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Abstract

Deep Image Manipulation Localization (IML) models
suffer from training data insufficiency and thus heavily rely
on pre-training. We argue that contrastive learning is more
suitable to tackle the data insufficiency problem for IML.
Crafting mutually exclusive positives and negatives is the
prerequisite for contrastive learning. However, when adopt-
ing contrastive learning in IML, we encounter three cate-
gories of image patches: tampered, authentic, and contour
patches. Tampered and authentic patches are naturally mu-
tually exclusive, but contour patches containing both tam-
pered and authentic pixels are non-mutually exclusive to
them. Simply abnegating these contour patches results in
a drastic performance loss since contour patches are deci-
sive to the learning outcomes. Hence, we propose the Non-
mutually exclusive Contrastive Learning (NCL) framework
to rescue conventional contrastive learning from the above
dilemma. In NCL, to cope with the non-mutually exclusiv-
ity, we first establish a pivot structure with dual branches
to constantly switch the role of contour patches between
positives and negatives while training. Then, we devise a
pivot-consistent loss to avoid spatial corruption caused by
the role-switching process. In this manner, NCL both in-
herits the self-supervised merits to address the data insuf-
ficiency and retains a high manipulation localization accu-
racy. Extensive experiments verify that our NCL achieves
state-of-the-art performance on all five benchmarks with-
out any pre-training and is more robust on unseen real-life
samples. https://github.com/Knightzjz/NCL-IML.

1. Introduction
Thrilling advances in media techniques grant us easier

and easier access to manipulate images. Image Manipula-
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Figure 1. Three categories of patches in a manipulated image and
the non-mutually exclusive relations among them. There are three
categories of patches in a manipulated image: tampered, authen-
tic, and contour patches. In the middle picture, we depict them
accordingly with red, blue, and purple squares. Only tampered
and authentic patches are mutually exclusive. When the decisive
contour patches are involved, non-mutually exclusivity occurs in
contrastive learning. Best viewed in color.

tion Localization (IML) is then indispensable for defensive
information forensics and is heavily invested by the infor-
mation security industry. Today, data insufficiency is the
most prominent issue in building deep IML models. As
dense annotations and expertise for tamper identification are
exorbitant, public datasets for IML are all tiny-sized (with a
few hundred to a few thousand images) and severely insuf-
ficient for training deep CNNs. Consequently, major deep
IML methods carry out pre-training on additional large-
scale datasets.

In general, pre-training of IML models relies on syn-
thesized datasets. On the one hand, synthesized datasets
vanish the high labeling costs and pre-training on synthe-
sized datasets refrains from overfitting. On the other hand,
employing synthesized datasets to conduct pre-training im-
pedes fair comparisons among models and even jeopardizes
the model generalizability. Pre-training is crucial to the
model performance, and for fair comparisons, models of
the same task commonly practice their pre-training on the
same dataset. However, synthesized pre-training datasets
for IML models are strikingly different in annotation quan-
tity and quality. For instance, ManTra-Net [34] grounds
on a self-collected, pixel-wise labeled dataset of 102,028
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images and 385 manipulation types for pre-training; RGB-
N [38] employs a randomly synthesized dataset of more
than 42,000 images; BusterNet [33] entails a synthesized
dataset of 100,000 copy-moved images for pre-training;
MVSS [9] adopts a synthesized dataset of 8,4000 images.
Faithful evaluations for models pre-trained on different syn-
thesized datasets become impossible. Moreover, unlike real
tampered images, these naively synthesized images severely
lack elaborate post-processing to cover their manipulation
traces or artifacts [5, 29, 9]. In other words, the sampling
process of synthesized datasets is biased from the sam-
pling process of manual build datasets [36, 37]. A model
learned on such a dataset with sampling bias is short in gen-
eralizability, and measuring this mode on tiny-sized, non-
homologous benchmarks cannot fully disclose its poor per-
formance under real cases.

To address the insufficient data problem without intro-
ducing such a tricky pre-training strategy, we advocate
adopting contrastive learning in IML. On the one hand,
self-supervised contrastive learning can yield massive con-
trastive pairs from real tampered images. These contrastive
pairs boost the training sample number by at least one or
two orders of magnitude without causing sampling bias or
unfaithful evaluations. On the other hand, manipulation
leaves artifacts in images, and artifacts cause feature dis-
crepancies between tampered and authentic regions. This
is the essential clue for identifying tampered areas by hu-
man experts. The contrastive learning objective explicitly
follows this clue and reveals the vital feature discrepancies
by encouraging the compactness between positive pairs and
the margin between negative pairs.

