecture, thus making it
more transparent. We also redevelop the pre-trained MAE
with a spatial-spectral masking strategy and employ it as
the regularization term within loss function to constrain the
spatial-spectral consistency. The contained intrinsic knowl-
edge over MAE loss term empowers the main unfolding
network learning ability. Extensive experiments on three
satellite datasets demonstrate its superiority.
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