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Abstract

Previous works have shown that increasing the window
size for Transformer-based image super-resolution models
(e.g., SwinIR) can significantly improve the model perfor-
mance but the computation overhead is also considerable.
In this paper, we present SRFormer, a simple but novel
method that can enjoy the benefit of large window self-
attention but introduces even less computational burden.
The core of our SRFormer is the permuted self-attention
(PSA), which strikes an appropriate balance between the
channel and spatial information for self-attention. Our
PSA is simple and can be easily applied to existing super-
resolution networks based on window self-attention. With-
out any bells and whistles, we show that our SRFormer
achieves a 33.86dB PSNR score on the Urban100 dataset,
which is 0.46dB higher than that of SwinIR but uses fewer
parameters and computations. We hope our simple and
effective approach can serve as a useful tool for future
research in super-resolution model design. Our code is
available at https://github.com/HVision-NKU/
SRFormer.

1. Introduction
Single image super-resolution (SR) endeavors to re-

cover a high-quality image from its degraded low-resolution
counterpart. The pursuit of efficient and proficient super-
resolution algorithms has been a hot research topic in com-
puter vision, which has a variety of applications [2, 25, 63].
Since the pioneer works [9, 26, 30, 38, 52, 82], CNN-based
methods have been mainstream for image super-resolution
for a long time. These methods mostly take advantage
of residual learning [26, 30, 32, 38, 55, 80], dense connec-
tions [58, 67, 87], or channel attention [72, 86] to construct
network architectures, making substantial contributions to
the advancement of super-resolution models.
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Figure 1. Performance comparison between SwinIR and our SR-
Former when training 200k iterations with different window sizes
(WS) for 200k iterations. Our SRFormer enjoys a large window
size of 24 × 24 with even fewer computations but higher PSNR
scores.

Despite the success made by CNN-based models in
super-resolution, recent works [5, 37, 79, 85] have shown
that Transformer-based models perform better. They ob-
serve that the ability of self-attention to build pairwise rela-
tionships is a more efficient way to produce high-quality
super-resolution images than convolutions. One typical
work among them should be SwinIR [37] which introduces
Swin Transformer [41] to image super-resolution, greatly
improving the state-of-the-art CNN-based models on vari-
ous benchmarks. Later, a variety of works, such as Swin-
FIR [79], ELAN [85], and HAT [6], further develop SwinIR
and use Transformers to design different network architec-
tures for SR.

The aforementioned methods reveal that properly en-
larging the windows for the shifted window self-attention
in SwinIR can result in clear performance gain (see Fig-
ure 1). However, the computational burden is also an im-
portant issue as the window size goes larger. In addi-
tion, Transformer-based methods utilize self-attention and
require networks of larger channel numbers compared to
previous CNN-based methods [26, 86, 87]. To explore ef-
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ficient and effective super-resolution algorithms, a straight-
forward question should be: How would the performance
go if we reduce the channel number and meanwhile increase
the window size?

Motivated by the question mentioned above, in this pa-
per, we present permuted self-attention (PSA), an efficient
way to build pairwise relationships within large windows
(e.g., 24× 24). The intention is to enable more pixels to get
involved in the attention map computation and at the same
time introduce no extra computational burden. To this end,
we propose to shrink the channel dimensions of the key and
value matrices and adopt a permutation operation to convey
part of the spatial information into the channel dimension.
In this way, despite the channel reduction, there is no loss of
spatial information, and each attention head is also allowed
to keep a proper number of channels to produce expressive
attention maps [60]. In addition, we also improve the orig-
inal feed-forward network (FFN) by adding a depth-wise
convolution between the two linear layers, which we found
helps in high-frequency component recovery.

Given the proposed PSA, we construct a new network for
SR, termed SRFormer. We evaluate our SRFormer on five
widely-used datasets. Benefiting from the proposed PSA,
our SRFormer can clearly improve its performance on al-
most all five datasets. Notably, for ×2 SR, our SRFormer
trained on only the DIV2K dataset [38] achieves a 33.86
PSNR score on the challenging Urban100 dataset [20].
This result is much higher than those of the recent SwinIR
(33.40) and ELAN (33.44). A similar phenomenon can also
be observed when evaluating on the ×3 and ×4 SR tasks.
In addition, we perform experiments using a light version
of our SRFormer. Compared to previous lightweight SR
models, our method also achieves better performance on all
benchmarks.