Although recent researches suggest pixel-level con-
trastive learning for pixel predictions [35], patch-wise con-
trastive learning is still more suitable for IML. Because
manipulations rarely happen pixel-by-pixel, the patch-level
features are proven to be outstanding in characterizing ma-
nipulation traces or artifacts [22]. Thus, in our method, pos-
itives and negatives are naturally the tampered and authentic
image patches of pure tampered or authentic pixels. Image
patches are in a fixed size, but the manipulated regions are
arbitrarily shaped and sized. As shown in the middle picture
of Figure 1, when sampling along the contour of manipu-
lated regions, tampered and authentic pixels are inevitably
mingled within one image patch. Then, we have the third
patch, contour patches. Apparently, contour patches are nei-
ther mutually exclusive to tampered patches nor authentic
patches. Conventional contrastive learning designed to han-
dle the mutually exclusive relation between binary sets will
then malfunction under such a trilateral, non-mutually ex-
clusive circumstance. However, simply discarding the con-
tour patches and merely employing the tampered and au-
thentic patches to conduct contrastive learning is not fea-
sible. Previous studies [23, 28, 21, 22] show that artifacts

assemble along the borders of tampered areas. Therefore,
discarding contour patches means throwing away samples
with the richest artifacts’ information. Besides, contour
patches are the hard positives or negatives in contrastive
learning since they contain both tampered and authentic
pixels at the same time. Hard samples are decisive to the
contrastive learning outcomes. Discarding contour patches
also eliminates most of the hard samples in contrastive
learning. In short, we are facing such a dilemma: the ex-
isting contrastive learning paradigm is incompatible with
the non-mutually exclusive contour patches, but learning
without contour patches results in a significant performance
gap, and learning without the contrastive paradigm leads to
model generalization and evaluation issues. Therefore, a
brand-new learning framework that follows the contrastive
learning paradigm and copes with non-mutual exclusivity is
the key to saving IML models from this dilemma.

Hence, we propose the Non-mutually exclusive Con-
trastive Learning (NCL) framework. Every contour patch
is partial-tampered and partial-authentic. Therefore, we
can regard a contour patch as a hard positive in contrastive
learning if we only count its tampered part. Likewise, this
counter patch can be simultaneously regarded as a hard neg-
ative if only its authentic parts are counted. That is, a con-
tour patch can be transferred into a hard positive or a hard
negative referring to its partial information. Following this
role-switching characteristic, we constructed a pivot struc-
ture with dual branches on the shallow layers of the back-
bone to squeeze the positive and negative parts accordingly
from the contour patches. The name of the pivot indicates
that it switches contour patches between the role of hard
positives and hard negatives to constitute contrastive pairs.
Thus, the trilateral, non-mutually exclusive contrast among
tampered patches (positives), authentic patches (negatives),
and the contour patches is then disentangled into three bi-
nary, mutually exclusive, contrastive pairs of {positive, neg-
ative}, {positive, hard negative}, {negative, hard positive}.
The NCL loss is the sum of the three pair-wise contrastive
losses. In addition, the pivot structure corrupts the spatial
correlation among contour patches. Therefore, on the de-
coder side, we devise the pivot-consistent loss with auxil-
iary classifiers to ensure the pixel-wise spatial relations are
captured and preserved by the deeper layers of the encoder.

We train our NCL-based method from scratch without
additional datasets or pre-training stages. With only 5-
10% of the total training data compared with pre-training-
based methods, our model outperforms current pre-training-
based approaches on all five public IML benchmarks. De-
spite this, deep CNNs are prone to overfitting on such
small public benchmarks. Therefore, we further use non-
homogeneous training and testing datasets to examine
model generalization ability. The results verify that NCL
endows our IML model with better localization accuracy
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and robustness. Last but not least, similar to contrastive
learning, NCL also holds the plug-in merit. Regardless of
backbone architecture, NCL functions well.

In summary, our main contributions are quad-folded:

• Free of Additional Data. To the best of our knowl-
edge, we are the first work bringing contrastive learn-
ing in IML to address the insufficiency of training data
and drawbacks caused by pre-training.

• Non-Mutually Exclusive Contrast. As far as we
know, we are also the first to handle non-mutual ex-
clusive, trilateral relations through contrastive learn-
ing. Our Non-mutually exclusive Contrastive Learning
(NCL) framework can serve other tasks like semantic
segmentation or fine-grained object detection.

• Top Benchmark Performance. Our method uses less
and inferior training data but achieves state-of-the-art
performances as well as the top model generalization
ability on all five public benchmarks.

• Plug-in Merit. Our method functions under both CNN
and Transformer-styled backbones. Backbone selec-
tion will not break the integrity of NCL.

