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Abstract

Although existing image deep learning super-resolution
(SR) methods achieve promising performance on bench-
mark datasets, they still suffer from severe performance
drops when the degradation of the low-resolution (LR) in-
put is not covered in training. To address the problem,
we propose an innovative unsupervised method of Learn-
ing Correction Filter via Degradation-Adaptive Regression
for Blind Single Image Super-Resolution. Highly inspired
by the generalized sampling theory, our method aims to en-
hance the strength of off-the-shelf SR methods trained on
known degradations and adapt to unknown complex degra-
dations to generate improved results. Specifically, we first
conduct degradation estimation for each local image region
by learning the internal distribution in an unsupervised
manner via GAN. Instead of assuming degradation are spa-
tially invariant across the whole image, we learn correc-
tion filters to adjust degradations to known degradations in
a spatially variant way by a novel linearly-assembled pixel
degradation-adaptive regression module (DARM). DARM is
lightweight and easy to optimize on a dictionary of multi-
ple pre-defined filter bases. Extensive experiments on syn-
thetic and real-world datasets verify the effectiveness of our
method both qualitatively and quantitatively. Code can be
available at: https://github.com/edbca/DARSR.

1. Introduction
Single image super-resolution (SISR) aims to recover a

photo-realistic HR image from its LR counterpart. As a fun-
damental computer vision task, SISR has been widely used
in various applications, such as enhancing the images’ vi-
sual perception on high-resolution devices and improving
the image quality for other vision tasks [7]. In recent years,
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Figure 1. Illustration of most degradation estimation strategies for
blindSR and our method. (a) Most methods assume degradations
are spatially invariant and estimate a single degradation for the
whole image. (b) Our method can learns correction filters to adjust
the degradations to a known degradation in a spatially variant way.

a multiplicity of deep learning-based SISR methods have
been proposed [33, 18, 25, 52, 51, 8, 29, 54] and achieved
substantial performance improvement.

Typically, training and testing LR images in existing
SISR approaches are simulated from a large collection of
HR images. As a pioneer work, Dong et al. [9] first intro-
duced a three-layer convolutional neural network in SISR to
learn LR-HR mapping. Zhang et al. [51] proposed a chan-
nel attention mechanism to build a deep model for SISR.
Liang et al. [22] proposed a baseline model SwinIR for
SISR based on the transformer mechanism. In these meth-
ods, the LR images are often generated by limited num-
bers of fixed degradations (e.g., Bicubic or blur-downscale).
However, the degradation process in real-world scenarios is
extremely complicated and unpredictable. Although exist-
ing methods [25, 51, 29, 21, 18, 8] have achieved promis-
ing performance, they often encounter severe performance
drops when the degradation is not well covered in training.
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Recently, many works have attempted to address the
challenging degradation adaptation problem by explicit or
implicit degradation modeling in a blind or non-blind man-
ner. SRMD [48] learns an SR model with training data
covering a large set of degradation maps, which are mod-
eled with blur kernel and noise. Following SRMD, UDVD
[43] proposes a single unified dynamic network trained for
various degradations to improve performance. However, in
most practical applications, blur kernels are not available.
They can hardly deal with the LR inputs with degradations
out of their modeling scope. To tackle this problem, some
methods [34, 35, 2, 11] estimate a blur kernel from each in-
put LR image for adapting to complex degradations. IKC
[12] proposes to correct kernel estimation in an iterative
way to approach a satisfactory result gradually. ZSSR [34]
learns degradation kernels of LR images via internal statis-
tics for every image in a self-supervised manner. Pseudo-
supervision [53] combines the forward SR reconstruction
path in CinCGAN [44] architecture with degradation learn-
ing to deal with the domain shift problem. In addition, Hus-
sein et al. [14] proposed a correction filter strategy on the
signal that is sampled by a certain basis can be reconstructed
by a different basis, for modifying an LR input to match the
SR model with a pre-defined degradation. These methods’
generalization ability still greatly relies on the accuracy of
degradation estimation or training data distribution. In ad-
dition, as shown in Fig. 1 (a), they assume degradations are
spatially invariant and only estimate a single degradation
for the whole image. Such an assumption is rarely applica-
ble for real images whose regions (e.g., edges, corners) are
discriminative for degradation estimation.

