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Figure 1: (a) Dual-domain propagation enables more effective propagation due to its global and reliable nature. (b) Mask-
guided sparse video Transformer achieves high efficiency by discarding unnecessary and redundant windows. (c) ProPainter
outperforms prior methods while maintaining efficiency. (d-h) In visual comparisons with FuseFormer [22], FGT [42], and
E2FGVI [19], our ProPainter exhibits superiority in filling complete and rich textures.

Abstract

Flow-based propagation and spatiotemporal Transformer
are two mainstream mechanisms in video inpainting (VI).
Despite the effectiveness of these components, they still suffer
from some limitations that affect their performance. Previous
propagation-based approaches are performed separately ei-
ther in the image or feature domain. Global image propaga-
tion isolated from learning may cause spatial misalignment
due to inaccurate optical flow. Moreover, memory or compu-
tational constraints limit the temporal range of feature prop-
agation and video Transformer, preventing exploration of
correspondence information from distant frames. To address
these issues, we propose an improved framework, called
ProPainter, which involves enhanced ProPagation and an ef-
ficient Transformer. Specifically, we introduce dual-domain
propagation that combines the advantages of image and fea-
ture warping, exploiting global correspondences reliably.
We also propose a mask-guided sparse video Transformer,
which achieves high efficiency by discarding unnecessary

and redundant tokens. With these components, ProPainter
outperforms prior arts by a large margin of 1.46 dB in PSNR
while maintaining appealing efficiency.

1. Introduction

Video inpainting (VI) aims to fill gaps or missing re-
gions in a video with visually consistent content while
ensuring spatial and temporal coherence. This technique
has broad applications, including video completion [10],
object removal [9, 37], video restoration [31], watermark,
and logo removal [19]. VI is challenging because it re-
quires establishing accurate correspondence across distant
frames for information aggregation. To address this chal-
lenge, various mechanisms have been explored, such as
3D CNN [6, 11], video internal learning [41, 27], flow-
guided propagation [37, 10, 43, 42, 19], and video Trans-
former [22, 42, 19]. Among these mechanisms, flow-guided
propagation and video Transformer have become mainstream
choices for VI due to their promising performance.
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Propagation-based methods in VI can be divided into
two categories: image propagation and feature propagation.
The former employs bidirectional global propagation in the
image domain with a pre-completed flow field. While this
approach can fill the majority of holes in a corrupted video,
it requires an additional image or video inpainting network
after propagation to hallucinate the remaining missing re-
gions. This isolated two-step process can result in unpleasant
artifacts and texture misalignment due to inaccurate flow, as
shown in Figure 1(f). To address this issue, a recent ap-
proach called E2FGVI [19] implements propagation in the
feature domain, incorporating flow completion and content
hallucination modules in an end-to-end framework. With the
learnable warping module, the feature propagation module
relieves the pressure of having inaccurate flow. However,
E2FGVI employs a downsampled flow field to match the
spatial size of the feature domain, limiting the precision of
spatial warping and the efficacy of propagation, potentially
resulting in blurry results. Moreover, feature propagation can
only be performed within a short range of video sequences
due to memory and computational constraints, hindering
propagation from distant frames and leading to missing tex-
ture, as shown in Figure 1(g).

Both image- and feature-based propagation have their
pros and cons. In this study, we carefully revisit the VI prob-
lem and investigate the possibility of combining the strengths
of both techniques. We demonstrate that with systematic
redesigns and adaptation of best practices in the literature,
we can achieve dual-domain propagation, as illustrated in
Figure 1(a). To achieve reliable and efficient information
propagation across a video, we identify several essential
components: i) Efficient GPU-based propagation with relia-
bility check – Unlike previous methods that rely on complex
and time-consuming CPU-centric operations, such as index-
ing flow trajectories, we perform global image propagation
on GPU with flow consistency check. This implementation
can be inserted at the beginning of the inpainting network
and jointly trained with the other modules. Thus, subse-
quent modules are able to correct any propagation errors
and benefit from the long-range correspondence information
provided by the global propagation, resulting in a significant
performance improvement. ii) Improved feature propagation
– Our implementation of feature propagation leverages flow-
based deformable alignment [3], which improves robustness
to occlusion and inaccurate flow completion compared to
E2FGVI [19]. iii) Efficient flow completion – We design
a highly efficient recurrent network to complete flows for
dual-domain propagation, which is over 40 times (∼192
fps1) faster than SOTA method [43] while maintaining com-
parable performance. We demonstrate that these designs are
essential to achieve efficient propagation of global and local
information without texture misalignment or blurring in the