To sum up, our contributions can be summarized as fol-
lows:

• We propose a novel permuted self-attention for image
super-resolution, which can enjoy large-window self-
attention by transferring spatial information into the chan-
nel dimension. By leveraging it, we are the first to im-
plement 24x24 large window attention mechanism at an
acceptable time complexity in SR.

• We build a new transformer-based super-resolution net-
work, dubbed SRFormer, based on the proposed PSA and
an improved FFN from the frequency perspective (Con-
vFFN). Our SRFormer achieves state-of-the-art perfor-
mance in classical, lightweight, and real-world image SR
tasks.

2. Related Work
In this section, we briefly review the literature on im-

age super-resolution. We first describe CNN-based methods

and then transition to the recent popular Transformer-based
models.

2.1. CNN-Based Image Super-Resolution

Since SRCNN [9] first introduced CNN into image
super-resolution (SR), a large number of CNN-based SR
models have emerged. DRCN [27] and DRRN [55] intro-
duce recursive convolutional networks to increase the depth
of the network without increasing the parameters. Some
early CNN-based methods [9, 27, 55, 56] attempt to inter-
polate the low-resolution (LR) as input, which results in a
computationally expensive feature extraction. To accelerate
the SR inference process, FSRCNN [10] extracts features at
the LR scale and conducts an upsampling operation at the
end of the network. This pipeline with pixel shuffle upsam-
pling [52] has been widely used in later works [37, 85, 86].
LapSRN [29] and DBPN [19] perform upsampling dur-
ing extracting feature to learn the correlation between LR
and HR. There are also some works [30, 65, 67, 83] that
use GAN [14] to generate realistic textures in reconstruc-
tion. MemNet [56], RDN [87], and HAN [49] efficiently
aggregate the intermediate features to enhance the quality
of the reconstructed images. Non-Local attention [64] has
also been extensively explored in SR to better model the
long-range dependencies. Methods of this type include CS-
NL [48], NLSA [47], SAN [7], IGNN [89], etc.

2.2. Vision Transformers

Transformers recently have shown great potential in a
variety of vision tasks, including image classification [11,
59,62,74,75], object detection [4,12,16,54,73], image cap-
tion [33, 69, 84], semantic segmentation [53, 71, 88], image
restoration [5, 17, 37, 76], etc. Among these, the most typ-
ical work should be Vision Transformer (ViT) [11] which
proves Transformers can perform better than convolutional
neural networks on feature encoding. The application of
Transformers in low-level vision mainly includes two cat-
egories: generation [8, 24, 31, 78] and restoration. Fur-
ther, the restoration tasks can also be divided into two cat-
egories: video restoration [13, 39, 40, 42, 51] and image
restoration [5, 18, 68, 70, 76].

As an important task of image restoration, image super-
resolution needs to preserve the structural information of
the input, which poses a great challenge when devising
Transformer-based models. IPT [5] is a large pre-trained
model based on the Transformer encoder and decoder
structure and has been applied to super-resolution, denois-
ing, and deraining. Based on the Swin Transformer en-
coder [41], SwinIR [37] performs self-attention on an 8× 8
local window in feature extraction and achieves extremely
powerful performance. ELAN [85] simplifies the architec-
ture of SwinIR and uses self-attention computed in different
window sizes to collect the correlations between long-range
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Figure 2. Overall architecture of SRFormer. The pixel embedding module is a 3× 3 convolution to map the input image to feature space.
The HR image reconstruction module contains a 3× 3 convolution and a pixel shuffle operation to reconstruct the high-resolution image.
The middle feature encoding part has N PAB groups, followed by a 3× 3 convolution.

pixels.
Our SRFormer is also based on Transformer. Differ-

ent from the aforementioned methods that directly leverage
self-attention to build models, our SRFormer mainly aims
at the self-attention itself. Our intention is to study how
to compute self-attention in a large window to improve the
performance of SR models without increasing the parame-
ters and computational cost.

3. Method

3.1. Overall Architecture

The overall architecture of our SRFormer is shown in
Fig. 2, consisting of three parts: a pixel embedding layer
GP , a feature encoder GE , and a high-resolution image re-
construction layer GR. Following previous works [37, 85],
the pixel embedding layer GP is a single 3 × 3 convolu-
tion that transforms the low-resolution RGB image I ∈
RH×W×3 to feature embeddings FP ∈ RH×W×C . FP

will then be sent into the feature encoder GE with a hier-
archical structure. It consists of N permuted self-attention
groups, each of which is with M permuted self-attention
blocks followed by a 3 × 3 convolution. A 3 × 3 convo-
lution is added at the end of the feature encoder, yielding
FE . The summation results of FE and FP are fed into GR

for high-resolution image reconstruction, which contains a
3 × 3 convolution and a sub-pixel convolutional layer [52]
to reconstruct high-resolution images. We compute the L1
loss between the high-resolution reconstructed image and
ground-truth HR image to optimize our SRFormer.

