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Figure 1: Novel view synthesis result comparisons. Given a single image captured in an outdoor scene, our method
synthesizes novel views with fewer visual artifacts, geometric deformities, and blurs. Notably, our method models favorable
intricate details, such as tiny objects, symbols, and traffic signs, resulting in more photo-realistic views.

Abstract

Recent novel view synthesis methods obtain promising
results for relatively small scenes, e.g., indoor environments
and scenes with a few objects, but tend to fail for unbounded
outdoor scenes with a single image as input. In this paper,
we introduce SAMPLING, a Scene-adaptive Hierarchical
Multiplane Images Representation for Novel View Synthe-
sis from a Single Image based on improved multiplane im-
ages (MPI). Observing that depth distribution varies sig-
nificantly for unbounded outdoor scenes, we employ an
adaptive-bins strategy for MPI to arrange planes in accor-
dance with each scene image. To represent intricate ge-
ometry and multi-scale details, we further introduce a hi-
erarchical refinement branch, which results in high-quality
synthesized novel views. Our method demonstrates consid-
erable performance gains in synthesizing large-scale un-
bounded outdoor scenes using a single image on the KITTI
dataset and generalizes well to the unseen Tanks and Tem-
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ples dataset. The code and models will be made available
at https://pkuvdig.github.io/SAMPLING/.

1. Introduction

Taking a photo and using it to synthesize photo-realistic
images at novel views is an important task with a wide range
of applications, such as generating realistic data for training
AI models (e.g., autonomous driving perception and robot
simulation). This task is challenging as it requires a pre-
cise understanding of 3D geometry, reasoning about occlu-
sions, and rendering high-quality, spatially consistent novel
views from a single image. It becomes even more difficult
for large-scale unbounded outdoor scenes, which contain
complex geometric conditions, various objects, and diverse
depth distributions corresponding to different scenes.

Recently, Neural Radiance Field (NeRF) [1] based meth-
ods have gained much attention by synthesizing photo-
realistic images with dense multi-view inputs. By lever-
aging Multi-layer Perceptron (MLP) layers, NeRF implic-
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itly models a specific scene via RGB values and volume
occupancy density. However, NeRF-based methods are
primarily applicable for rendering bounded objects or in-
teriors, which are impeded by the stringent requirement
for the dense views captured from different angles, pre-
cise corresponding camera poses, and unobstructed condi-
tions [2, 3, 4]. Furthermore, these methods rely on per-
scene fitting and cannot easily generalize to unseen scenes.
Several methods [5, 6, 7, 8] try to utilize multi-modal data,
e.g., LiDAR scans and point clouds, to complicate the syn-
thesis of novel views in large scenes. However, additional
modalities are difficult to obtain and have greater memory
consumption and computational costs. Besides, similar to
NeRF, these multi-modal methods require multiple input
views with large overlaps and need to be trained per scene.

In contrast, the Multiplane Images (MPI) representa-
tion [9] has shown promising results in synthesizing scenes
from sparse views, using a set of parallel semi-transparent
planes to approximate the light field. The MPI repre-
sentation is particularly effective at understanding com-
plex scenes with challenging occlusions [10]. However,
prior MPI-based approaches place planes at fixed depths
with equal intervals, have limitations in modeling irreg-
ular geometry, such as texture details, and do not per-
form well in unbounded outdoor scenes, as shown in Fig-
ure 1. For complicated geographic features and differen-
tiated depth ranges, the uniform static MPIs [11, 9, 12]
are often over-parameterized for large areas of space, yet
under-parameterized for the occupied scenes. In addition,
using single-scale scene representation in MPI also limits
the quality of the synthesized images in large-scale scenes,
leading to apparent artifacts and blurs.

In this paper, we introduce SAMPLING, a scene-
adaptive hierarchical representation for novel view synthe-
sis from a single image based on improved MPI. Instead
of generating multiplanes with a static uniform strategy,
we design the Adaptive-bins MPI Generation strategy to
adaptively distribute the planes according to each input im-
age. This strategy enables a more efficient representation
to better fit various unbounded outdoor scenes. Addition-
ally, we propose a Hierarchical Refinement Branch that uti-
lizes multi-scale information from large scenes, incorporat-
ing both global geometries and high-frequency details into
the MPI representation. This branch enhances the qual-
ity of intermediate scene representations, resulting in more
complete and high-quality synthesized images. Our method
achieves high-quality view synthesis results on challenging
outdoor scenes, such as urban scenes, and shows a well
cross-scene generalization, enabling a more versatile scene
representation. Our main contributions are:

• We present a novel scene-adaptive representation for
synthesizing new views from a single image. Our ap-
proach is based on learnable adaptive-bins for MPI,

enabling the learning of a more efficient and effective
unbounded scene representation from a single view.