2. Related Work
Image Manipulation Localization. Prior IML meth-

ods seek for pre-training strategy, hand-crafted features, and
the self-adversarial paradigm to solve the data insufficiency
issue. As discussed in the previous section, methods [29,
9, 8, 36] involving hand-crafted features or pre-training
mechanisms are not the proper solution for the insufficient
data issue. We here view the other Generative-Adversarial
Network (GAN) based methods in IML. GAN-based solu-
tions [19, 18, 39] also reach state-of-the-art performances
without additional datasets. However, primary GAN-based
methods are sensitive to the manipulation types. [18] only
works on copy-moved images; [19] is practical merely for
splicing manipulation. Our most related study is the self-
adversarial GAN [39]. They also noticed the drawbacks of
pre-training and built a self-adversarial training strategy in
a dual-attention GAN to localize forged regions precisely.
However, GAN-based methods do not explicitly follow the
clue of image manipulation, which is the discrepancies be-
tween tampered and authentic regions, thereby undermining
the model interpretability. Moreover, the generated train-
ing samples are still different from the real ones, thereby
undermining model performances on real-life images. Our
proposed NCL reveals the essential tamper-caused feature
differences as well as boosts the number of real training
samples.

Contrastive Learning. Contrastive learning [6] is
emerging and fast developing in self-supervised and un-

supervised visual representation areas. Conventional con-
trastive learning is commonly applied in tasks whose prob-
lem space is bisected. Binary and mutually exclusive re-
lations are the fundamental assumption to apply existing
contrastive learning. This is why existing contrastive IML
models [17, 25, 32] only conduct comparisons on images
rather than image patches. As far as we know, current
studies can only handle binary (similar or dissimilar) con-
trasts [14, 27]. Our NCL extends the contrastive learn-
ing paradigm into non-mutually exclusive relations among
trilateral sets, thereby retains the information-rich contour
patches and gains surpassing performances in the IML task.

3. Method
3.1. Basic Encoder-Decoder Structure

We adopt DeepLabV3+ [4] as the basic encoder-decoder
structure of our IML model since it has been adopted by
many other IML models as the baseline [13, 9]. Do notice,
the base mode selection or the backbone selection will af-
fect the efficacy of our NCL. Thus, the encoder backbone
in Figure 2 is ResNet101 [15] blocks with atrous convo-
lution in the last few blocks. The Atrous Spatial Pyramid
Pooling (ASPP) block is likewise applied. Afterward, the
encoded feature of size (64× 64) is passed to the decoder.
The decoder adopts two upsampling modules. The encoder
output is twice upsampled by a factor of 4. In short, our ba-
sic encoder-decoder applies the same network structure and
training settings as the DeepLabV3+ model.

3.2. Non-Mutual Exclusive Contrastive Learning

Problem Formulation. For conventional contrastive
learning, define the problem domain as the universal set U.
Like the conventional contrastive learning section in Fig-
ure 1 shows, we have the set of positives P, and set of neg-
atives N, where:

P ∪ N = U
P ∩ N = ∅

(1)

∅ indicates the mutual exclusivity between positives and
negatives. Mark p as one tampered image patch, which
is one element of P. For ∀p ∈ P, we further denote
pj ∈ P, pj ̸= p; and ni ∈ N. Then, the conventional con-
trastive learning objective is:

argmax
f

{
∑
i,j

ϕ(f(p), f(ni))− ϕ(f(p), f(pj))} (2)

f(·) is the learned feature representation for an image patch.
f(pj) and f(ni) are the red and blue cubes in the IML
feature map in Figure 2. ϕ(·, ·) represents the measured
distance, namely the similarity, between two feature vec-
tors. Notations are unified throughout this paper, where sets
of image patches are denoted by upper-case letters, image
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Figure 2. (a): General network structure of our NCL framework. (b): Detailed Pivot network structure. Green-colored arrows signify
the flow of conducting non-mutually exclusive contrasts through Pivot network and then generate Non-mutually Exclusive Contrastive
Learning (NCL) loss. Ocher-colored arrows indicate the flow to generate Pivot-Consistent (PC) loss. Feature map output by the first
encoder block is point-wise classified into tamper (red), authentic (blue), and contour (purple) features according to ground truth. Forgery
masks in yellow rectangular are the ground truth in different sizes. Feature sizes are enclosed by brackets.

patches are represented by lower-case letters, and f(·) func-
tion is the learned feature representation of an image patch.

However, for the NCL illustrated Figure 1, we have:

N ∪ P ∪ C = U
P ∩ N = ∅;C ∩ N = C−;C ∩ P = C+

(3)

C is the set of all contour patches. C+ and C− are de-
noted as C’s intersections with the positives set and nega-
tives set. Meaning the positive and negative pixels mingled
in the contour patches. For contrastive learning, positive
pairs can be easily formed by finding another element in the
same set. According to (1) and (2), the empty intersection
implies how to form the important negative pairs. There-
fore, we first revise (3) into the exact same format with (1).
With little tricks, we can have:

N ∪ P ∪ C = U
P ∩ N = C+ ∩ N = C− ∩ P = ∅

(4)

Then, according to (1), we now can transfer the non-
mutually exclusive contrast written in (3) into three binary
contrasts between (P∩N), (C+∩N), and (C−∩P). To carry
out the three pair-wise comparisons, we need to first find out
C+ and C− defined in (3). Also C+ and C− are patch frag-
ments or pixels. The basic encoder network cannot yield
features for patch fragments. So, we design the pivot net-
work to directly use contour patches as the input and gener-
ate feature representations for C+ and C−. That is, the pivot
network switches the role of contour patches by learning

two mapping function between (C,C+) and (C,C−). Nat-
urally, the pivot network should own two similar branches
with the same input.