3.2. Permuted Self-Attention Block

The core of our SRFormer is the permuted self-attention
block (PAB), which consists of a permuted self-attention
(PSA) layer and a convolutional feed-forward network
(ConvFFN).

Permuted self-attention. As shown in Fig. 3(b), given an
input feature map Xin ∈ RH×W×C and a tokens reduction
factor r, we first split Xin into N non-overlapping square
windows X ∈ RNS2×C , where S is the side length of each
window. Then, we use three linear layers LQ, LK , LV to

get Q, K, and V:

Q,K,V = LQ(X), LK(X), LV (X) (1)

Here, Q keeps the same channel dimension to X while LK

and LV compress the channel dimension to C/r2, yield-
ing K ∈ RNS2×C/r2 and V ∈ RNS2×C/r2 . After that, to
enable more tokens to get involved in the self-attention cal-
culation and avoid the increase of the computational cost,
we propose to permute the spatial tokens in K and V to
the channel dimension, attaining permuted tokens Kp ∈
RNS2/r2×C and Vp ∈ RNS2/r2×C .

We use Q and the shrunken Kp and Vp to perform the
self-attention operation. In this way, the window size for
Kp and Vp will be reduced to S

r × S
r but their channel di-

mension is still unchanged to guarantee the expressiveness
of the attention map generated by each attention head [60].
The formulation of the proposed PSA can be written as fol-
lows:

PSA(Q,Kp,Vp) = Softmax

(
QKT

p√
dk

+B

)
Vp (2)

where B is an aligned relative position embedding that can
be attained by interpolating the original one defined in [41]
since the window size of Q does not match that of Kp.

√
dk

is a scalar as defined in [11]. Note that the above equation
can easily be converted to the multi-head version by split-
ting the channels into multiple groups.

Our PSA transfers the spatial information to the channel
dimension. It ensures the following two key design prin-
ciples: i) We do not downsample the tokens first as done
in [62, 71] but allow each token to participate in the self-
attention computation independently. This enables more
representative attention maps. ii) PSA can be conducted in a
large window (e.g., 24×24) using even fewer computations
than SwinIR with 8 × 8 window while attaining better per-
formance. For a h × w × c feature, the original WSA [41]
divides it into h

W × w
W windows. Each window involves

three linear projections for K,Q, V , and a linear projection
after attention, resulting in Ω(4W 2C2). Additionally, the
attention calculation requires Ω(2W 4C) :

Ω(WSA) = 4hwC2 + 2W 2hwC
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Figure 3. (a) We propose to reduce the channel numbers and transfer the spatial information to the channel dimension to avoid spatial
information loss. (b) The structure of our Permuted Self-Attention Block(PAB).

Figure 4. Power spectrum of the intermediate feature maps pro-
duced by our SRFormer with FFN and ConvFFN. Lines in darker
color correspond to features from deeper layers.

In contrast, our PSA reduces the computations of linear pro-
jection of K,V and attention calculation to 1/r2:

Ω(PSA) = 2hw
C2

r2
+ 2hwC2 + 2W 2h

r

w

r
C

ConvFFN. Previous works have demonstrated that self-

attention can be viewed as a low-pass filter [50, 61]. To
better restore high-frequency information, a 3 × 3 convo-
lution is often added at the end of each group of Trans-
formers as done in SwinIR [37]. Different from SwinIR, in
our PAB, we propose to add a local depthwise convolution
branch between the two linear layers of the FFN block to
assist in encoding more details. We name the new block as
ConvFFN. We empirically found that such an operation in-
creases nearly no computations but can compensate for the
loss of high-frequency information caused by self-attention
shown in Fig. 4. We simply calculate the power spectrum of
the feature maps produced by our SRFormer with FFN and
ConvFFN. By comparing the two figures, we can see that
ConvFFN can clearly increase high-frequency information,
and hence yields better results as listed in Tab. 1.

3.3. Large-Window Self-Attention Variants

To provide guidance for the design of large-window self-
attention and demonstrate the advantage of our PSA, here,
we introduce another two large-window self-attention vari-
ants. The quantitative comparisons and analysis can be
found in our experiment section.