1Tested on a single NVIDIA Tesla V100 GPU (32G).

filling results. An example is shown in Figure 1(h).
In addition to dual-domain propagation, we introduce an

efficient mask-guided sparse video Transformer tailored
for the VI task. The classic spatiotemporal Transformer
is computationally intensive due to the quadratic number
of interactions between video tokens, making it intractable
for high-resolution and long temporal-length videos. For
instance, contemporary Transformer-based methods, Fuse-
Former [22] and FGT [42], are unable to handle 480p videos
with a 32G GPU1 due to excessive memory demands. How-
ever, we observe that the inpainting mask usually covers
only a small local region, such as the object area2. Moreover,
adjacent frames contain highly redundant textures. These
observations suggest that spatiotemporal attention is unneces-
sary for most unmasked areas, and it is adequate to consider
only alternating interval frames in attention computation.
Motivated by these observations, we redesign the Trans-
former by discarding unnecessary and redundant windows
in the query and key/value space, respectively, significantly
reducing computational complexity and memory without
compromising inpainting performance.

The main contribution of this work is to provide a system-
atic study into the core problem of VI and offer a practical
solution that is both effective and efficient. Propagating in-
formation in two distinct image and feature domains and
combining them in a unified framework with fast GPU im-
plementation is new for VI task. The mask-guided sparse
video Transformer also offers practical insights into design-
ing efficient spatiotemporal attention for VI task. Compared
to the state-of-the-art methods, our model achieves superior
performance with a large margin of 1.46 dB in PSNR, while
also significantly reducing memory consumption.

2. Related Work
Numerous deep networks with different modules and

propagation strategies have achieved significant success in
video inpainting. These approaches can be broadly catego-
rized into four categories:
3D convolution. Earlier video inpainting networks typically
employed 3D CNNs [6, 33, 11] or temporal shift [7] to aggre-
gate spatiotemporal information. These methods often suffer
from limited receptive fields in both temporal and spatial
dimensions and misalignment between adjacent frames. As
a result, they are less effective in exploring distant content.
Internal learning. To fully exploit content of a video, some
studies [41, 27, 30] adopt internal learning to encode and
memorize the appearance and motion of the video through
deep networks. However, these methods require individual
training for each test video, limiting their practical use.
Flow-guided propagation. Optical flow [13, 18, 46] and
homography [17, 1] are commonly used in video inpainting

2Object regions account for only 13.6% of the DAVIS [28] dataset.
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networks to align neighboring reference frames to enhance
temporal coherence and aggregation. However, incomplete
optical flow may not provide valid propagation for complet-
ing missing regions. To address this issue, recent flow-based
methods [37, 10, 12, 43, 42] focus on first completing the
flow and then use it as a guidance for pixel-domain propa-
gation. This approach simplifies RGB pixel inpainting by
completing a less complex flow field. However, this of-
fline propagation is independent of the subsequent learnable
refinement module, making it difficult to correct content
distortion caused by inaccurate propagation. Inspired by
flow-guided recurrent networks [2, 3], Li et al. [19] proposed
an end-to-end framework that jointly learns flow completion
and feature propagation in the downsampled feature domain.
However, downsampled flow reduces its ability to provide
spatially precise warping. To overcome this limitation, we
propose more faithful propagation by performing both pixel
and feature propagation with flow consistency checks.
Video Transformer. Attention [17, 26, 11, 18] and Trans-
former [40, 21, 22, 1, 19, 42] blocks adopt spatiotemporal
attention to explore recurrent textures in a video. This en-
ables them to retrieve and aggregate tokens with similar tex-
ture or context for filling in missing regions. Liu et al. [22]
present a fine-grained fusion Transformer based on the soft
split and composition operations, which further boosts video
inpainting performance. However, these methods are com-
putationally and memory intensive. To address this issue,
some Transformers [21, 1, 42] decouple the spatiotempo-
ral attention by performing spatial and temporal attention
alternately, while others [19, 42] adopt window-based Trans-
formers [23, 38] to reduce the spatial range for efficient video
attention. However, these approaches still involve redundant
or unnecessary tokens. Inspired by token pruning for adap-
tive attention [29, 39, 25, 20, 15] in high-level tasks, our
study proposes a more efficient and faster video Transformer
with sparse spatiotemporal attention and a largely reduced
token space while maintaining inpainting performance.