Pivot Network. Before building the detailed layouts for
the pivot network, we need to further consider the input of
the pivot network. Training the pivot network also requires
adequate contour patches. But, if we select a small patch
size to generate more contour patches. The small patch size
leads to a small number of pixels in one image patch. Then,
some elements in C+ or C− may contain a trivial number
of pixels and are improper for training the pivot network.
Hence, in a single image, we concatenate all contour patch
features into one entire embedding p, and send p as the in-
put of the pivot network to ensure the learning outcomes
are significant enough for comparison. In Figure 2, this
concatenation assembles purple cubes into a strip of size
(k×C×W ×H). k = card(C). C,W,H are the channel,
height, and width of one contour feature. card() denotes the
cardinality or the number of elements in a set C. On the one
hand, with k = card(C), we concatenate the contour patch
features into a single vector (k × C ×W ×H). This vec-
tor aggregates contour patch features within an entire im-
age to address the model inefficiency when a few contour
patches exist. On the other hand, the Pivot network flattens
this (k×C×W×H) vector into a fix-sized (1×C×W×H)
vector. This further helps to deal with the varying size of k
in feature processing.

The detailed structure of the Pivot network is depicted in
Figure 2 (b) through pink rectangles and green arrows.

Then, we design two symmetrical branches for our pivot
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network. These branches share the same input and have the
same structure. p is first process by the (1×1) convolution.
This (1 × 1) convolution kernel flattens p into the shape of
(1 × C ×W ×H). Moreover, this (1 × 1) kernel projects
p into a latent Hilbert space H : RC×W×H , where f(pj)
and f(ni) settle and the similarity between features can be
uniformly measured by ϕ(·, ·). BN and ReLU are the batch
normalization and ReLU activation layers.

The pivot network constructs the reflection f(·) between
the input set C, (c ∈ C) and output sets C+, (c+ ∈ C+) and
C−, (c− ∈ C−). So, f(·) are expected to satisfy:

(1).C+ and C− benefit the IML accuracy;
(2).C+ and C− are smooth manifolds to ensure the back-

propagation of NCL loss. Since C is a smooth manifold
(limited Euclidean space), f(·) should be a bijection;

(3).No information loss after the reflection. Meaning we
can assemble c+ and c− back to c through some binary op-
eration (·); c+ · c− = c, c+ · c = c, c− · c = c.

Thus, we can have a Group (G, ·), where G = C+∪C−.
G is a Lie group because:
□ The group inverse G −→ G is smooth according to (2).
□ The group product G×G −→ G is smooth due to (3).

Therefore, the output of the pivot network (c+ and c−)
are Lie group elements. We then take the pivot network as a
smooth mapping function and borrow the se notation from
the Lie group. We write the output of the two branches
as se+(p) and se−(p). se+(·) and se−(·) just signify the
feature transformation function learned by Pivot network;
we cannot assure they are differential manifolds. se+(p)
and se−(p) are the light red and light blue cubes yielded
in Figure 2 (b). The sets of se+(p) and se−(p) are the
desired PI+ and PI−. An intuitive explanation of se+(p)
and se−(p) is they are special positive and negative features
squeezed from the generated feature p by Pivot network;
while common positive and negative features are generated
by the backbone network according to physically-existing
image patches. From this point of view, the Pivot network
swings the role of pivot between positives and negatives like
a pendulum.

Based on f(·) and ϕ(·, ·) in H, se+(·) and se−(·), we
formulate the NCL learning objective as:

arg max
f,se+,se−

{
∑
i,j

ϕ(f(p), f(ni))− ϕ(f(p), f(pj))}+

{
∑
i,j

ϕ(se+(p), se−(p))− ϕ(se+(p), f(pj))}+

{
∑
i,j

ϕ(se+(p), se−(p))− ϕ(se−(p), f(ni))}

(5)
Non-Mutually Exclusive Contrast Loss. We indeed

can construct NCL loss function according to (5). But, as
the pivot network yields one se+(p) and one se−(p) for each
manipulated image, ϕ(se+(p), se−(p)) is independent from

summing parameter i, j and becomes a constant amid the
loss accumulation process. Such a constant undermines the
diversity of contrastive pairs. Hence, we make minor sub-
stitutions in the construction of positive pairs and further
refine (5) as:

arg max
f,se+,se−

{
∑
i,j

ϕ(f(p), f(ni))− ϕ(f(p), f(pj))}+

{
∑
i,j

ϕ(se+(p), f(ni))− ϕ(se+(p), f(pj))}+

{
∑
i,j

ϕ(se−(p), f(pj))− ϕ(se−(p), f(ni))}

(6)
Through our pivot network, in (6), NCL reforms the non-
mutually exclusive relation among trilateral image patches
into three mutual-exclusive, pair-wise, binary comparisons
connected by “ + ”. This is drawn by the NCL supervi-
sion in Figure 2. For simplification, we assign p a subscript
by letting p = pm; mark eyx = exp(f(x), f(y))/τ , e−x =
exp(se−(p), f(x)/)τ , and e+x = exp(se+(p), f(x))/τ ,
where τ is the temperature parameter. Referring to (6), the
NCL loss function is:

LNCL =
1

m× j

∑
m

∑
j

log
e
pj
pm

e
pj
pm +

∑
i e

ni
pm

+

1

j

∑
j

log
e+pj

e+pj +
∑

i e
+
ni

+
1

i

∑
i

log
e−ni

e−ni +
∑

j e
−
pj

(7)

Last but not least, we explored the exact place to im-
pose the pivot network. Some previous works [3] truncate
the deep CNNs at different layers and reveal that the ear-
lier truncated networks provide better features for forgery
detection. Besides, the early truncated network has a shal-
low layout, small reception fields, and a large feature map,
which ideally meets the requirement of a small patch size
in NCL. Then, we divide the ResNet101 into convolution
blocks as in their paper [15] and explore the feature maps
yielded by each ResNet101 block. As expected, the exper-
imental results verify the feature map after the first block
to be the most suitable one. In the Experiments section,
we provide more detailed information about the selection
of image patch size for NCL.

3.3. Pivot-consistent Loss

The pivot network applies convolution on concatenated
contour patches; it corrupts the spatial correlations within
and among contour patches. [16] has shown spatial infor-
mation is vital in IML. Therefore, we develop a Pivot-
Consistent (PC) loss on the decoder side to ensure that con-
tour patches’ spatial correlation remains after the pivot net-
work. PC loss assigns extra weights µ to contour pixels in
the basic pixel-wise BCE loss to enforce the spatial connec-
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tion among contour pixels. However, the number of con-
tour pixels is far less than the manipulated or authentic pix-
els. To avoid overfitting, as depicted by ocher arrows on
the decoder side in Figure 2 (a), we employ auxiliary clas-
sifiers [7] to accumulate PC loss through each upsampling
process gradually. After each upsampling, we shrink the
ground truth to the same size as the feature map; pixel-wise
IML supervision can then be imposed through shrunken
forgery masks. We slightly abuse notations of lower-case
letters here. Denote t as pixels in an image, t̂ as contour
pixels, and µ as the extra weight. γ(·) is the ground truth
label for a pixel, θ(·) is the predicted label of our network
for a pixel. γ(·) and θ(·) give binary value as output. Then,
our PC loss is:

LPC =
µ

t̂

∑
t̂

(γ(t̂) log(θ(t̂)) + (1− γ(t̂)) log(1− θ(t̂)))

+
(1− µ)

t

∑
t

(γ(t) log(θ(t)) + (1− γ(t)) log(1− θ(t)))

(8)
We find larger µ benefits the final IML accuracy. The as-
sessment of µ is detailed in the Experiments section.

3.4. Total Loss Function

To sum up, NCL for IML has a hybrid total loss as:

Ltotal = ω × LNCL + LPC (9)

ω is the weight parameter for the non-mutually exclusive
contrastive learning on the shallow encoder layers. More of
ω can be found in the Experiments section.

4. Experiments and Discussions
Datasets. Unlike existing baseline models, our pro-

posed NCL only utilizes four benchmark datasets for train-
ing and evaluation. No other datasets are involved in our
training process. We train our NCL model on the train-
ing split of a dataset and then test it on the corresponding
test splite. To distinguish from pre-training, we term our
training process conducted only on the benchmark training
split as benchmark-training. Our model applies benchmark
training in the experiments; unless otherwise stated. The
five public datasets for benchmark training and evaluation
are: (1) CASIA [10]; (2) NIST16 [1]; (3) Columbia [26];
(4) Coverage [30]; (5)Defacto [24]. Training and test-
ing splits of datasets follow the widely accepted practices
in [34]. For Defacto, the Defacto-84K is used for training
and Defacto-12K is applied for testing. In particular, our
method does not engage additional datasets, so we follow
the standard splits of Coverage, where 75 samples are for
training and the rest for testing.

Implementation Details. As demonstrated in Figure 2
(a), we follow the standard settings of DeepLabV3+ to build

the basic encoder-decoder. We adopt an ASPP block with
atrous rates of 1, 12, 24, and 36. The outputstride is set
to 8. The decoder expands encoded features by a factor of
4 until reaching the same size as the input image. We also
follow the training protocols in [4] to train our proposed
model. In detail, we set the batch size to 4 on each dataset.
The crop size is 512 × 512. We adopt Stochastic Gradient
Descent (SGD) optimizer with the learning rate schedule
“poly” policy (initial learning rate 0.007, momentum 0.9,
and weight decay 5e-4). Our proposed model is trained
end-to-end without staged pre-training of each component.
Moreover, our total loss is backpropagated as a whole. The
weight of NCL loss (ω in equation (9)) is 0.01. The weight
in PC loss (µ in equation (8)) is 0.9. These parameters are
set-still in the evaluation.