• We develop a hierarchical refinement method for 3D
representation of outdoor scenes. We show that repre-
senting scenes with hierarchical information can syn-
thesize new images with favorable details.

• Our method achieves new state-of-the-art performance
in outdoor view synthesis from a single image. Exper-
imental results also show our method generalizes well
for both outdoor and indoor scenes.

2. Related Work

2.1. Novel View Synthesis

Novel view synthesis (NVS) aims to render unseen view-
points of the scene from the observed images. Recently,
numerous deep models have been introduced to represent
3D objects or scenes and synthesize images in novel views.
Some methods exploit generative models for image gener-
ation and completion [13, 14, 15, 16], while others exploit
explicit or implicit 3D scene representations [1, 17, 18, 11]
derived from input images and synthesize new viewpoints
through differentiable rendering.

The recent methods based on the neural radiance field
(NeRF) [19, 20, 21] have achieved state-of-the-art results
for implicit neural 3D scene representation. Given a set of
posed images, NeRF methods map the 3D position and di-
rection to a density and radiance by the multilayer percep-
tron (MLP), followed by differentiable volume rendering
to synthesize the images. Typically, the original NeRF [1]
model is trained per scene and requires dense inputs with
accurate camera poses. To make NeRF more practical, the
NeRF in the wild method [4] requires only unstructured
collections of in-the-wild photographs. In [22, 23, 24],
Lin et al. train NeRF from imperfect (or even unknown)
camera poses. Other approaches explore the possibilities
of NeRF in more application scenarios, such as dynamic
scenes [19, 25, 26], controlled editing [27, 28], and inte-
rior scenes [29, 30]. However, if the inputs are sparse (or
even a single image), or the scene is large and complicated
(e.g., urban street view), the novel views synthesized by
NeRF-based methods will be of low quality and contain
artifacts [31]. Furthermore, existing works for novel view
synthesis need to be trained per scene, lacking general rep-
resentation for scene understanding.

In contrast to NeRF, Multiplane Images (MPI) methods
can synthesize novel views from fewer images, due to the
properties of explicitly modeling scenes with sparse inputs.
Using a stack of RGB-α layers at various depths, the MPI
representation mimics the light field in a differentiable man-
ner. In recent years, significant advances have been made in
MPI for novel view synthesis. For instance, Zhou et al. [11]
use MPI for realistic rendering of novel views with a stereo
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Figure 2: An overall pipeline of our proposed method for novel view synthesis from a single image. Given a single-
view image as input, we first employ an encoder-decoder network combined with skip connections to extract features. The
features are then fed into the Adaptive-bins MPI generation module along with an N-bins query, which calculates the adaptive
positions of the MPI. Simultaneously, the Hierarchical Refinement Branch extracts hierarchical residual features with a set
of Residual Groups and passes them to Transformer Layers. The MPI position p(bi) and representation (ci, αi) are then
predicted by an MLP head to synthesize the novel views through the differentiable rendering.

image pair. In [9], an MPI-based method is developed to
synthesize views directly from a single image input, lead-
ing to higher-quality results compared to traditional light
fields. DeepView [32] further applies learned gradient de-
scent to estimate multiplane images from sparse views, re-
placing the simple gradient descent update rule with a deep
network. To improve the real-time performance, NeX [10]
models view-dependent effects by performing basis expan-
sion on the pixel representation. MINE [12] takes advantage
of the MPI and NeRF, proposing a continuous depth MPI
method for NVS and depth estimation. However, these ap-
proaches have limitations in modeling unbounded outdoor
scenes with multi-scale information and complex geometry.
They also fail to obtain detailed high-frequency informa-
tion, leading to apparent artifacts, blurs, and defects when
synthesizing images in large-scale scenes.