Recent studies [18, 19, 42] have demonstrated the effec-
tiveness of combining flow-guided propagation with Trans-
former in VI. However, the high memory requirement of
the Transformer limits the propagation range during both
training and inference, severely hindering the ability to prop-
agate temporally distant content. In this paper, we also adopt
this combination strategy but propose a reliable propagation
scheme, along with an efficient Transformer model that fully
exploits the benefits of long-range propagation and atten-
tion. This results in superior inpainting performance while
maintaining computational efficiency.

3. Methodology
Given a masked video sequence X = {Xt ∈

RH×W×3}Tt=1, which has a sequence length of T , along
with corresponding mask sequence M = {Mt ∈

RH×W×1}Tt=1, the objective of video inpainting is to gen-
erate visually consistent and coherent content within the
corrupted or missing regions. ProPainter, as shown in Fig-
ure 2, is composed of three key components: Recurrent Flow
Completion (RFC), Dual-Domain Propagation (DDP), and
Mask-guided Sparse Video Transformer (MSVT). Before
feeding the sequence into ProPainter, we extract the for-
ward and backward optical flows, denoted as F f = {F f

t =
Ft→t+1 ∈ RH×W×2}T−1

t=1 and F b = {F b
t = Ft+1→t ∈

RH×W×2}T−1
t=1 from a given video X . We first use RFC

to complete the corrupted flow fields. Guided by the com-
pleted flows, we then perform global image propagation
and local feature propagation sequentially. Finally, we
employ multiple MSVT blocks to refine propagation fea-
tures and a decoder to reconstruct the final video sequence
Ŷ = {Ŷt ∈ RH×W×3}Tt=1. We introduce the specific design
of each component below.

3.1. Recurrent Flow Completion

Pre-trained flow completion modules are commonly used
in video inpainting networks [37, 10, 43, 42]. The rationale
behind this approach is that it is simpler to complete missing
flow than to directly fill in complex RGB content [37]. Fur-
thermore, using completed flow to propagate pixels reduces
the pressure of video inpainting and better maintains tem-
poral coherence. E2FGVI [19] proposes to insert the flow
completion module into an end-to-end framework, which
simplifies the inpainting pipeline. However, flow completion
modules that are learned together with inpainting-oriented
losses can result in a suboptimal learning process and less
accurate completed flow. Moreover, the downsampled flow
may limit the precision of spatial warping and the efficacy
of propagation, which can result in blurred and incomplete
filling content, as shown in Figure 1(g). Therefore, an in-
dependent flow completion model is not only important but
also necessary for video inpainting.

To maintain temporal coherence while completing flows,
previous methods [37, 42] adopt sliding-window-based net-
works to aggregate optical flow information from adjacent
frames, which are highly correlated. However, these meth-
ods can be computationally expensive as repeated inferences
are required in the overlapping frames. To improve efficiency
and enhance flow coherence further, we adopt a recurrent
network [2, 3] for flow completion, which provides precise
optical flow fields for subsequent propagation modules.