Evaluation Metrics. Following the widely accepted
practices, we adopt pixel-level F1 score and Area Under
the receiver operating characteristic Curve (AUC) as our
evaluation metrics. F1 and AUC measure the binary clas-
sification accuracy for every pixel. Both metrics range in
[0, 100] percentage, and higher scores indicate better per-
formances. According to our observation, F1 is more faith-
ful in reflecting the model performance since the numbers
of tampered and authentic pixels are extremely unbalanced.
AUC will be affected by the huge amount of true-negatives
and the optimized AUC threshold will over-estimating the
model performance.

4.1. Quantitative Analysis on Benchmarks

We compare our model performance with current SoTA
methods, including ELA [20], NOI [23], CFA [12], J-
LSTM [2], RGB-N [38], ManTra-Net [34], SPAN [16],
OSN [31], ObjectFormer [29], MVSS [5], and MVSS++ [9]
on the five standard datasets. ELA, NOI, and CFA are tradi-
tional methods based on hand-crafted features. The rest are
end-to-end models. The results measured by the F1 score
and AUC are listed respectively in Table 1. Except for our
model, all the other end-to-end methods use considerable
additional images for pre-training and benchmark training
splits for fine-tuning.

In general, our method achieves state-of-the-art perfor-
mance compared with existing methods. Except for our
NCL, all the other methods use a large-scale, synthesized
dataset for pre-training and the five benchmarks for fine-
tuning. Notably, our model outperforms the others in F1

score. Compared with AUC, F1 score is more faithful in
measuring the real performances of an IML. Prior studies
uniformly adopt the optimal threshold for the AUC met-
ric, which adjusts the AUC threshold per model and per
test. This threshold adjustment is impractical in daily sce-
narios and commonly overestimates the model behaviors.
Therefore, recent researches all turn into more persuasive
F1 score or apply fixed threshold when measuring AUC [9].
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Table 1. F1 score (%) and AUC (%) comparisons between our proposed method and baselines on benchmarks.

Method pre-train fine tune NIST16 CASIA Coverage Columbia Defacto
F1 ↑ AUC ↑ F1 ↑ AUC↑ F1 ↑ AUC↑ F1 ↑ AUC↑ F1 ↑ AUC ↑

ELA [20] × × 23.6 42.9 21.4 61.3 22.2 58.3 47.0 58.1 - -
NOI [23] × × 28.5 48.7 26.3 61.2 26.9 58.7 57.4 54.6 - -
CFA [12] × × 17.4 50.1 20.7 52.2 19.0 48.5 46.7 72.0 - -
J-LSTM [2] ✓ × - 76.4 - - - 61.4 - - - -
ManTra [34] ✓ ✓ - 79.5 - 81.7 - 81.9 - 82.4 - -
RGB-N [38] ✓ ✓ 72.2 93.7 40.8 79.5 43.7 81.7 69.7 85.8 - -
SPAN (1) [16] ✓ × 29.0 83.6 33.6 81.4 53.5 91.2 81.5 93.6 -
SPAN (2) [16] ✓ ✓ 58.2 96.1 38.2 83.8 55.8 93.7 - - - -
ObjectFormer [29] ✓ ✓ 82.4 99.6 57.9 88.2 75.8 95.7 - - - -
OSN [31] ✓ ✓ 28.6 76.4 40.5 83.3 72.7 88.3 - - - -
MVSS-Net [5] ✓ ✓ - 73.7 - 75.3 - 82.4 - 72.6 - 53.8
MVSS-Net++ [9] ✓ ✓ - 71.5 - 77.1 - 52.5 - 56.3 - 88.6
ours (NCL) × × 83.1 91.2 59.8 86.4 80.1 92.8 85.0 94.3 60.7 88.9

SPAN (1) is under the pre-training setup while SPAN (2) is under the fine-tuning.
MVSS-Net++ is pre-trained on the Defacto-84K and MVSS-Net is pre-trained on the CASIAv2.
‘-’ denotes that the result is not available in the literature and’↑’ indicates that the higher value is better.

Most existing studies do not public their performances mea-
sured by fixed AUC. Also, we cannot re-train these models
with their pre-training datasets. Here in Table 1, we adopt
the optimal AUC but explicitly show our F1 score to fully
demonstrate the surpassing performance of our NCL. Be-
sides, we can find that our model owns a much smaller gap
between the F1 score and the AUC value. This indicates
higher robustness to some degree.