2.2. Large-Scale Neural Scene Rendering

Recent advances in neural rendering have exhibited con-
siderable success in 3D object modeling and interior scene
reconstruction. Nevertheless, current methods demonstrate
suboptimal performance when applied to unbounded out-
door scenes. Numerous methods have been developed to
address this issue. Block-NeRF [33] enables large-scale
scene reconstruction by dividing large environments into
multiple blocks and representing each block with an indi-
vidual NeRF network. BungeeNeRF [34] introduces a pro-
gressive neural radiance field, which models diverse multi-
scale scenes with varying views on multiple data sources.
However, these methods can only model large outdoor driv-
ing scenes that are observed from dense input sensor views
and precise camera poses. With high-speed shots, the out-

door driving scenes typically have very sparse viewpoints
and limited view diversity. To tackle the above challenges,
recent methods have explored multi-modal fusion methods
for neural rendering. Rematas et al. [35] extend NeRF to
leverage asynchronously captured LiDAR data and to su-
pervise the density of rays. Similarly, CLONeR [7] in-
troduces the camera-LiDAR fusion to the outdoor driving
scene, where LiDAR is used to supervise geometry learn-
ing. Li et al. [5, 36, 37] propose to synthesize photo-
realistic scenes with the help of large-scale point clouds, us-
ing neural point-based rendering. However, current multi-
modal approaches take a two-stage synthesis strategy, that
is, first pre-processing all multi-modal data to reconstruct
a rough 3D scene and then rendering a novel view image
from the reconstructed 3D scene. Costly multi-modal data
collection, complex pre-processing, and per-scene training
limit the efficiency and application of these methods. In
contrast, we introduce a high-efficient representation for
novel view synthesis called SAMPLING. With only a sin-
gle image as the input, our method can generate novel view
images from end to end and produce more realistic results
with fewer artifacts and deformities for a wide range of real-
world scenes. Besides, our method does not necessitate per-
scene optimization and thus reduces training costs.

3. Method

The overview architecture of SAMPLING is shown in
Figure 2. Given a single image I , SAMPLING learns to
generate the multiplane images (MPI) representation with
discretized adaptive-bins and hierarchical feature refine-
ment module. Synthesis image Ît can then be rendered at
various novel viewing angles from the generated MPI.

22832



3.1. Adaptive-bins MPI Generation

We utilize MPI to explicitly represent the 3D geometry
of the source view. MPI consists of N front-parallel RGB-
α planes arranged at depths d0, . . . dN+1. Each plane i en-
codes an RGB color image ci and an alpha map αi.

Most existing works employ a uniform-fix MPI distribu-
tion strategy (e.g., MPI [9] and MINE [12]), where planes
are placed at fixed depths with equal intervals. However,
depth distribution corresponding to different RGB inputs
can vary dramatically, especially for outdoor scenes. Thus,
we introduce an adaptive binning strategy for MPI gener-
ation. We discretize the depth interval into N bins, where
the bin widths are adaptively obtained for each image, and
distribute each plane of MPI according to the adaptive bins.

Specifically, we first extract the image feature f by send-
ing a single-view image into an encoder-decoder network.
The encoder-decoder network utilizes skip connections to
produce the high-resolution image feature in a coarse-to-
fine style. Then, we employ a transformer module to calcu-
late the distribution of adaptive-bins MPI. The transformer
module consists of several transformer layers, as shown in
Figure 2. Similar to Adabins [38] and Binsformer [39], we
randomly initialize N learnable bin queries fb for depth pre-
diction. Meanwhile, the feature f is viewed as the MPI
query for RGB-α plane predictions in MPI. In each trans-
former layer, the MPI query f is sent to a Hierarchical Re-
finement Branch to produce the residual feature fr. The
residual feature fr is viewed as values and keys to calculate
the cross-attention with the concatenated queries fb and f .
Then, the updated concatenated queries fb and f are sub-
sequently sent to a self-attention layer and a feed forward
layer, as shown in Figure 3. After that, a shared multi-layer
perception head is performed over the N-bins query fb and
feature f to predict bin width b̃ and generate (ci, αi) for
each plane of MPI. We apply the softmax function to nor-
malize the sum of widths b̃i to 1 as follows:

{bi}Ni=1 = Softmax({b̃i}Ni=1) , (1)

where bi is the ith normalized bin width. Finally, we cal-
culate the adaptive depth location of each plane in MPI by:

p(bi) = dnear + (dfar − dnear)(
bi
2
+

i−1∑
j=1

bj) , (2)

where p(bi) is the position assigned to the ith adaptive-bins
MPI. dnear and dfar are the nearest and farthest distances
of the planes in the frustum of the camera, respectively.