To fully take advantage of the off-the-shelf super-
resolvers, we try to robustify the degradation of LR in-
put without hurting useful information for efficiently adapt-
ing to practical applications. A brief illustration and com-
parison to the existing degradation estimation strategy for
blindSR are presented in Fig. 1. Specifically, we propose an
innovative unsupervised method of learning correction filter
via a linearly-assembled pixel degradation-adaptive regres-
sion module (DARM) for correcting the LR image’s degra-
dation to the known one in a spatially variant way. Our
DARM is highly lightweight and can be easily optimized
over a dictionary of multiple pre-defined filter bases. In this
way, our method can conduct correction filtering and help
off-the-shelf SISR models to adapt to complex degradations
on every testing image efficiently. In addition, we propose
a degradation metric (DM) loss to learning to map the un-
quantifiable degradation in a metric space to guarantee the
accuracy of degradation correction.

In summary, our main contributions are three-fold:

• We propose an innovative unsupervised strategy by
learning correction filters for Blind Single Image
Super-Resolution in a spatially variant way, greatly en-

hancing the adapting ability of trained super-resolvers
to unknown complex degradations.

• We propose a lightweight degradation-adaptive regres-
sion module (DARM) that could accurately yet effi-
ciently learn correction filters over a dictionary of mul-
tiple pre-defined filter bases.

• We propose a novel degradation metric (DM) loss via
metric learning to map the unquantifiable degradation
in a metric space to effectively improve the accuracy
of degradation correction.

• Extensive experiments on synthetic datasets and real
images verify that our method can consistently im-
prove the performance of the off-the-shelf super-
resolvers both qualitatively and quantitatively.

2. Related Work
2.1. Predefined-Degradation based SR

Dong et al. [9] firstly proposed a three consecutive con-
volutional neural network in SISR to learn a complex LR-
HR mapping. Kim et al. [15] increased the depth of the net-
work via a skip connection for stable training. To achieve
promising performance, most methods adopt residual archi-
tecture [38, 52, 26]. EDSR [25] removes the batch nor-
malization layer in a residual block and increasing the net-
work depth. RCAN [51], SAN [8] and HAN [29] intro-
duce the attention mechanism to draw more high-frequency
information to further improve the performance. Further-
more, SwinIR [22], IPT [4], GRL [20] employ the trans-
former mechanism for constantly refreshing the state-of-
the-art of SISR. However, these methods perform promis-
ingly under a single degradation model (e.g., bicubic and
blur-downscale degradation models); they tend to produce
over-sharped or blurry results if the degradations present in
the testing deviate from training.

2.2. Degradation-Learning based SR

Multiple degradation modeling based SR. By modeling
multiple degradations, this type of method can produce
good results for LR inputs covered by the training dataset.
SRMD [48] proposes to directly concatenate an LR input
image with its degradation map as a unified input to the
SR model, thus allowing feature adaptation according to
the specific degradation and covering multiple degradation
types in a single model. DPSR [49] incorporates a super-
resolution network into a MAP-based iterative optimization
scheme which solves the HR image by minimizing objec-
tive functions. Similar to DPSR, USRNet [46] proposes an
end-to-end trainable unfolding network that leverages both
learning-based methods and model-based methods by un-
folding the MAP inference via a half-quadratic splitting al-
gorithm. Luo et al. [13] adopted an alternating optimization
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Figure 2. Architecture of our method. (a) Illustration of the learning of correction filters. (b) Illustration of the degradation correction.

algorithm to estimate blur kernel and restore SR image in a
single model. However, the performance of these methods
still relies on accurate estimation of input kernel, which is
challenging on arbitrary LR images.