We complete forward and backward flows using the same
process, thus we denote F f and F b as F for simplicity.
We first encode the flows Ft into a downsampled feature
ft with a downsampling ratio of 8. Next, we employ de-
formable alignment [3] that is based on deformable con-
volution (DCN) [8, 45], to bidirectionally propagate the
flow information from nearby frames for flow completion.
For simplicity, we only describe the backward propagation
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Figure 2: ProPainter comprises three key components: recurrent flow completion, dual-domain propagation, and mask-guided
sparse Transformer. First, we employ a highly efficient recurrent flow completion network to complete the corrupted flow
fields. We then perform propagation in both image and feature domains, which are jointly trained. This approach enables us to
explore correspondences from both global and local temporal frames, resulting in more reliable and effective propagation. The
subsequent mask-guided sparse Transformer blocks refine the propagated features using spatiotemporal attention, aided by a
sparse strategy that considers only a subset of the tokens. This enhances efficiency and reduces memory consumption, while
maintaining performance.

process here. Taking the concatenated feature c(ft, f̂t+1),
where f̂t+1 is the propagation feature of the t+1-th frame,
as input a lightweight network with a stack of convolutions
is employed to compute DCN offsets ot→t+1 and modula-
tion masks mt→t+1. DCN alignment propagation can be
expressed as:

f̂t = R
(
D(f̂t+1; ot→t+1,mt→t+1), ft

)
, (1)

where D(·) denotes deformable convolution, and R(·) de-
notes the convolution layers that fuse the aligned and current
features. In this way, information of (t + 1)-th flow can
be adaptively transferred to the current t-th flow. Finally, a
decoder is used to reconstruct the completed flows F̂t. For
clarity, an illustration of deformable alignment is provided
in the supplementary material.

3.2. Dual-domain Propagation

After completing the flow, we perform global and local
propagation in the image and feature domains, respectively.
We employ distinct alignment operations and strategies for
each domain. Both domains involve bidirectional propa-
gation in the forward and backward directions. Here, we
elaborate on the backward propagation since the forward
propagation follows the same process.

Image propagation. To maintain efficiency and simplicity,
we adopt flow-based warping for image propagation, along
with a simple reliability check strategy. This process does
not involve any learnable operation. In the case of a video
sequence X with binary masks M (a pixel with value 1 repre-
sents masked region) and completed flows F̂ , we first check
the validity of completed flow based on forward-backward

consistency error [37, 10]:

Et→t+1

(
p
)
=

∥∥∥F̂t→t+1

(
p
)
+ F̂t+1→t

(
p+ F̂t→t+1(p)

)∥∥∥2
2
,

(2)
where p denotes a pixel position of the current frame. Only
pixels with a small consistency error will be propagated,
i.e., C1 : Et→t+1(p) < ϵ, where ϵ is a threshold and set to
5. Furthermore, we only consider the masked areas of the
current frame Xt that needs to be filled, i.e., C2 : Mt(p) = 1,
and we only propagate the unmasked areas from neighboring
frame Xt+1, i.e., C3 : Mt+1(p + F̂t→t+1(p)) = 0. By
enforcing the three constraints, a reliable propagation area
Ar is identified as:

Ar

(
p
)
=

{
1 if p ∈ C1 ∩ C2 ∩ C3,

0 otherwise.
(3)

The process of image propagation is expressed as:

X̂t = W
(
Xt+1, F̂t→t+1

)
∗Ar +Xt ∗

(
1−Ar

)
, (4)

where W(·) denotes warping operation. To ensure contin-
uous propagation, we promptly update the mask Mt of the
current frame and convert the propagated area to the un-
masked status by updating masks via M̂t = Mt −Ar. After
global image propagation, we obtain a partially filled video
sequence X̂ , which greatly eases the learning process for
subsequent modules.
Feature propagation. We use an image encoder with
the same structure as previous works [22, 19] to extract
features from a local sequence X̂Tl

t=1, denoted as {et ∈
RH

4 ×W
4 ×C}Tl

t=1. Similar to E2FGVI [19], we also adopt
flow-guided deformable alignment module [3] for feature
propagation, which has demonstrated remarkable benefits
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Figure 3: Flow-guided deformable alignment is effective
by taking reliable completed flows and mask-aware condi-
tions. We concatenate the validated flow map, original mask,
and updated mask into conditions to produce DCN offsets
(residue to optical flow). A DCN is then applied to align the
propagation feature from the previous frame. Finally, a CNN
block is employed to fuse the current and aligned features,
achieving the propagation feature of the current frame.