3.2. Hierarchical Refinement Branch

Synthesizing novel views from a single image often faces
difficulty in capturing multi-scale scene features, resulting
in visually obvious holes and blurs. To address this issue,
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Figure 3: Network details of the connection of Trans-
former Layer and Residual Group. The combination of
the two modules enables MPI representation to obtain both
precise distribution and multi-scale detailed information.

we propose a Hierarchical Refinement Branch to improve
the feature with multi-scale information, which has proven
effective in both 3D scene representation [40] and single
image super-resolution [41, 42] tasks.

Specifically, we employ a coarse-to-fine architecture,
where the low-resolution planes enforce the smoothness in
scenes, and high-resolution planes refine the geometry de-
tails. Given the shallow feature f from the encoder-decoder
network, we employ a set of residual groups (RG) [43, 44]
with upscale modules to extract hierarchical residual fea-
tures {fr|r = 1, 2, ..., L}, which can be formulated as:

fr = HRGr (fr−1), (3)

where HRGr
represents the rth residual group, L is the

number of the residual groups. RG aims to restore the high-
frequency information and to extract rich edge and texture
information of the outdoor scenes. The structural details of
the RG are shown in Figure 3.

Besides, to stabilize the training process, we introduce
a long skip connection, an additional upsampling block,
and two convolution layers when calculating the last high-
resolution residual feature fL. Subsequently, we feed the
output fL into the last transformer layer, encouraging the
generation of MPI to pay more attention to the informative
details of scenes.

3.3. Differentiable Rendering in MPI

The synthesized MPI can be rendered in the target view
by first warping each plane from the source viewpoint and
then applying the composite operator to aggregate the warp-
ing results of each plane. The overall MPI rendering can be
formulated as follows:

Ît = O(W (C),W (A)) , (4)
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where Ît denotes the synthesized image, W is the homog-
raphy warping function, and O is the composite operator.
C = {c1, . . . , cN} denotes the set of RGB channels and
A = {α1, . . . , αN} is the corresponding alpha channel.

We first employ the homography warping operation for
the ith plane from the target to source view depending on
the position p(bi) of each plane. Given the rotation matrix
R, the translation matrix t from the target to source view,
and the intrinsic matrix Ks and Kt for source and target
views, we can generate the synthesized target-view image
through W as follows:

[us, vs, 1]
⊤ ∼ Ks(R− tn⊤

p(bi)
)(Kt)

−1 [ut, vt, 1]
⊤

, (5)

where [us, vs] and [ut, vt] are coordinates in the source and
target views, respectively. n is the norm vector of the ith

plane at the position p(bi). The MPI representation of the
target view can be obtained by warping each layer from
the source viewpoint to the desired target viewpoint using
Eq. (5), finding the corresponding pixel for each pixel in
the target frame. The MPI representation under the target
view (c

′

i, α
′

i) can be defined as:

f(x) =

{
c
′

i(ut, vt) = ci(us, vs),

α
′

i(ut, vt) = αi(us, vs).
(6)

Finally, the synthesized target-view image can be then ren-
dered via the compositing procedure [45] as follow:

Ît =

N∑
i=1

(c
′

iα
′

i

N∏
j=i+1

(1− α
′

j)). (7)

This rendering equation is completely differentiable, so our
model can be trained from end-to-end.

3.4. Loss Function

Our overall loss combines an adaptive-bins loss to con-
strain the distribution of MPI according to each scene image
and a synthesis loss to guide the network to synthesize im-
ages following the target views images.

Adaptive-bins loss. This loss term enforces that the distri-
bution of MPI follows the ground truth value of the adaptive
depth for each image:

Lada =
∑
x∈X

min
y∈p(bi)

∥x− y∥2 +
∑

y∈p(bi)

min
x∈X

∥x− y∥2 , (8)

where p(bi) denotes the arranged depth of MPI and the set
of all depth values in the ground truth image as X .

Synthesis loss. This loss aims at matching the synthesized
target image with the ground truth by measuring the mean
square error of RGB value and SSIM value [46]:

Lsyn =
1

HW

∑∣∣∣Ît − It

∣∣∣− SSIM(Ît, It) , (9)

where Ît and It are the synthesized novel image and ground
truth image with the same size of H ×W .

The total loss is given by:

L = λadaLada + Lsyn , (10)

where λada is the parameter to balance the loss terms.