Degradation estimation based SR. Gu et al. [12] proposed
a general framework for blind SR by using self-similarity to
recover the blur kernel and the HR image jointly. Kernel-
GAN [2] interprets the maximization of patch recurrence
within a single image as a data distribution learning prob-
lem and generates downscaled LR images by learning the
internal patch distribution of the testing LR image. Shocher
et al. [34] proposed a zero-shot super-resolution (ZSSR)
method which trains image-specific on the testing LR im-
age to take the degradation parameters and estimate blur
kernel for improving the performance. Afterward, Soh et
al. [35] proposed to learn an image-specific degradation
simulation network together with a zero-shot image-specific
super-solution network which exploits the depth informa-
tion of the image to extract an unpaired high/low resolution
patch collection to train the network. Liang et al. [24] pro-
posed a novel method to incorporate a flow-based kernel
prior into the framework by learning an invertible mapping
between the anisotropic Gaussian kernel distribution and a
tractable latent distribution. While these methods consider
degradation are spatially invariant and only estimate a sin-
gle degradation for input image. Cornillere et al. [5] pro-

posed a degradation-aware SR network to adapt spatially
variant degradations. MANet [23] uses mutual affine con-
volution in their network for spatially variant kernel estima-
tion. However, these methods greatly rely on the coverage
of degradation modeling or training data distribution.

3. Our Method
3.1. Preliminaries

The SISR degradation model can be mathematically for-
mulated as:

x = (y ⊗ k) ↓s, (1)

where y denotes the HR image; x denotes the LR image;
k is the blur kernel; ⊗ denotes convolution operator; ↓s de-
notes sub-sampling operator with stride of s. Note that Eq. 1
can be written as:

x = Dy, (2)

where D represents degradation operator. As assumed by
Hussein et al [14], the signal y can be perfectly recovered
from its samples x by the operator U(DU)−1 as:

y = U(DU)−1x = U(DU)−1Dy, (3)

where U is an upsampling operator which is the adjoint op-
erator of D. Eq. 3 indicates that the image y resides in the
linear subspace can be spanned by the known degradation.
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Therefore, it can be perfectly recovered from the observa-
tions xk by applying the pseudo inverse of Uk as:

y′ = Uk(DkUk)−1Dky = Uk(DkUk)−1xk, (4)

where Dk denotes known degradation operation; xk de-
notes known degraded image; Uk denotes a DNN super-
resolver trained under the assumption of known degradation
and it can handle the xk quite well with a learned prior.

According to the generalization of classical Whittaker-
Shannon sampling theorem [17, 30, 32, 42], some works
[3, 10, 39] consider that a signal sampled by a certain ba-
sis can be reconstructed by different basis. By combining a
correction filter with a reconstruction kernel, a sampled sig-
nal can be reconstructed. The correction filter can transform
the sampling coefficients associated with the sampling ker-
nel to coefficients that fit the reconstruction kernel. Given a
degraded LR image xu obtained by a unknown degradation
Du, xu = Duy. Then, the y′ can be reconstructed as:

y′ = UkCxu = UkCDuy, (5)

where C is a correction operator for xu. Combining Equa-
tion 4 and Eq. 5, we can find the expression of C as follows:

C = (DuUk)−1 ⇒ CDu = U−1k . (6)

The operator C can be applied simply as a convolution with
a correction filter. Following Eq. 6, we first conduct spatial-
variant degradation estimation to model Du, which learns
the spatially variant degradations in xu. Then, we use our
DARM to learn the correction filters C for correcting the
degradations of xu to pre-defined degradation. Finally, we
employ a trained Uk to super-resolve the corrected image.

Our method mainly distinguishes from the work [14]
in two respects: (1) The performance of the work [14]
greatly relies on the accuracy of degradation estimation. In
our method, we coherently combine degradation estimation
with correction filter learning into a unified network, greatly
improving the accuracy and adaptiveness; (2) The work [14]
only considers the spatially invariant degradation situation,
failing to adopt a correction filter to solve a natural image
with complex degradations. In our method, we estimate
degradations in a spatially variant way.

3.2. Overview

As shown in Fig. 2 (a), we learn correction filters via
DARM in an unsupervised manner. Then, as shown in
Fig. 2 (b), we use learned correction filters to correct the
degradation of the input LR image to the pre-defined degra-
dation. Finally, an off-the-shelf super-resolver trained by
known degradation is used for upsampling the degradation
adapted LR image for SR. The learning of correction filters
mainly consists of three components: generation of train-
ing data from input LR image, spatial-variant degradation
estimation, and learning correction filters through proposed
degradation adaptation regression module.

..
.

..
.

..
.

Crop

Y = {yi}

Bicubic 
downsampling

X = {xi}

Xb = {xb
i}

Input LR image

Figure 3. Illustration of the generation of training data from the
input LR image. X = {xi}, Y = {yi}, and Xb = {xi

b} are used
to train our proposed degradation-adaptive regression module.