Token Reduction. The first way to introduce large-window
self-attention and avoid the increase in computational cost
is to reduce the number of tokens as done in [71]. Let r and
S be a reduction factor and the window size. Given an in-
put X ∈ RNS2×C , we can adopt a depthwise convolutional
function with kernel size r× r and stride r to reduce the to-
ken numbers of K and V in each window to (Sr )

2, yielding
Qr ∈ RNS2×C and Kr,Vr ∈ RNS2/r2×C . Qr and Kr

are used to compute the attention scores A ∈ RS2×S2/r2 .
Computing the matrix multiplication between A and Vr

yields the output with the same number of tokens to X.

Token Sampling. The second way to achieve large-window
self-attention is to randomly sample T 2 (0 ≤ T ≤ S) to-
kens from each window according to a given sampling ratio
t for the key K and value V. Given the input X ∈ RNS2×C ,
Q shares the same shape with X but the shapes of K and V
are reduced to NT 2 ×C. In this way, as long as T is fixed,
the computational cost increases linearly as the window size
gets larger. A drawback of token sampling is that randomly
selecting a portion of tokens loses structural information of
content, which is essentially needed for image SR.

4. Experiments

In this section, we conduct experiments on both the clas-
sical, lightweight, and real-world image SR tasks, compare
our SRFormer with existing state-of-the-art methods, and
do ablation analysis of the proposed method.
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Method Window size Params MACs SET5 [3] SET14 [77] B100 [45] Urban100 [20] Manga109 [46]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SwinIR [37]
8× 8 11.75M 2868G 38.24 0.9615 33.94 0.9212 32.39 0.9023 33.09 0.9373 39.34 0.9784

12× 12 11.82M 3107G 38.30 0.9617 34.04 0.9220 32.42 0.9026 33.28 0.9381 39.44 0.9788
16× 16 11.91M 3441G 38.32 0.9618 34.00 0.9212 32.44 0.9030 33.40 0.9394 39.53 0.9791

SRFormer w/o
ConvFFN

12× 12 9.97M 2381G 38.23 0.9615 34.00 0.9216 32.37 0.9023 32.99 0.9367 39.30 0.9786
16× 16 9.99M 2465G 38.25 0.9616 33.98 0.9209 32.38 0.9022 33.09 0.9371 39.42 0.9789
24× 24 10.06M 2703G 38.30 0.9618 34.08 0.9225 32.43 0.9030 33.38 0.9397 39.44 0.9786

SRFormer
12× 12 10.31M 2419G 38.22 0.9614 34.08 0.9220 32.38 0.9025 33.08 0.9372 39.13 0.9780
16× 16 10.33M 2502G 38.31 0.9617 34.10 0.9217 32.43 0.9026 33.26 0.9385 39.36 0.9785
24× 24 10.40M 2741G 38.33 0.9618 34.13 0.9228 32.44 0.9030 33.51 0.9405 39.49 0.9788

Table 1. Ablation study on the window size. We report results on the original SwinIR, SRFormer without ConvFFN, and our full SRFormer.
Note that the parameters and MACs of SRFormer with 24 × 24 window are fewer than SwinIR with 8 × 8 window. Larger windows can
result in better performance.

ConvFFN Urban100 [20] Manga109 [46]

PSNR SSIM PSNR SSIM

w/o Depth-wise Conv 33.38 0.9397 39.44 0.9786
3× 3 Depth-wise Conv 33.42 0.9398 39.34 0.9787
5× 5 Depth-wise Conv 33.51 0.9405 39.49 0.9788

Table 2. Ablation study on ConvFFN for ×2 SR. From the results
on Urban100 and Manga109, we can see that using 5×5 depthwise
convolution yields the best results. This indicates that local details
are also essential for Transformer-based models.

Method Params MACs S r PSNR SSIM

SwinIR [37] 11.75M 2868G 8 - 33.09 0.9373

Token Reduction 11,78M 2471G 16 2 33.09 0.9372
Token Reduction 11.85M 2709G 24 2 33.24 0.9387

Token Sampling 11.91M 2465G 16 2 32.38 0.9312
Token Sampling 12.18M 2703G 24 2 32.34 0.9305

PSA 9.99M 2465G 16 2 33.09 0.9371
PSA 10.06M 2703G 24 2 33.38 0.9397

Table 3. ×2 SR performance comparison among SwinIR [37], our
proposed PSA, and the two variants on Urban100 [20]. The results
reported here are based on the best model trained on DIV2K for
200k iterations. For token sampling, r = S/T . PSA performs
better than another two variants.