4. Experiments
We present quantitative and qualitative evaluations of our

method on the KITTI [49] dataset and generalization perfor-
mance on Tanks and Temples (T&T) [50], compared with
prior view synthesis methods. To assess the quality of the
synthesized novel views, we mainly focus on the evaluation
metrics of Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM) [46], and Learned Per-
ceptual Image Patch Similarity (LPIPS) [51]. All metrics
are computed over all pixels.

4.1. Evaluating Quality

To demonstrate the efficacy of our method, we compare
it to state-of-the-art methods for novel view synthesis. Fol-
lowing the settings of [9, 54], we train our model on the city
subset of the raw KITTI dataset, randomly taking either the
left or the right image as the source (the other being the tar-
get) at each training step. Following [12, 9], we evaluate the
model on 4 test sequences of KITTI, cropping 5% from all
sides of all images.

We compare our method with state-of-the-art approaches
for NVS using different types of 3D representations, in-
cluding the traditional NeRF-based method [4], Neural
Point-based methods [37, 5], generative model-based meth-
ods [14, 47, 48], layer representation such as LDI-based
method [18], and MPI-based methods [32, 9, 12]. Note that
the traditional NeRF-based and Neural Point-based meth-
ods require per-scene optimization and pre-processing for
exploiting additional supervision. Quantitative comparison
results are presented in Table 1.

Compared with NeRF-based methods. We observe that
our method outperforms NRW [4] by a large margin,
although NRW introduces multiple supervision as well
as paired poses to guarantee the training of the MLP.
NPBG [37] and READ [5] are two Neural Point-based
methods, exploiting the extra point clouds for supervision
and synthesizing large-scale driving scenes with neural ren-
dering. Our method achieves competitive results across all
three metrics and improves the SSIM to 0.883 compared
with the state-of-the-art methods on KITTI.

Compared with generative models. Based on genera-
tive models, SynSin [14] and PixelSynth [47] both utilize
a high-resolution point cloud representation of learned fea-
tures. 3D-Photo [48] presents a learning-based inpainting
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Table 1: Overall comparison of SAMPLING with existing state-of-the-art approaches for novel view synthesis on the
KITTI city dataset. Note that ↑ denotes higher is better and ↓ means otherwise. The symbol † denotes the need for per-scene
optimization and we use the average over all scenes as the final score. To ensure fairness, we follow the settings of MPI [9]
and MINE [12] and show the results with N = 64.

Methods Supervision PSNR ↑ SSIM ↑ LPIPS ↓
NRW† [4] RGB + Point Clouds + Depth 18.02 0.568 0.310

NPBG† [37] RGB + Point Clouds 19.58 0.627 0.248
READ† [5] RGB + Point Clouds 23.48 0.781 0.132
Synsin [14] RGB + Point Clouds 16.70 0.520 -

PixelSynth [47] RGB + Point Clouds + Depth 17.13 0.602 -
3D-Photo [48] RGB + Depth + Edges 18.39 0.742 0.175

LSI [18] RGB 16.52 0.572 -
Deepview [32] RGB 17.28 0.716 0.196

MPI [9] RGB 19.54 0.733 0.158
MINE [12] RGB 21.65 0.818 0.117

SAMPLING (Ours) RGB 23.67 0.883 0.101

MINEMPI OursGround Truth PixelSynth

Figure 4: Qualitative comparison of novel view synthesis on the KITTI dataset. Visualization results show our method
generates better details compared to other single-view NVS methods, including PixelSynth [47], MPI [9], and MINE [12].

model combined with a Layered Depth Image, using depth
and linked depth edges as additional supervision. Although
these methods perform well in indoor scenes, they struggle
with complex unbounded outdoor scenes due to the absence
of strict geometric constraints and multi-scale features.

Compared with layered representation methods. Sim-
ilar to MPI, LSI [18] applies a layer-structured 3D repre-
sentation of a scene from a single input image. Compared

with LSI, our method boosts the results by 7.15 on PSNR.
DeepView [32], MPI [9], and MINE [12] are MPI-based or
MPI-NeRF methods for novel view synthesis. Notably, we
improve the performance of MPI for outdoor scenes on all
metrics, compared with these existing methods.