3.3. Generation of Training Data

Given the input LR image, our goal is to correct com-
plex degradations of all regions to the degradation (e.g.
bicubic) in the off-the-shelf super-resolver. As shown in
Fig. 3, we first crop the input LR image to generate the
patches X = {xi} where each patch xi has the degrada-
tion of the corresponding area and X can cover the degra-
dation of each region in the input LR image. Then, we
crop the input LR image to generate the patches Y = {yi},
which aims to learn a downscaled image (e.g., by a factor
of 2 or 4) such that its degradation is approximate to that
of the patches X (see Sec. 3.4). Finally, we use known
downsampling operation to degrade patches Y for gener-
ating patches Xb = {xib} of the same size with xi for
degradation-adaptive regression learning. After obtaining
training data X , Xb, and Y , we will train our network to
learn correction filters as shown in Fig. 2 (a).

3.4. Spatial-Variant Degradation Estimation.

X and Xb are not paired, which leads to the correction
filters are unable to be learned directly. Thus, we adopt
the GAN-based method to learn Xc = {xic} with the same
degradation as X through a GAN. Specially, we employ a
degradation generator G and a discriminator D, as shown
in Fig. 2 (a). Different from KernelGAN [2] which only
learns one global invariant degenerate kernel, we will learn
spatially variant degradation for each local patch xic. In this
way, we can learn Xc to cover the degradation of each re-
gion for improving performance. In addition, we propose a
novel degradation metric (DM) loss (see Sec. 3.6) to learn
more accurate degradation in xi.

3.5. Learning Correction Filters via DARM

As shown in Fig. 2 (a), we adopt paired training data
Xc and Xb to learn correction filters by training our DARM
through L1 loss and DM loss. We also train our network on
unpaired training dataX andXb by DM loss. The output of
Xc andX through DARM can be expressed asXb′ = {xib′}
and Xa = {xia}, respectively. Notably, our DARM learns a
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correction filter for each input pixel.
Our key idea lies on the total probability theorem and the

additivity of normal distribution. We can obtain the correc-
tion filter by combining multiple Gaussian filters. Specif-
ically, a correction filter F i can be represented as a linear
combination of a set of underlying base Gaussian filters:

F i = ΦiD =

N∑
j=1

θijfj , (7)

where F = RHW×(k×k) (k is the kernel size which is em-
prically set to 5 in our experiments) denotes the learned
correction filters for each pixel in the input image of size
H × W ;Φ = RHW×N denotes the learned linear com-
bination coefficients for each pixel; The dictionary D =
RN×(k×k) consists of 72 Gaussian and difference of Gaus-
sians (DoG) filters [19], which can help to increase the vis-
ibility of details accurately learn correction filters.

For the purpose of efficiency, we adopt a lightweight
residual network for DARM via learning linear combina-
tion coefficients Φ. It mainly consists of two residual chan-
nel attention blocks (RCAB) [51] to learn deep feature, the
convolutional layers in the head to extract the shallow fea-
ture of the input image, and the final convolutional layers to
generate combination coefficients.

3.6. Loss Functions

Adversarial loss. We adopt GAN-based method to learn
spatially variant degradations of LR image. The adversarial
loss for the degradation generator G can be formulated as:

Lgan = E[D(G(yi))− 1]2 +R, (8)

where R denotes the regularization term which applies re-
alistic explicit priors [2]. The discriminator D tries to dis-
tinguish degradations generated by G from xi of input LR
image and the constrain of D can be formulated as:

LD = E[D(xi)− 1)2] + E[D(G(yi))2]. (9)

Pixelwise loss. It is used to accelerate the convergence of
DRAM. Besides, it can effectively compensate for the struc-
tural distortion caused by GAN. We use L1 loss to constrain
the results generated by DASR and SR model. The mathe-
matic formulation is:

Lpix = ||xib − xib′ ||1 + ||yi − SR(xib′)||1, (10)

where SR(∗) denotes an off-the-shelf super-resolver.
Degradation metric loss. It is difficult to estimate com-
plex degradations accurately via single adversarial learn-
ing in real-world scenarios. To overcome this problem, we
propose a novel degradation metric (DM) loss which maps
the complex degradation into a metric space for effective
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Figure 4. Architecture of degradation score estimation module
(DSEM), which mainly consist of three Resblocks [25], an average
pooling layer, a sigmoid layer, and a full connection layer.