in various low-level video tasks [5, 4, 44]. Unlike the de-
formable alignment used in Sec. 3.1 that directly learns DCN
offsets, flow-guided deformable alignment employs the com-
pleted flow as a base offset and refines it by learning off-
set residue. However, our design differs from E2FGVI in
that we offer richer conditions for learning DCN offsets.
As illustrated in Figure 3, apart from the current feature
et, warped propagation feature W(êt+1, F̂

↓
t→t+1), and com-

pleted flows F̂ ↓
t→t+1, we additionally introduce the flow

valid map Vt+1→t calculated by consistency check (Eq. 2),
as well as the original mask M↓

t , and updated mask M̂↓
t

after image propagation. With these conditions, a stack of
convolutions is employed to predict the DCN offset residue
õt→t+1 and modulation masks mt→t+1. The flow-guided
DCN alignment propagation is expressed as:

êt = R
(
D(êt+1; F̂

↓
t→t+1 + õt→t+1,mt→t+1), ft

)
, (5)

where ↓ denotes downsampling. The improved reliability
of flow and the additional awareness of mask as a condition
make our flow-guided deformable alignment module more
stable to learn than previous designs [3, 19]. The current
step is able to focus more on truly challenging regions where
flow is invalid and former image propagation is unreliable.

3.3. Mask-Guided Sparse Video Transformer

While video Transformers have achieved excellent per-
formance in video inpainting, they can be computationally
and memory intensive, posing a challenge to their practical
application. E2FGVI and FGT have addressed this issue
by using window-based Transformer blocks, but they still
have some efficiency limitations. To overcome this, we pro-
pose a novel sparse video Transformer that builds on the
window-based approach. Given a video sequence feature
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Figure 4: Mask-guided sparse video Transformer. To reduce
computational complexity and memory usage, our mask-
guided sparse Transformer filters out unnecessary and redun-
dant windows in the query and key/value space, respectively,
before applying self-attention. To enlarge spatial interrela-
tion range, we also adopt the window expand strategy [38]
and pooling global tokens [42, 19].

El ∈ RTl×H
4 ×W

4 ×C , we use the soft split operation [22] to
generate patch embeddings Z ∈ RTl×M×N×Cz . We parti-
tion Z into m × n non-overlapping windows, resulting in
partitioned features Zw ∈ RTl×m×n×h×w×Cz , where m×n
and h× w are the number and size of the windows, respec-
tively. We obtain the query Q, key K, and value V from Zw

through linear layers. We design sparse strategies for both
query and key/value spaces separately. Note that we also
apply the window expand strategy [22] and integrate global
tokens [42] into key and value, enabling us to use a small
window size of 5 × 9 in our experiments. We omit them
from the following discussion since they do not affect our
sparse strategy designs.
Sparse Query Space. We observe that mask regions of-
ten occupy only a small area of the video, such as in the
case of object removal in the DAVIS [28] dataset, where
the proportion of object regions is only 13.6%. This indi-
cates that spatiotemporal attention may not be necessary
for all query windows. To exploit this observation, we se-
lectively apply attention to query windows that intersect
with the mask regions. Specifically, we first use nearest
neighbor interpolation to downsample the mask sequence
M ∈ RTl×H×W to M↓ ∈ RTl×m×n, where m × n is the
number of non-overlapping windows after partitioning. We
then sum it up in the temporal dimension and obtain sparse
mask SQ ∈ Rm×n for query cubes following the equation:

SQ = Clip
(∑Tl

t=1
M↓

t , 1
)
, (6)

where Clip represents a clipping function that set SQ to 1 if∑Tl

t=1 M
↓
t > 0. In other words, if the query cube at a win-

dow (i, j) has never contained any mask region in the past
frames, then SQ(i, j) = 0, indicating that spatiotemporal
attention within this window can be skipped.
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Table 1: Quantitative comparisons on YouTube-VOS [36] and DAVIS [28] datasets. The best and second performances are
marked in red and blue, respectively. E∗

warp denotes Ewarp (×10−3). All methods are evaluated following their default
settings. Since DFVI, FGVC, ISVI, and FGT involve several CPU processes, their FLOPs cannot be accurately projected.

Accuracy Efficiency
YouTube-VOS DAVIS FLOPs Runtime

Models PSNR ↑ SSIM ↑ VFID ↓ E∗
warp ↓ PSNR ↑ SSIM ↑ VFID ↓ E∗

warp ↓ (10 frames) (s/frame)
DFVI [37] 29.16 0.9429 0.066 1.651 28.81 0.9404 0.187 1.596 - 0.837
CPNet [17] 31.58 0.9607 0.071 1.622 30.28 0.9521 0.182 1.521 1407G 0.316
FGVC [10] 29.67 0.9403 0.064 1.163 30.80 0.9497 0.165 1.571 - 1.795
STTN [40] 32.34 0.9655 0.053 1.061 30.61 0.9560 0.149 1.438 1315G 0.051
TSAM [46] 30.22 0.9468 0.070 1.014 30.67 0.9548 0.146 1.235 1001G 0.068
FuseFormer [22] 33.32 0.9681 0.053 1.053 32.59 0.9701 0.137 1.349 1025G 0.114
ISVI [43] 30.34 0.9458 0.077 1.008 32.17 0.9588 0.189 1.291 - 1.594
FGT [42] 32.17 0.9599 0.054 1.025 32.86 0.9650 0.129 1.323 - 1.828
E2FGVI [19] 33.71 0.9700 0.046 1.013 33.01 0.9721 0.116 1.289 986G 0.085

ProPainter (Ours) 34.43 0.9735 0.042 0.974 34.47 0.9776 0.098 1.187 808G 0.083

Sparse Key/Value Space. Due to the highly redundant and
repetitive textures in adjacent frames, it is unnecessary to
include all frames as key/value tokens in each Transformer
block. Instead, we will only include strided temporal frames
alternately, with a temporal stride of 2 in our design. That is,
in each odd-numbered Transformer block, only odd-number
frames are activated to participate in self-attention with their
key and value, while even-number blocks include only even-
number frames. By doing so, the key and value space is
reduced by half, effectively reducing the computation and
memory cost of the Transformer module. After filtering out
unnecessary and redundant windows based on our sparse
strategy, we perform self-attention on the remaining win-
dows to extract refined features. These features are then
gathered using a soft composition operation [22] for subse-
quent modules. Experimental results suggest that our design
significantly reduces the computational cost of video Trans-
formers while maintaining performance for video inpainting.

3.4. Training Objectives

Flow Completion. We utilize L1 loss as the reconstruction
loss and a second-order smoothness constraint on the flow
field [24] to promote the collinearity of neighboring flows
and thus enhance the smoothness of the completed flow field.
Video Inpainting. We adopt L1 loss as the reconstruction
loss for all pixels. To enhance the realistic and temporal
consistency of video inpainting results, we also employ an
adversarial loss that is measured using a T-PatchGAN [6]
discriminator. The details and formulation of these losses
are provided in the supplementary material.