4.2. Generalizability and Robustness

As we conduct benchmark training and benchmark test-
ing, although we achieved state-of-the-art performance and
early stop the training epoch at 70, the generalizability of
our model is yet to be verified. In other words, we need to
answer:“Does NCL overfit these training data?”. To address
this foremost model generalizability concern, we conduct
experiments by training our model on one dataset and then
testing it on another non-homogeneous dataset. The result
is shown in Table 2. We first train our NCL model on the rel-
atively large benchmarks, CASIAv2 and Defacto, then test
the trained model on the other benchmarks. Since MVSS-
Net adopts the same datasets as pre-training datasets, we
employ MVSS-Net for comparison. In the first four rows
of Table 2, under the same settings, our NCL exceeds the
pre-training-based MVSS-Net in almost every dataset, but
NCL does not require the fine-tune on these datasets or ex-
tra hand-crafted feature for auxiliary. Therefore, it is clear
that NCL does not overfit the training data. Then, to further
investigate the generalizability of NCL, we use the smallest
two benchmarks, Coverage and Columbia, for training and
testing NCL on larger benchmarks. Table 2 indicates NCL
manages to cope with this harsh situation. Besides, we also
put all the benchmark training datasets together to form a

single training dataset and train NCL on this set to probe
its edge performance. As shown in the last row of Table 2,
training on this large dataset, NCL gains surpassing perfor-
mances on almost every single testing dataset regarding ex-
isting models. However, compared to NCL with benchmark
training, the AUC score is slightly lowered on the Cov-
erage and Columbia datasets but sharply increased on the
other three datasets. Considering the small size of Coverage
and Columbia, NCL exchanges sensitivity for specificity,
thereby achieving more balanced performances regarding
all the testing cases.

Table 2. AUC (%) results for generalizability validation.
Method Train

Test
NIST16 CASIA Coverage Columbia Defacto

MVSS-Net [5] CASIAv2 73.7 75.3 82.4 72.6 53.8
ours (NCL) CASIAv2 75.6 86.4 81.6 66.9 53.0
MVSS-Net++ [9] Defacto 71.5 77.1 52.5 56.3 88.6
ours (NCL) Defacto 77.3 75.6 58.7 52.3 88.9
ours (NCL) Coverage 58.1 54.6 92.8 52.2 51.9
ours (NCL) Columbia 58.9 57.3 51.5 95.3 52.6
ours All* 95.0 88.4 91.1 92.3 90.1

*: All means putting all the benchmark training datasets to-
gether (around 25k images) for training.

Then, we also conduct robustness tests. Typical robust-
ness experiments are conducted through attacks. Built-in
functions are used to attack the images, and IML methods
are then applied to identify the tampered areas on the at-
tacked images. The results measured by pixel-wise AUC
are shown in Table 3. Our model achieves satisfying ro-
bustness against common attacks. Therefore, in short, our
NCL-based IML method retains satisfying generalizability
and is robust and resistant to attacks.
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Table 3. Robustness analysis of models on NIST16 datasets.
Operations ManTra-Net SPAN Ours
None 79.5 83.6 91.2
Resize(0.78x) 77.4 83.2 85.6
Resize(0.25x) 75.5 80.3 83.1
GaussianBlur(size=3) 77.4 83.1 84.0
GaussianBlur(size=5) 74.6 79.2 80.6
GaussianNoise(σ=3) 67.4 75.1 79.5
GaussianNoise(σ=5) 58.6 67.3 71.4
JPEGCompress(50) 77.9 83.6 84.3
JPEGCompress(100) 74.4 80.7 81.9

SPAN without fine-tuning is adopted here. 100 and 50 are the
JEPG compress quality factors.

4.3. Qualitative Analysis

Contribution of Each Component. Before going fur-
ther, we first clarify the exact improvements brought by
each component of our NCL-based method. Our method
is built upon the basic encoder-decoder of DeepLabV3+,
termed the Base model. Then, we propose the Pivot struc-
ture to conduct non-mutually exclusive contrastive learning;
we term it as the Base+Pivot model. Further, we engage
with the PC loss to form the entire NCL framework; we
term the entire NCL as the Base+Pivot+PC model in this
section.

Qualitative Analysis. We first conduct longitudinal
qualitative comparisons of different components among the
NCL in Figure 3 and Figure 4. The second to fourth rows
in Figure 3 are the results of the Base model, Base+Pivot
model, Base+Pivot+PC model regarding the input image.
The leftmost two columns of Figure 3 vividly demonstrate
the efficacy of each component in our method. The Base
model totally fails these cases, but Base+Pivot+PC gradu-
ally catches the clue of manipulations. The rightmost col-
umn and the bell pepper picture present active examples of
refining the delicate contour of roughly localized artifacts
through PC loss. Shown in Figure 4, similar situations are
also true in other benchmarks.

Then, We conduct horizontal qualitative comparisons of
different IML models in the lower-half of Figure 3. The
MVSS-Net and Mantra-Net rows show the corresponding
output of the widely compared MVSS-Net and Mantra-Net.
With much less and inferior training data, our model outper-
forms these pre-training-depend and massive-data-required
models.