constraint. Specially, we use a degradation score estima-
tion module (DSEM) to model the distance between target
degradation and estimated degradation. We use xi and xbi

as anchor samples to train the metric space as shown in Fig.
4. The mathematical formulation is elaborated as:

Lac =
1

N

N∑
i

(||S(xib)||22 + ||S(xi)− 1||22), (11)

where S(∗) denotes the degradation score estimation oper-
ation, which is implemented by DSEM. Then, we use DM
loss from two parts, one is the result generated by down-
scale generator G, and the other one is the result generated
by DARM. The mathematical formulation is elaborated as:

Ldml = ||S(xib)− S(xib′)||22 + ||S(xi)− S(G(yi))||22
+||S(xi)− S(xa

i))||22. (12)

Full objective. Mathematically, the total loss function for
our method can be formulated as:

LAll = Lgan + λ1Lpix + λ2Ldml, (13)

where λ1 and λ2 are two empirical hyper-parameters that
are set to 2.5 and 0.5, respectively.

4. Experiments
4.1. Implementation Details

We conduct experiments on real-world datasets (Real-
SRSet [47]) and synthetic datasets (NTIRE2017 [36] and
NTIRE2018 [37]). The results are evaluated by the peak
signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [41], and learned perceptual image patch similar-
ity (LPIPS) [50]. PSNR and SSIM are evaluated on the Y
channel of transformed YCbCr, while LPIPS is on RGB. We
train our network by each iteration with 16 batches which
consist of paired patches from the LR input. The patches
32×32 and 128×128 (xi and yi in Fig. 3) are for scaling
×4. The patches 64×64 and 128×128 are for scaling ×2.
The iteration number is set to 3, 000, and the optimizer is
the Adam [16] with β1 = 0.9, β2 = 0.999. The initial
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Table 1. Quantitative results on NTIRE2017 [36] and NTIRE2018 [37] testing datasets for scaling factor×4. ↑ denotes the larger the better.
↓ denotes the smaller the better. Red color indicates the best performance, and blue color indicates the second best performance.

Methods
2017Track2 2018Track2 2018Track3 2018Track4

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SRGAN [18] 22.99 0.5889 0.4669 18.99 0.4582 0.6127 19.75 0.4706 0.6241 19.50 0.4687 0.6150

SRFBN-s [21] 23.07 0.6043 0.4845 18.87 0.4886 0.6085 19.78 0.5043 0.6251 19.51 0.5020 0.6112
KernelGAN [2] + ZSSR [34] 22.49 0.5800 0.4951 18.43 0.5450 0.5739 19.75 0.5750 0.6000 19.36 0.5747 0.5774

BlindSR [5] 21.61 0.5483 0.4820 18.35 0.4096 0.6088 19.31 0.4243 0.6192 18.90 0.4171 0.6102
IKC [12] 22.28 0.5738 0.4683 18.72 0.5488 0.5686 19.81 0.5716 0.5950 19.42 0.5713 0.5723

SRGAN [18] + Correction Filter [14] 20.98 0.5776 0.5821 18.73 0.5555 0.6141 19.07 0.5571 0.6288 18.95 0.5661 0.6147
SRFBN-s [21] + Correction Filter [14] 20.98 0.5851 0.6023 18.74 0.5631 0.6255 19.10 0.5659 0.6499 18.98 0.5746 0.6313

USRNet [46] 22.85 0.6029 0.5110 19.00 0.5641 0.5700 19.97 0.5825 0.6016 19.67 0.5853 0.5795
MANet [23] 21.41 0.5579 0.4911 18.66 0.4744 0.6090 19.31 0.4833 0.6288 19.01 0.4762 0.6154

DIP-FKP [24] 20.49 0.5336 0.5050 18.11 0.5528 0.5781 18.72 0.5609 0.6086 18.45 0.5605 0.5869
DASR [40] 22.92 0.5968 0.4780 18.92 0.5579 0.5690 19.83 0.5748 0.5929 19.53 0.5782 0.5712