4. Experiments
Datasets. We use the training set of YouTube-VOS [36] with
3471 video sequences to train our networks. Two widely-

used test sets are adopted for evaluation: YouTube-VOS [36]
and DAVIS [28], which consist of 508 and 90 video se-
quences, respectively. For the DAVIS test set, following
FuseFormer [22] and E2FGVI [19], we use 50 video clips
for evaluations. During training, we follow [13, 17, 22, 19]
and generate stationary and object masks in a random fash-
ion to simulate the masks in video completion and object
removal tasks. As for evaluation, we adopt the stationary
masks provided in [19] to calculate quantitative scores, and
the object masks are extracted from their segmentation la-
bels for qualitative comparisons. Video frames are sized to
432× 240 for training and evaluation.
Training Details and Metrics. We use RAFT [32] to ex-
tract optical flow in our approach. For training the RFC
network, we set the flow sequence length to 10 and perform
deformable propagation on feature maps that are downsam-
pled by a factor of 8 for faster processing. We adopt 8
Transformer blocks for the inpainting modules and use a
local video sequence of length 10. The Transformer window
size is 5×9, and the extended size is half of the window size.
We train both the RFC and inpainting modules using the
Adam [14] optimizer with a batch size of 8, setting the initial
learning rate to 10−4 and running 700k iterations3 for each.
We implement our method using the PyTorch framework and
train it on 8 NVIDIA Tesla V100 (32G) GPUs.

We employ the widely used PSNR and SSIM metrics [35]
to evaluate the reconstruction performance and VFID [34]
scores to measure the perceptual similarity between input
videos and outputs, as used in recent video inpainting stud-
ies [22, 19]. Additionally, we report the flow warping error
Ewarp [16] to assess the temporal consistency and smooth-
ness of the resulting video sequences.

3We set 450k training iterations for ablation study.
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Figure 5: Qualitative comparisons on both video completion and object removal. Our ProPainter exhibits superiority in
producing complete and faithful textures, resulting in enhanced spatiotemporal coherence for video inpainting.

4.1. Comparisons

Quantitative Evaluation. We compare ProPainter with nine
state-of-the-art methods including DFVI [37], CPNet [17],
FGVC [10], STTN [40], TSAM [46], Fuseformer [22],
ISVI [43], FGT [42], and E2FGVI [19] on both YouTube-
VOS [36] and DAVIS [28]. Thanks to the efficient design,
ProPainter uses a temporal length of 20 for inference. Ta-
ble 1 shows that ProPainter outperforms other methods in all
quantitative metrics, especially on the DAVIS dataset, where
our method surpasses the state-of-the-art method by 1.14 dB
in PSNR. The results suggest that our method has superior
inpainting capability, enabling it to produce higher-quality,
faithful, and seamless videos.
Qualitative Evaluation. For the visual comparison, we
compare our method with FuseFormer [22], FGT [42],
and E2FGVI [19], which are representative methods of
Transformer-, image propagation-, and feature propagation-
based approaches, respectively. Figure 5 presents four com-
parison results for video completion and object removal. Our
method uses dual-domain propagation to ensure reliable and
long-range propagation. It completes missing regions with
coherence and clear contents, while other compared methods
tend to fail or produce unpleasant inpainting results such as
texture distortions and black hazy region in FGT [42] results,
as well as artifacts in FuseFormer [22] and E2FGVI [19].
Efficiency Comparison. Table 1 presents the efficiency
comparisons between all methods in terms of FLOPs and
running time. The FLOPs of all methods are computed
based on a temporal length of 10. We consider all learn-

Table 2: Comparisons of flow completion networks. Our net-
work offers a dual benefit with high accuracy and efficiency.

EPE ↓ DFVI [37] FGVC [10] FGT [42] ISVI [43] Ours

YouTube-VOS 0.046 0.032 0.021 0.019 0.020

DAVIS 0.107 0.082 0.052 0.051 0.051

Runtime (s/frame) 0.130 1.125 0.312 0.231 0.005

able modules (including the recurrent flow completion) in
our ProPainter to calculate the FLOPs. The running time
records the time of all processes in each method, including
inpainting, as well as flow calculation and flow completion
if involved. To keep efficiency, we use only five iterations of
the RAFT network to calculate optical flow.
Flow Completion Comparisons. We compare our recurrent
flow network with previous approaches [37, 10, 43] on both
YouTube-VOS and DAVIS datasets. Table 2 presents the
end-point-error (EPE) of flow completion and running time
of each method. Our recurrent network offers a dual benefit
with high accuracy and efficiency. Compared to previous
methods, our network is approximately 40 times faster while
maintaining a comparable flow completion accuracy to the
state-of-the-art methods.