Quantitative Analysis. The prediction results measured
in pixel-wise AUC for different variants of our model are
shown in Table 5. Our NCL penetrates significant promo-
tions to the basic encoder-decoder network, especially on
model generalization. For base model training on NIST16
or Defacto dataset but testing on other datasets, it fails to
generalize on other datasets. Adding the Pivot network to

Figure 3. Prediction results of Variants of our methods. From top
to bottom: forged images, baseline model, attaching Pivot struc-
ture and conducting non-mutually exclusive contrastive learning
on the base model, adding PC loss to the former model, Mantra-
Net [34], MVSS-Net [9] and ground-truth masks.

the base model drastically boosts the model generalizabil-
ity. Base+Pivot gains decent AUC results when testing on
different, non-homogeneous datasets. PC loss is also ver-
ified to be effective in improving performance. We offer
more details in the supplementary materials. After quanti-
fying the contribution of each component, we further probe
the effect of the parameters in our modes. We have two pa-
rameters, the image patch sizes and weight parameters on
the total loss.

Image Patch Size. Different encoder layers generate
features in different patch sizes, which are vital for the per-
formance of NCL. To find the best patch size, we also try to
add the Pivot network after different blocks of ResNet101.
In detail, we divide the original ResNet101 into five stages
as the original paper [15] and append the Pivot network at
the end of each stage. As shown in Table 6, the earlier lay-
ers outperform the deeper layer a lot, which also confirms
the observation from [3]. This finding is consistent across
benchmarks.

Weight Parameters. We explore different allocations
of weights to maximize the F1 score and AUC. Under this
circumstance, we find the allocation scheme and adopt these
parameters as stated in the implementation details. Lower
ω and higher µ facilitate the IML accuracy in both F1 and
AUC. The weight effect is similar across datasets. Thereby,
our weight choice is consistent.
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Figure 4. Predictions generated by variations of our model on Columbia, Coverage, NIST16, CASIA datasets. From top to bottom are the:
forged images, ground-truth masks, results of Base model, results of Base+Pivot, and results of Base+Pivot+PC.

Table 4. F1 score (%) and AUC (%) comparisons between our proposed method and baselines on benchmarks.

Method pre-train fine tune NIST16 CASIA Coverage Columbia Defacto
F1 ↑ AUC ↑ F1 ↑ AUC↑ F1 ↑ AUC↑ F1 ↑ AUC↑ F1 ↑ AUC ↑

ObjectFormer [29] ✓ ✓ 82.4 99.6 57.9 88.2 75.8 95.7 - - - -
ObjectFormer(with NCL appended) ✓ ✓ 84.4 99.6 59.1 88.8 77.4 96.0 - - - -
ours (NCL) × × 83.1 91.2 59.8 86.4 80.1 92.8 85.0 94.3 60.7 88.9
ObjectFormer(with NCL appended) is appending NCL to the output of the ViT in ObjectFormer.

Table 5. AUC (%) on benchmarks for variants of our model.
Method Train

Test
NIST16 CASIA Coverage Columbia Defacto

Base NIST16 75.6 26.4 21.6 16.9 4.3
Base+Pivot NIST16 85.6 60.8 71.7 66.1 41.4
Base+Pivot+PC NIST16 91.2 65.6 76.4 71.5 55.0
Base Defacto 30.3 25.8 17.4 14.0 54.6
Base+Pivot Defacto 70.4 72.1 51.1 50.9 78.2
Base+Pivot+PC Defacto 77.3 75.6 58.7 52.3 88.9

Backbone Architectures. With the fast advances in
Transformer-based image backbones, we will indeed em-
brace an IML backbone built on the self-attention mecha-
nism. Like CNNs, ViT [11] also processes image patches
by patches. Therefore, the initial assumption of our NCL
holds. Regardless of the patching methods in ViT, the im-
age patches will still be divided into three categories: tam-
pered, authentic, and contour patches. Then, our NCL can
be quickly adapted to the ViT-based backbone without any
effort and boost the base model’s performance. As shown in
Table 4, we did some preliminary tests using the backbone
of ObjectFormer [29], and the results met our expectations.

5. Conclusion
This paper proposes a novel Non-mutually exclusive

Contrastive Learning (NCL) paradigm to localize image
manipulation without additional pre-training datasets. Our

Table 6. Performance of our model with Pivot network imposed
after different encoder blocks. CASIA dataset is applied.

Pivot network after F1 score AUC
ResNet block 5 43.8 70.2
ResNet block 2 56.3 79.0
ResNet block 1 59.8 86.4

NCL-based IML model reaches state-of-the-art perfor-
mance, top model generalization, and robustness in all five
benchmarks, which indicates our NCL is more applicable
to real-life scenarios. To a greater extent, NCL provides
a brand-new self-supervised paradigm to tackle tasks with
trisected problem spaces like semantic segmentation.
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