BSRDM [45] 21.63 0.5797 0.5581 18.72 0.5483 0.5946 19.57 0.5657 0.6124 19.18 0.5596 0.6001
Ours + SRGAN [18] 23.09 0.6017 0.4637 20.24 0.5741 0.6088 21.04 0.5845 0.6173 21.18 0.5887 0.6021

Ours + SRFBN-s [21] 23.35 0.6126 0.5063 20.32 0.5787 0.6225 21.11 0.5859 0.6291 21.34 0.5948 0.6021

Table 2. Quantitative results on NTIRE2017 Track2 [36] testing
dataset for scaling factor ×2.

Methods PSNR↑ SSIM↑ LPIPS↓
SRFBN-s [21] 26.43 0.7246 0.3437

KernelGAN [2] + ZSSR [34] 26.34 0.7288 0.3295
BlindSR [5] 27.22 0.7539 0.3054

SRFBN-s [21] + Correction Filter [14] 23.44 0.6125 0.3482
USRNet [46] 26.52 0.7368 0.3710
MANet [23] 27.92 0.7818 0.3086

DIP-FKP [24] 26.29 0.7492 0.3188
DASR [40] 26.38 0.7222 0.3335

BSRDM [45] 26.65 0.7303 0.4432
Ours + SRFBN-s [21] 27.99 0.7822 0.3513

MANet DIP-FKP MANet DIP-FKP

MANet DIP-FKP

MANet DIP-FKP

MANet DIP-FKP

MANet DIP-FKP

Figure 5. Illustration of degradation estimation for MANet [23]
and DIP-FKP [24] on “0801×4m.png” in NTIRE2018 track2.

learning rate is 10−3 which will be decayed by 0.5 after
each 750 iterations. Data augmentation includes randomly
rotating 90, 180, 270 degrees, and horizontally flipping. We
implement experiments with PyTorch1.12.0 on an NVIDIA
Geforce RTX 3090 GPU.

4.2. Experiments on Synthetic Datasets.

We conduct experiments on four synthetic benchmarks:
track2 of NTIRE2017 [36] and track2, track3, and track4

of NTIRE2018 [37]. The degradations in these datasets
are complex and unknown. Notably, the official uses same
degradation operators within an image. But, as shown in
Fig. 5, we use MANet [23] and DIP-FKP [24] to es-
timate the degradation of different regions in LR image,
we find that the degradation of degraded image is spa-
tially variant. We think that the given HR images are spa-
tially variant degraded from the real HR ones due to cam-
era acquisition in complex scenes, which make the LR im-
ages are spatially variant. We compare with unsupervised
and supervised methods, including SRGAN [18], SRFBN-
s [21], KernelGAN [2], ZSSR [34], BlindSR [5], IKC
[12], Correction Filter [14], USRNet [46], DIP-FKP [24],
MANet [23] and BSRDM [45].

4.2.1 Quantitative Evaluation.

The detailed experimental results are listed in Tab. 1
and Tab. 2. Note that our method does not have a design
module for denoising, so we employ CBM3D [6] to conduct
on track2, track3, and track4 of NTIRE2018 datasets firstly.
We also use the same operation for other methods without
the ability of denoising for a fair comparison.
Comparing with trained SR methods. As listed in Tab.
1 and Tab. 2, our method can improve the performance
of SRGAN in all testing datasets on PSNR/SSIM/LPIPS.
Our method also improve the performance of SRFBN-s in
all testing datasets on PSNR/SSIM for scaling factor ×2
and ×4. We noticed that our method did not improve the
LPIPS values of SRFBN-s. This phenomenon often oc-
curs in PSNR-Oriented methods (e.g., EDSR, RCAN). Our
method can improve the performance of perceptual-driven
methods (e.g., SRGAN, ESRGAN) in all indicators, in-
cluding LPIPS. PSNR-Oriented methods focus on achiev-
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GT BSRDM
SRFBN-s +

Correction_Filter DASR DIP-FKP
Ours +
SRFBN-sSRFBN-s

PSNR/SSIM(a) LR Img "0821x2.png" in 2017Track2 23.18/0.7713 20.65/0.6681 23.17/0.7678 19.83/0.6868 24.83/0.7968 26.13/0.8474