4.2. Ablation Study

Effectiveness of Image Propagation. Table 3 shows that
Exp. (a) experiences a significant performance drop when
image propagation is removed. Moreover, the model’s prop-
agation ability is reduced without image propagation, as
presented in Figure 7, causing it to fail to complete missing
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Table 3: Ablation study of dual-main propagation and sparse Transformer.

Exp. (a) w/o Img Prop. (b) w/ Img Prop. in FGVC (c) w/o Feat Prop. (d) w/ Feat Prop. in E2FGVI (f) Full Tokens ProPainter

PSNR 33.05 32.91 33.17 33.94 34.18 34.15

SSIM 0.9724 0.9687 0.9732 0.9756 0.9765 0.9764

Img Prop. of FGVC Img Prop. (Ours)Masked Frame w/ Img Prop. of FGVC (Exp. b) ProPainter (Ours)

Figure 6: Visual comparison on image propagation methods of FGVC [10] and ours.

Masked Frames w/o Img Prop. (Exp. a) w/ Img Prop.

Figure 7: Comparison of w/ and w/o image propagation.

content with details. To verify the effectiveness of our relia-
bility check strategy in image propagation, we replaced our
design with the FGVC image propagation module in Exp.
(b) (without retraining), resulting in a noticeable decrease in
PSNR. This is because the FGVC image propagation method
is prone to being affected by incorrect optical flow, leading
to severe texture distortion that subsequent modules cannot
correct. Our model can effectively aware and stop unreliable
propagation areas using a simple reliability check via Eq.2,
and generate more faithful inpainting results.
Effectiveness of Feature Propagation. Similarly, we ob-
serve a slight decrease in performance by either removing
feature propagation, i.e., Exp. (c), or replacing it with the
Feature propagation of E2FGVI, i.e., Exp. (d), indicating
the effectiveness of the feature propagation modules and our
reliability mask-aware conditions. This suggests that our
design, which learns reliable DCN offsets in the feature do-
main, can further complement and enhance the propagation
ability in the image domain.
Effectiveness of Sparse Transformer. In theory, our strat-
egy of using masks to guide sparsity only eliminates redun-
dant and unnecessary tokens (windows), while preserving
essential information. This means that there should be no ad-
verse effect on performance. To confirm this, we conducted
Exp. (d), comparing our approach to standard self-attention
without sparse filtering. Our results indicate that our sparse
Transformer block performs almost as well as the standard
one, indicating that it can achieve high efficiency without
sacrificing performance.
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Figure 8: FLOPs cures of different Transformer blocks.

Efficiency of Sparse Transformer. In Figure 8, we compare
the FLOPs of different Transformer blocks with respect to
temporal length and spatial resolution, including those used
in FuseFormer [22], FGT [42], and E2FGVI [19]. We use
a mask with a missing region ratio of 1/6 (higher than the
average object ratio of 13.6% in DAVIS) to calculate the
FLOPs of our mask-guided sparse Transformer. The curves
indicate that the efficiency advantage of our sparse Trans-
former becomes more prominent as the temporal length and
video resolution increase, indicating great potential for de-
veloping longer-range spatiotemporal attention and applying
it to larger resolution videos.

5. Conclusion
This study introduces a novel and improved video in-

painting framework called ProPainter. It incorporates an
enhanced dual-domain propagation and an efficient mask-
guided sparse video Transformer. Thanks to the two mod-
ules, our ProPainter exhibits reliable and precise propagation
capabilities over long distances, significantly improving the
performance of video inpainting while maintaining high effi-
ciency in terms of running time and computational complex-
ity. We believe that the designs in ProPainter will provide
valuable insights to the video inpainting community.
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