We also visually compare the view synthesis results in
Figure 4. Our method produces more realistic images with
high-quality details, more complete edge geometries, and
fewer artifacts and distortions. For small objects (e.g.,
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Figure 5: Qualitative comparison of disparity map and novel view synthesis on the KITTI dataset. (a) Disparity maps
in [12] exhibit structural biases and missing objects, leading to unpleasant artifacts and distortions in the output. (b) The
comparative disparity maps show that our method is capable of better recovering the spatial structure of complex scenes and
intricate object boundaries. (c) Our method consistently delivers higher-quality and flawlessly disparity maps and outputs,
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Table 2: Generalization study on T&T. We evaluate the
generalization of our method on the Tanks and Temples
(T&T) dataset that provides different scenes from KITTI.

Methods Training Set T&T
PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [1]

T&T

22.14 0.676 -
NerfingMVS [29] 19.31 0.464 -

Monosdf [52] 21.48 0.689 -
ResNeRF [53] 23.39 0.795 -
3D-Photo [48] 23.63 0.848 0.136

MPI [9]
KITTI

18.62 0.614 0.260
MINE [12] 21.04 0.748 0.196

Ours 23.56 0.852 0.125

pedestrians and traffic cones) and scene text (e.g., traffic
signs), our method also shows favorable synthesis perfor-
mance. The visualization confirms the effectiveness of our
method in modeling the complex geometry and texture de-
tails of unbounded outdoor scenes.

We further show a qualitative comparison of disparity
maps on the KITTI dataset in Figure 5. Similar to [9, 12],
we use the models trained with KITTI to synthesize dis-
parity maps from MPIs generated by our method and
MINE [12]. We can observe that MINE [12] displays miss-
ing and distorted areas in depth maps, leading to unpleas-
ant visual artifacts. In contrast, our method excels in adap-
tively aligning the depth of various outdoor scenes, pro-
moting the synthesis of more precise geometric shapes and

well-aligned boundaries of visible objects. The proposed
hierarchical refinement branch also serves as guidance for
generating smooth and refined disparity maps, as well as
synthesized outputs. More results and videos are available
in the supplementary material.

4.2. Generalization

We further examine the generalization ability of our
method using Tanks and Temples (T&T) dataset. Specifi-
cally, we train our model on the KITTI dataset and evaluate
it on the advanced sets of T&T that contain indoor scenes.

We compare our model with existing methods for in-
door scenes synthesis, such as NeRF [1], NerfingMVS [29],
Monosdf [52], and ResNeRF [53]. These methods employ
explicit or implicit representation techniques to model a sin-
gle scene with dense views as inputs. Note that these meth-
ods need to be trained separately for each scene, while our
method can be trained in all scenes at once. We also com-
pare our method with 3D-Photo [48] as well as MPI-based
methods, including MPI [9] and MINE [12]. The quantita-
tive results are presented in Table 2 and synthesis views of
T&T are shown in Figure 6.

When evaluated on T&T, our method still maintains a
high level of performance. Quantitative results demon-
strate that our method outperforms implicit representation
approaches (e.g., Monosdf [52] and ResNeRF [53]), despite
their use of multiple dense views as input. 3D-Photo [48]
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Figure 6: The qualitative results of our method generalize to unseen dataset (T&T). The symbol ∗ denotes the model is
trained on KITTI and evaluated on T&T.

Table 3: Comparison of the proposed method with vary-
ing numbers of planes on the KITTI dataset. N denotes
the preset number of planes for MPI.

N PSNR ↑ SSIM ↑ LPIPS ↓
8 20.02 0.812 0.139

16 22.18 0.856 0.114
32 23.53 0.879 0.105
64 23.67 0.883 0.101

128 23.68 0.885 0.100

exploits a multi-layer representation for novel view synthe-
sis and achieves state-of-the-art performance. Our method
catches up with 3D-Photo [48] on PSNR and exceeds it in
terms of SSIM and LPIPS. Due to the relatively tight ge-
ometric constraints and different depth distributions of the
interior, it can be observed that MPI-based methods [9, 12]
show a certain degree of decline on T&T, using the trained
model on outdoor scenes (e.g., KITTI). Nevertheless, SAM-
PLING still exhibits good performance with minimal degra-
dation. This can potentially be attributed to the employing
of adaptive-bins MPI, leading to the image-level scene rep-
resentation adaption. Additionally, our proposed hierarchi-
cal refinement branch aids in obtaining the multi-scale de-
tails of scenes, enhancing the generalization capability.

4.3. Ablation Studies

In this section, we conduct ablation experiments to ana-
lyze the effectiveness of each setting of our method, includ-
ing the main components and hyperparameters. We evaluate
our method on KITTI dataset in the following experiments.