(c) LR Img "0829x4w.png" in 2018Track4

GT BSRDM
SRFBN-s +

Correction_Filter DASR DIP-FKP
Ours +
SRFBN-sSRFBN-s USRNet

PSNR/SSIM 19.11/0.5428 19.52/0.5542 19.32/0.5401 19.03/0.5194 16.37/0.4836 17.59/0.4746 19.78/0.5648(b) LR Img "0891x4w.png" in 2018Track4

PSNR/SSIM 23.60/0.473921.21/0.465621.17/0.4654 20.32/0.4442 21.13/0.4632 19.80/0.4561 21.11/0.4554

MANetBlindSR

25.77/0.837024.93/0.8096

MANet

16.38/0.4626

21.00/0.4589

Figure 6. Visual comparisons of different methods on 2017Track2 [36], 2018Track2 [37], and 2018Track4 [37]. Zoom in for best view.

BSRDM

SRFBN-s +
Correction_Filter DASR DIP-FKP

Ours +
SRFBN-sSRFBN-s USRNetInput MANet

Figure 7. Visual comparisons of different method for × 4 on RealSRSet [47] dataset. Zoom in for best view.

ing high PSNR and tend to generate images with too smooth
and lost details (More analysis in Supp. Materials). Al-
though our method can effectively recover LR images, the
characteristics of these methods still lead to LPIPS degrada-
tion. But in general, our method can consistently improve
the performance of off-the-shelf super-resolvers.

Comparing with Correction Filter. As shown in Tab. 1
and Tab. 2, Correction Filter failed to improve the per-
formance of SRFBN-s and SRGAN. The performance of
Correction Filter greatly relies on the accuracy of degrada-
tion estimation. However, it is difficult to solve complex
degradation by their iterative approximation strategies. Be-

sides, they only considers the spatially invariant degrada-
tion, failing to tackle spatially ones (More comparison are
in Supp. Materials). The experimental results show that
our method is more effective than Correction Filter.

Comparing with spatially-variant SR methods. From
Tab. 2, we can see that the performance of SRFBN-s is
far lower than BlindSR and MANet in all indicators. While
SRFBN-s equipped our method outperforms BlindSR and
MANet by 0.77 dB/0.0283 and 0.07 dB/0.0004 in terms
of PSNR/SSIM, respectively. In Tab. 1, our method can
help SRGAN and SRFBN-s outperforms Blind and MANet
on all testing datasets in terms of PSRN/SSIM. The experi-
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mental results verify that our method is superior in solving
spatial-variant degradation.
Comparing with other blind methods. As listed in
Tab. 1, Ours+SRFBN-s achieves the best SSIM and PSNR
on all datasets. Ours+SRFBN-s outperforms BSRDM by
1.72 dB/0.0329 and 2.16 dB/0.0352 on 2017Track2 and
2018Track4 on PSNR/SSIM, respectively. Ours+SRFBN-s
outperforms DASR by 1.4 dB/0.0208 and 1.81 dB/0.0166
on 2018Track2 and 2018Track4 on PSNR/SSIM, respec-
tively. Tab. 2 also verify that our method outperforms other
blind methods. We conclude that our method is effective
and has strong degradation-adaptive ability.

(a) Input LR image  (b) Corrected LR image 
(without DM Loss)

 (c) Corrected LR image

Figure 8. Visual ablation study about DM loss.

4.2.2 Qualitative Evaluation.

Fig. 6 are representative visual results. As shown in
Fig. 6 (a), our method can generate sharper and cleaner
SR images, but most other methods generate details with
blurry or artifacts. Although the SR images generated by
BSRDM seem to be clear, they lose some important de-
tails. In Fig. 6 (b), Ours+SRFBN-s can correctly restore
font textures, while most other methods will produce in-
correct textures. Although BSRDM generates font tex-
ture with good visual effects, many distortions exist. In
Fig. 6 (c), Ours+SRFBN-s recovers clear and natural de-
tails, while other methods are prone to generate detailed
textures with visual aliasing and artifacts. Notably, our
method can greatly improves the visual quality of SRFBN-
s, demonstrating our method’s effectiveness.