4.1. Experimental Setup

Datasets and Evaluation. The choice of training datasets
keeps the same as the comparison models. In classical
image SR, we use DIV2K [38] and DF2K (DIV2K [38]
+ Flickr2K [57]) to train two versions SRFormer. In
lightweight image SR, we use DIV2K [38] to train our
SRFormer-light. In real-world SR, We use DF2K and
OST [66]. For testing, we mainly evaluate our method
on five benchmark datasets, including Set5 [3], Set14 [77],
BSD100 [45], Urban100 [20], and Manga109 [46]. Self-
ensemble strategy is introduced to further improve perfor-

mance, named SRFormer+. The experimental results are
evaluated in terms of PSNR and SSIM values, which are
calculated on the Y channel from the YCbCr space.

Implementation Details. In the classical image SR task,
we set the PAB group number, PAB number, channel num-
ber, and attention head number to 6, 6, 180, and 6, respec-
tively. When training on DIV2K [38], the patch size, win-
dow size S, and reduction factor r are set to 48×48, 24, and
2, respectively. When training on DF2K [38, 57], they are
64× 64, 22, and 2, respectively. For the lightweight image
SR task, we set the PAB group number, PAB number, chan-
nel number, windows size S, reduction factor r, and atten-
tion head number to 4, 6, 60, 16, 2, and 6, respectively. The
training patch size of SRFormer-light is 64 × 64. We ran-
domly rotate images by 90◦, 180◦, or 270◦ and randomly
flip images horizontally for data augmentation. We adopt
the Adam [28] optimizer with β1 = 0.9 and β2 = 0.99
to train the model for 500k iterations. The initial learn-
ing rate is set as 2 × 10−4 and subsequently halved at the
{250k, 400k, 450k, 475k}-th iterations.

4.2. Ablation Study

Impact of window size in PSA. Permuted self-attention
provides an efficient and effective way to enlarge window
size. To investigate the impact of different window sizes
on model performance, we conduct three group experi-
ments and report in Table 1. The first group is the vanilla
SwinIR [37] with 8 × 8, 12 × 12, and 16 × 16 window
sizes. In the second group, we do not use the ConvFFN but
only the PSA in our SRFormer and set the window size to
12× 12, 16× 16, and 24× 24, respectively, to observe the
performance difference. In the third group, we use our full
SRFormer with 12×12, 16×16, and 24×24 as window size
to explore the performance change. The results show that a
larger window size yields better performance improvement
for all three groups of experiments. In addition, the param-
eters and MACs of our SRFormer with 24× 24 window are
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Urban100 (4×): img 073

HR Bicubic EDSR [38] RCAN [86] RDN [87]

IGNN [89] NLSA [89] IPT [5] SwinIR [37] SRFormer (ours)

Urban100 (4×): img 092

HR Bicubic EDSR [38] RCAN [86] RDN [87]

IGNN [89] NLSA [89] IPT [5] SwinIR [37] SRFormer (ours)

Manga109 (4×): UltraEleven

HR Bicubic EDSR [38] RCAN [86] RDN [87]

IGNN [89] NLSA [89] IPT [5] SwinIR [37] SRFormer (ours)

Figure 5. Qualitative comparison with recent state-of-the-art classical image SR methods on the ×4 SR task.

even fewer than the original SwinIR with 8× 8 window. To
balance the performance and MACs, we set window size as
24× 24 in SRFormer and 16× 16 in SRFormer-light.

Impact of kernel size of ConvFFN. We introduce Con-
vFFN in Sec. 3.2, which aims to encode more local infor-
mation without increasing too many computations. In order
to explore which kernel size can bring the best performance
improvement, we attempt to use 3× 3 depth-wise convolu-
tion and 5× 5 depth-wise convolution and report the results
in Table 2. Given that the depth-wise convolution has little
effect on the number of parameters and MACs, we do not
list them in the table. Thus, we use 5 × 5 depth-wise con-
volution in our ConvFFN since it leads to the best results.

Large-window self-attention variants. In Sec. 3.3, we in-
troduce another two large-window self-attention variants.
We summarize the results in Table 3. Though token reduc-
tion can slightly improve SwinIR when using a large win-
dow, the number of parameters does not decrease and the
performance gain is lower than ours. We argue that it is
because directly applying downsampling operations to the
key and value results in spatial information loss. For token
sampling, the performance is even worse than the original
SwinIR. We believe the reason is that dropping out some
tokens severely breaks the image content structure.