Table 4: Comparison of different strategies for MPI dis-
tribution. Uniform-Fix and Log-Fix are two strategies for
arranging MPI, both of which employ a static method for
generating MPI and sampling.

Variant PSNR ↑ SSIM ↑ LPIPS ↓
Uniform-Fix MPI 21.98 0.837 0.118

Log-Fix MPI 22.53 0.862 0.112
Adaptive-bins MPI (Ours) 23.67 0.883 0.101

Number of MPI planes. The performance of MPI repre-
sentation is related to the number N of planes. To study
the influence of the number of MPI, we train our network
with various values of N and report results in Table 3. We
can see consistent improvements with increasing N in our
method. As the number of MPI increases, they can rep-
resent more complex scenes with a wider range of depth
values. By contrast, sparse MPI (e.g., 8 planes) settings can
lead to inadequate scene representation for large-scale out-
door scenes with a wide depth range. We use 64 planes of
MPI in our experiments, which achieves good performance
and computation cost trade-off.

Type of MPI distribution. We examine the performance
of three different strategies for MPI distribution and sam-
pling, i.e., Uniform-Fix, Log-Fix, and proposed Adaptive-
bins MPI. In our experiment, we replace the Adaptive-bins
MPI module with the uniform-fix or log-fix strategy without
changing the other modules. Uniform-Fix MPI is a classi-
cal strategy employed by most MPI-based methods, such as
MPI [9] and MINE [12]. It divides the depth range at fixed
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Table 5: Ablation study on network design. Ada-bins
stands for the Adaptive-bins MPI module. HRB is the ab-
breviation for Hierarchical Refinement Branch.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
w/o Ada-bins 21.98 0.837 0.118

w/o HRB 22.87 0.869 0.109
w/o Lada 22.25 0.858 0.113

Ours 23.67 0.883 0.101

intervals and randomly samples on MPI. Log-Fix MPI in-
troduces a priori for the depth distribution and distributes
the MPI according to the depth range in a log scale. As
shown in Table 4, compared with the two strategies, our
Adaptive-bins MPI achieves optimal results by employing
the adaptive bin distribution strategy per image, leading to a
more efficient representation for unbounded outdoor scenes.

Effectiveness of Each Module. We further investigate how
each proposed module contributes to the final performance.
We first verify the effectiveness of Adaptive-bins MPI by re-
moving this module and exploiting uniform-fixed MPI fol-
lowed by random sampling. We report the results in Ta-
ble 5. The results show that the Adaptive-bins MPI mod-
ule plays a key role in modeling the entire outdoor scenes
and generating more efficient representations. Then, we re-
move the hierarchical refinement branch, proving its use-
fulness in improving image quality and capturing texture
details. Moreover, experimental results indicate that intro-
ducing the adaptive-bins loss function helps with better dis-
tributing planes according to each image. Qualitatively, our
method achieves favorable results with the overall combi-
nation of each module.

Ground Truth Ours Ground Truth Ours

Figure 7: Failure cases. Due to the extremely narrow ge-
ometries (e.g., street light pole) and inhomogeneous diffuse
reflections, our method fails in modeling these areas and
generates images distorted and misaligned.

4.4. Limitations & Failure Cases

Our method is based on MPI representation and, as a re-
sult, inherits certain limitations. When the synthesis view
is significantly distant from the observation view, the gen-
erated images have relatively obvious visual distortions and
artifacts. As with other MPI-based methods, the areas with
strong diffuse light and slender geometric shapes may lead
to distorted representation in planes as well as rendered out-

put, as shown in Figure 7. Learning how to synthesize im-
ages in these hard cases could be a promising research topic.

5. Conclusion

In this paper, we present SAMPLING, an improved
MPI-based novel view synthesis method from a single-
view image for outdoor scenes. To address the difficulty
of representing intricate geometries in unbounded outdoor
scenes, we introduce Adaptive-bins MPI, which can adap-
tively distribute the planes of MPI in different depths for
each scene image. Besides, we propose a Hierarchical Re-
finement Branch to fuse multi-scale information for better
image detail generation. Experiment results show that our
method enhances the efficiency and quality of MPI repre-
sentation, especially in modeling complex geometries and
high-frequency details. Our method achieves new state-
of-the-art view synthesis results on the large-scale outdoor
dataset. Furthermore, experimental results show that our
method has a strong generalization ability on unseen scenes.
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