4.3. Experiments on Real-World Dataset.

We also conduct experiments on RealSRSet [47]
dataset. (Due to most images in RealSRSet are small size,
we reduce the cropped image size in Sec 4.1.) As mentioned
in [47, 45], current non-reference metrics (e.g., NIQE [28],
NRQM [27], and PI [1]) are not consistent with the percep-
tual visual system. Therefore, we only compare visual re-
sults. Fig. 7 shows the visual results on two representative
images. Apparently, Ours+SRFBN-s generates improved
visual results than other methods. In the first examples in

Fig. 7, most other methods tend to generate noises or arti-
facts. USRNet generated observable visual results but with
too many white lines that should not exist. BSRDM gen-
erates unrealistic and discontinuous lines with some distor-
tions. In the second example in Fig. 7, most other methods
cannot finely deal with the hair and tend to produce unreal-
istic detailed textures with visual aliasing. In contrast, our
Ours+SRFBN-s reconstructs clear and natural details.

Table 3. Ablation study of DM Loss on NTIRE2017 Track2 testing
dataset for scaling factor ×4.

Method Lgan Lpix Ldml PSNR↑ SSIM↑ LPIPS↓
Ours+SRFBN-s X 16.24 0.3757 0.7231
Ours+SRFBN-s X 21.89 0.5624 0.6532
Ours+SRFBN-s X X 22.06 0.5704 0.6430
Ours+SRFBN-s X X X 23.35 0.6126 0.5063

4.4. Ablation Study

About DM Loss. To verify the effectiveness of DM
loss, we conduct experiments on the 2017Track2 dataset.
As listed in Tab. 3, Ours+SRFBN-s outperforms Ours
+SRFBN-s (without Ldml) on scale ×4 by 1.29dB on
PSNR, 0.0423 on SISM, and 0.1367 on LPIPS, respectively.
Besides, our DM loss can clearly improve the accuracy of
degradation correction of corrected LR image (Fig. 8 (c)),
compared with our model without DM loss (Fig. 8 (b)).

Table 4. Ablation study of filter dictionary on NTIRE2017 Track2
testing dataset for scaling factor ×4.

Filter Type Number PSNR↑ SSIM↑ LPIPS↓
G + DoG [19] 72 23.35 0.6126 0.5063
RAISR [31] 72 22.12 0.5334 0.6430

Learned 72 22.44 0.5343 0.6266
G + DoG [19] 24 23.17 0.6114 0.5145

About the base Filter Dictionary. We conducted exper-
iments on the 2017Track2 dataset to verify the chosen of
the base filter dictionary. We compare with RAISR filters
[31] and filters directly learned by networks. As listed in
Tab. 4, it is clear that 72 Gaussian and DoG combination
achieves the best result. Tab. 4 also shows that the result
with 72 basic filters is better than the dictionary with 24 ba-
sic filters. Besides, the filters size with 5×5 for each pixel
is sufficient to restore complex real-world images. Various
kernel sizes definitely can enhance performance but intro-
duce great computational costs.

Table 5. Ablation study on trained SR with different degradations.
Method 2018Track2 2018Track3

Ours + SRFBN-s(Bicubic) 20.32/0.5787 21.11/05859
Ours + SRFBN-s(Gaussian) 20.31/0.5787 21.11/0.5858
Ours + SRFBN-s(Lanczos) 20.32/0.5787 21.13/0.5859
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About trained SR with different degradation. We choose
two different degradations (Gaussian blur and Lanczos) to
train SRFBN-s on DIV2K dataset for scaling factor ×4,
respectively. Tab. 5 lists the detailed results on NTIRE
2018 track2 and NTIRE 2018 track3. The results on the
two degradation models are nearly consistent with bicubic
degradation, which demonstrates that our method can adapt
to any known degeneration in a trained model.

5. Conclusion
In this paper, we propose a novel blind image super-

resolution method that corrects the degradations of an
LR input to that of the training data in an off-the-shelf
method. Specifically, we propose an innovative unsuper-
vised method of learning correction filter via a linearly-
assembled pixel DARM for correcting the LR image’s
degradation to the known one in a spatially variant way for
each testing image. Besides, we propose a degradation met-
ric loss to map the unquantifiable degradation to guarantee
the accuracy of degradation correction. Extensive experi-
ments verify the superior performance of our method both
quantitatively and qualitatively.
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