4.3. Classical Image Super-Resolution

For the classical image SR task, we conduct quantita-
tive comparison and qualitative comparison with a series
of state-of-the-art CNN-based and Transformer-based SR
methods: RCAN [86], RDN [87], SAN [7], IGNN [89],
HAN [49], NLSA [47], SRFBN [36], IPT [5], SwinIR [37],
EDT [34], and ELAN [85].

Quantitative comparison. The quantitative comparison of
the methods for classical image SR is shown in Table 4. For
a fair comparison, the number of parameters and MACs of
SRFormer are lower than SwinIR [37] (10.52M and 697G
vs 11.90M and 747G for upscaling a low-resolution im-
age to 1280 × 720 in ×4 SR). The remarkable achieve-
ment of SRFormer is readily apparent as it attains the best
performance across nearly all five datasets for all scale
factors. Since calculating self-attention within large win-
dows can allow more information to be aggregated over a
large area, our SRFormer demonstrates notable superiority
when applied to high-resolution test sets like Urban100 and
Manga109. Especially, for the ×2 SR training with DIV2K,
our SRFormer achieves a 33.86dB PSNR score on the Ur-
ban100 dataset, which is 0.46dB higher than SwinIR but
uses fewer parameters and computations. The performance
boost gets even bigger when introducing ensemble strategy
as SRFormer+. The aforementioned results strongly sup-
port the effectiveness and efficiency of our SRFormer.
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Method Training
Dataset

SET5 [3] SET14 [77] B100 [45] Urban100 [20] Manga109 [46]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×
2

SR

EDSR [38] DIV2K 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
RCAN [86] DIV2K 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

SAN [7] DIV2K 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792
IGNN [89] DIV2K 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786
HAN [49] DIV2K 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785

NLSA [47] DIV2K 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789
SwinIR [37] DIV2K 38.35 0.9620 34.14 0.9227 32.44 0.9030 33.40 0.9393 39.60 0.9792
ELAN [85] DIV2K 38.36 0.9620 34.20 0.9228 32.45 0.9030 33.44 0.9391 39.62 0.9793

SRFormer (ours) DIV2K 38.45 0.9622 34.21 0.9236 32.51 0.9038 33.86 0.9426 39.69 0.9786

SRFBN [36] DF2K 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 39.08 0.9779
IPT [5] ImageNet 38.37 - 34.43 - 32.48 - 33.76 - - -

SwinIR [37] DF2K 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797
EDT [34] DF2K 38.45 0.9624 34.57 0.9258 32.52 0.9041 33.80 0.9425 39.93 0.9800

SRFormer (ours) DF2K 38.51 0.9627 34.44 0.9253 32.57 0.9046 34.09 0.9449 40.07 0.9802
SRFormer+ (ours) DF2K 38.58 0.9628 34.60 0.9262 32.61 0.9050 34.29 0.9457 40.19 0.9805

×
3

SR

EDSR [38] DIV2K 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476
RCAN [86] DIV2K 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499

SAN [7] DIV2K 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494
IGNN [89] DIV2K 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496
HAN [49] DIV2K 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500

NLSA [47] DIV2K 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508
SwinIR [37] DIV2K 34.89 0.9312 30.77 0.8503 29.37 0.8124 29.29 0.8744 34.74 0.9518
ELAN [85] DIV2K 34.90 0.9313 30.80 0.8504 29.38 0.8124 29.32 0.8745 34.73 0.9517

SRFormer (ours) DIV2K 34.94 0.9318 30.81 0.8518 29.41 0.8142 29.52 0.8786 34.78 0.9524

SRFBN [36] DF2K 34.70 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641 34.18 0.9481
IPT [5] ImageNet 34.81 - 30.85 - 29.38 - 29.49 - - -

SwinIR [37] DF2K 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537
EDT [34] DF2K 34.97 0.9316 30.89 0.8527 29.44 0.8142 29.72 0.8814 35.13 0.9534

SRFormer (ours) DF2K 35.02 0.9323 30.94 0.8540 29.48 0.8156 30.04 0.8865 35.26 0.9543
SRFormer+ (ours) DF2K 35.08 0.9327 31.04 0.8551 29.53 0.8162 30.21 0.8884 35.45 0.9550

×
4

SR

EDSR [38] DIV2K 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
RCAN [86] DIV2K 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

SAN [7] DIV2K 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169
IGNN [89] DIV2K 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182
HAN [49] DIV2K 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177

NLSA [47] DIV2K 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184
SwinIR [37] DIV2K 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 31.67 0.9226
ELAN [85] DIV2K 32.75 0.9022 28.96 0.7914 27.83 0.7459 27.13 0.8167 31.68 0.9226

SRFormer (ours) DIV2K 32.81 0.9029 29.01 0.7919 27.85 0.7472 27.20 0.8189 31.75 0.9237

SRFBN [36] DF2K 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 31.15 0.9160
IPT [5] ImageNet 32.64 - 29.01 - 27.82 - 27.26 - - -

SwinIR [37] DF2K 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260
EDT [34] DF2K 32.82 0.9031 29.09 0.7939 27.91 0.7483 27.46 0.8246 32.03 0.9254

SRFormer (ours) DF2K 32.93 0.9041 29.08 0.7953 27.94 0.7502 27.68 0.8311 32.21 0.9271
SRFormer+ (ours) DF2K 33.09 0.9053 29.19 0.7965 28.00 0.7511 27.85 0.8338 32.44 0.9287

Table 4. Quantitative comparison of our SRFormer with recent state-of-the-art classical image SR methods on five benchmark datasets.
For a fair comparison, the parameters and MACs of SRFormer are lower than SwinIR. The best performance is highlighted and the second
is underlined.

Qualitative comparison. We show qualitative comparisons
with other methods in Figure 5. From the first two exam-
ples of Figure 5, one can clearly observe that SRFormer can
restore more crisp and detailed textures as well as edges. In
contrast, other models’ results suffer blurry or low-quality.
For the third example, our SRFormer is the only model that
clearly restores every letter. The qualitative comparison re-
veals the fact that our SRFormer excels in restoring better
high-resolution images than compared methods.

4.4. Lightweight Image Super-Resolution

To demonstrate our model’s scalability and further
proof of SRFormer’s efficiency and effectiveness, we train
SRFormer-light and compare it with a compilation of state-
of-the-art lightweight SR methods: EDSR-baseline [38],
CARN [1], IMDN [21], LAPAR-A [35], LatticeNet [44],
ESRT [43], SwinIR-light [37], and ELAN [85].

Quantitative comparison. The quantitative comparisons
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Method Training
Dataset Params MACs SET5 [3] SET14 [77] B100 [45] Urban100 [20] Manga109 [46]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×
2

SR

EDSR-baseline [38] DIV2K 1370K 316G 37.99 0.9604 33.57 0.9175 32.16 0.8994 31.98 0.9272 38.54 0.9769
CARN [1] DIV2K 1592K 222.8G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765

IMDN [21] DIV2K 694K 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774
LAPAR-A [35] DF2K 548K 171G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772
LatticeNet [44] DIV2K 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 - -

ESRT [43] DIV2K 751K - 38.03 0.9600 33.75 0.9184 32.25 0.9001 32.58 0.9318 39.12 0.9774
SwinIR-light [37] DIV2K 910K 244G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783

ELAN [85] DIV2K 621K 203G 38.17 0.9611 33.94 0.9207 32.30 0.9012 32.76 0.9340 39.11 0.9782
SRFormer-light DIV2K 853K 236G 38.23 0.9613 33.94 0.9209 32.36 0.9019 32.91 0.9353 39.28 0.9785

×
3

SR

EDSR-baseline [38] DIV2K 1555K 160G 34.37 0.9270 30.28 0.8417 29.09 0.8052 28.15 0.8527 33.45 0.9439
CARN [1] DIV2K 1592K 118.8G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440

IMDN [21] DIV2K 703K 71.5G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445
LAPAR-A [35] DF2K 594K 114G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441
LatticeNet [44] DIV2K 765K 76.3G 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 - -

ESRT [43] DIV2K 751K - 34.42 0.9268 30.43 0.8433 29.15 0.8063 28.46 0.8574 33.95 0.9455
SwinIR-light [37] DIV2K 918K 111G 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478

ELAN [85] DIV2K 629K 90.1G 34.61 0.9288 30.55 0.8463 29.21 0.8081 28.69 0.8624 34.00 0.9478
SRFormer-light DIV2K 861K 105G 34.67 0.9296 30.57 0.8469 29.26 0.8099 28.81 0.8655 34.19 0.9489

×
4

SR

EDSR-baseline [38] DIV2K 1518K 114G 32.09 0.8938 28.58 0.7813 27.57 0.7357 26.04 0.7849 30.35 0.9067
CARN [1] DIV2K 1592K 90.9G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084

IMDN [21] DIV2K 715K 40.9G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075
LAPAR-A [35] DF2K 659K 94G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074
LatticeNet [44] DIV2K 777K 43.6G 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 - -

ESRT [43] DIV2K 751K - 32.19 0.8947 28.69 0.7833 27.69 0.7379 26.39 0.7962 30.75 0.9100
SwinIR-light [37] DIV2K 930K 63.6G 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151

ELAN [85] DIV2K 640K 54.1G 32.43 0.8975 28.78 0.7858 27.69 0.7406 26.54 0.7982 30.92 0.9150
SRFormer-light DIV2K 873K 62.8G 32.51 0.8988 28.82 0.7872 27.73 0.7422 26.67 0.8032 31.17 0.9165

Table 5. Quantitative comparison of our SRFormer-light with recent state-of-the-art lightweight image SR methods on five benchmark
datasets. The best performance among all the model is highlighted.

Urban100 (4×): img 024

HR Bicubic CARN [1] IDN [22] IMDN [21]

EDSR-baseline [38] LAPAR-A [35] LatticeNet [44] SwinIR-light [37] SRFormer-light (ours)

Urban100 (4×): img 067

HR Bicubic CARN [1] IDN [22] IMDN [21]

EDSR-baseline [38] LAPAR-A [35] LatticeNet [44] SwinIR-light [37] SRFormer-light (ours)

B100 (4×): img 78004

HR Bicubic CARN [1] IDN [22] IMDN [21]

EDSR-baseline [38] LAPAR-A [35] LatticeNet [44] SwinIR-light [37] SRFormer-light (ours)
Figure 6. Qualitative comparison of our SRFormer-light with recent lightweight image SR methods on the ×4 SR task.

of lightweight image SR models are shown in Table 5. Fol-
lowing previous works [1, 44], we report the MACs by up-
scaling a low-resolution image to 1280× 720 resolution on

all scales. We can see that our SRFormer-light achieves
the best performance across all five benchmark datasets, re-
gardless of the scale factors. Notably, Our model surpasses
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SRFormer (ours)SwinIR [37]Real-ESRGAN [65]BSRGAN [81]RealSR [23]ESRGAN [67]LR

Figure 7. Qualitative comparisons with recent state-of-the-art methods on the ×4 real-world image SR task.

SwinIR-light [37] by a substantial margin, up to 0.20 dB
PSNR scores on the Urban100 dataset and 0.25 dB PSNR
scores on the Manga109 dataset with even fewer parameters
and MACs. The results indicate that despite the simplicity,
our permuted self-attention is a more effective way to en-
code spatial information.

Qualitative comparison. We also conduct a qualitative
comparisons between our SRFormer and state-of-the-art
lightweight image super-resolution models, as illustrated
in Figure 6. Notably, across all examples in Figure 6,
SRFormer-light succeeds in restoring primary structures
with minimal blurring and artifacts. This strongly demon-
strates that the light version of SRFormer also outperforms
alternative models.

4.5. Real-World Image Super-Resolution

Since the ultimate goal of image SR is to address the rich
real-world degradation and generate visually pleasing im-
ages, we follow SwinIR [37] and BSRGAN [81] to retrain
our SRFormer by using multiple degradations and show
results in Fig. 7. SRFormer still produces more realistic
and visually appealing textures without artifacts when faced
with real-world images, which demonstrates the robustness
of our method.

4.6. LAM Comparison

To observe the range of utilized pixels for SR recon-
struction, we compare our model with SwinIR using the
interpretability analysis tool LAM [15], as shown in Fig. 8.
LAM shows the range of pixels used by the super-resolution
network when inferring a certain part of the HR image.
Based on the extremely large attention window, SRFormer
infers SR images with a significantly wider range of pix-
els than SwinIR [37]. The experimental results are strongly
consistent with our motivation and demonstrate the superi-
ority of our method from the interpretability perspective.

HR Image LAM Attribution Area of Contribution

SRFormerSwinIR [37] SwinIR [37] SRFormer

Figure 8. LAM results of SwinIR [37] and SRFormer on multiple
challenging examples. We can see that SRFormer can perform SR
reconstruction based on a particularly wide range of pixels, which
demonstrates the superiority of our method from the interpretabil-
ity perspective.

5. Conclusion

In this paper, we propose PSA, an efficient self-attention
mechanism which can efficiently build pairwise correla-
tions within large windows. Based on our PSA, we de-
sign a simple yet effective Transformer-based model for
single image super-resolution, called SRFormer. Due to
the extremely large attention window and high-frequency
information enhancement, SRFormer achieves state-of-the-
art performance on classical, lightweight, and real-world
SR tasks. We hope our permuted self-attention can be a
paradigm of large window self-attention and serve as a use-
ful tool for future research in super-resolution model design.
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