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Abstract

As a widely used loss function in deep face recognition,
the softmax loss cannot guarantee that the minimum posi-
tive sample-to-class similarity is larger than the maximum
negative sample-to-class similarity. As a result, no unified
threshold is available to separate positive sample-to-class
pairs from negative sample-to-class pairs. To bridge this
gap, we design a UCE (Unified Cross-Entropy) loss for face
recognition model training, which is built on the vital con-
straint that all the positive sample-to-class similarities shall
be larger than the negative ones. Our UCE loss can be
integrated with margins for a further performance boost.
The face recognition model trained with the proposed UCE
loss, UniFace, was intensively evaluated using a number
of popular public datasets like MFR, IJB-C, LFW, CFP-
FP, AgeDB, and MegaFace. Experimental results show that
our approach outperforms SOTA methods like SphereFace,
CosFace, ArcFace, Partial FC, etc. Especially, till the sub-
mission of this work (Mar. 8, 2023), the proposed UniFace
achieves the highest TAR@MR-All on the academic track of
the MFR-ongoing challenge. Code is publicly available.

1. Introduction
Face recognition, from verification on mobile phones to

identification on surveillance streams, plays an important
role in our daily life. A general face recognition system
contains three core steps: face detection, facial feature ex-
traction, and recognition (including one-to-one verification
and one-to-all identification). Discriminative facial feature
learning is therefore crucial to face recognition systems.
Specifically, a facial feature of a subject should be close
to the features belonging to the same identity, while being
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Figure 1. From (a), (b), and (c), we illustrate the sample-to-class
similarities learned from normalized softmax loss, marginal soft-
max loss, and the proposed UCE loss, in which Wi is the class
proxy, and x(i) is a face image/feature with identity i. The classi-
fication of all three faces is correct with all three losses. However,
both normalized and marginal softmax loss can not separate pos-
itive from negative sample-to-class pairs with a proper threshold,
while with a unified threshold t = cos θt, our UCE loss can.

far from the features of the other identities, i.e., the mini-
mum feature similarity from positive pairs should ideally be
larger than a threshold t and the maximum feature similarity
from negative pairs should be smaller than this t. Inspired
by the success of deep neural networks on natural image
classification tasks, modern facial recognition approaches
are mostly based on deep convolutional neural networks.
Such approaches can be broadly split into two categories
according to their learning objectives, i.e., 1) sample-to-
sample distance and 2) sample-to-class similarity. Sample-
to-sample distance-based methods [19, 17] map the face
images into a high-compact Euclidean feature space where
distances are used to measure the facial feature similarity.
However, the training of such methods is difficult [17], as
they require sophisticated sampling strategies for construct-
ing efficient negative and positive pairs/tuples. Sample-to-
class similarity-based methods [22, 21] usually adopt the
softmax loss as the learning objective and tackle face recog-
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nition as a multi-class classification problem. Some works
proposed to combine the softmax loss with extra carefully
designed losses to either increase the intra-class similarity
[28] or decrease the inter-class similarity [11, 7, 30]. Such
methods, however, introduce additional hyper-parameters
which require elaborated hyper-parameter tuning. The other
works (such as L-softmax loss [14], SphereFace[13], AM-
softmax[23], CosFace [25], and ArcFace [6]) extended the
original softmax loss by introducing marginal distance be-
tween classes to decrease the intra-class distance and in-
crease the inter-class distance.

However, softmax loss only encourages the largest an-
gular similarity between an individual training sample and
its corresponding positive class proxy, it does not consider
the similarities between this positive class proxy and other
samples (see Sec. 3.1). In other words, it’s difficult to select
a unified threshold t to separate negative sample-to-class
pairs from positive ones with both the softmax and marginal
softmax loss, as illustrated in Fig. 1. To solve the prob-
lem, we propose a Unified Cross-Entropy (UCE) loss which
explicitly encourages that all the positive sample-to-class
similarities are larger than a threshold t = cos θt, while all
negative sample-to-class similarities are smaller than this t.
We elaborate on the proposed UCE loss (Sec. 3.2) and dis-
cuss its design principle linked with real applications (Sec.
3.3). We further improve the UCE loss by 1) introducing
an enforced margin and 2) proposing two alternative ways
to balance its training on a large number of face identities
(Sec. 3.4). We name the face model trained with our UCE
loss as UniFace and evaluate it on several public large-scale
benchmarks (Sec. 4 and 5). The contributions of this work
are summarized as follows:

• After investigating the softmax loss, we found that its
learned minimum positive sample-to-class similarity
is actually not guaranteed to be larger than its maxi-
mum negative sample-to-class similarity. To address
this problem, we design the UCE loss by supposing
a fixed threshold t to constrain the similarity of both
positive and negative sample-to-class pairs.

• Though separating positive and negative pairs with a
unified threshold t is a prestigious idea, to the best of
our knowledge, this paper is the first work that incor-
porates the unified t as an automatic learnable parame-
ter in a deep face recognition framework. Our UCE
loss encourages that all the positive sample-to-class
similarities are larger than the negative ones, which
matches well with the expectation of real face recogni-
tion applications.

• Our UCE loss works well alone and can directly re-
place the softmax loss in existing deep face recognition
models (Table 1 and 2). We additionally propose two
extensions of UCE, i.e., marginal UCE and balanced

UCE losses, to integrate with margins and balancing
strategies to improve the performance of UCE loss. It
is noticeable that the marginal UCE loss is more robust
to hyper-parameters than the softmax loss (Fig. 3(a)).

• The face recognition model trained with the proposed
UCE loss, UniFace, was intensively evaluated using a
number of popular public datasets like MFR, IJB-C,
LFW, CFP-FP, AgeDB, and MegaFace. Experimen-
tal results show that our approach outperforms SOTA
methods such as SphereFace, CosFace, ArcFace, and
Partial FC.

2. Related Works

2.1. Sample-to-Sample Distance based Methods

To reduce intra-subject variations while enlarging inter-
subject differences, DeepID2 [19], apart from softmax loss,
additionally uses a contrastive loss to encourage the fea-
tures learned from the same identity to be close while that
learned from different identity to be distant. FaceNet[17]
proposes a triplet loss to map the images to high-compact
Euclidean space where distances measure the face similar-
ity. Using an enforced margin, Triplet loss minimizes the
distance between an anchor and a positive sample and max-
imizes the distance between the anchor and a negative sam-
ple. However, the success of contrastive/triplet loss depends
on a careful selection of pairs/triplets.

2.2. Sample-to-Class Distance based Methods

Different from the sample-to-sample-based contrastive
loss, Wen et al. [28] propose the center loss to minimize
the distances between a facial feature and its correspond-
ing class center. SphereFace+[11], UniformFace[7], and
RegularFace[30] propose additional regularization losses
to maximize the distances between all the class proxies.
Though these methods [28, 7, 30, 11] improve the feature
learning of softmax loss, they all unavoidably introduce ex-
tra hyper-parameters to balance the softmax loss and the
extra loss. The selection of these hyper-parameters requires
intensive tuning, especially for methods (such as [28, 7])
that jointly use Euclidean-based loss and softmax loss at
the same time. Liu et al. [14] propose a large margin
softmax (L-softmax) loss by applying an angular margin to
the angles between the training sample and its class proxy,
such that the samples from the same identity are close to
each other, while samples from different identities are apart.
Subsequently, by first normalizing the weights and zero-
ing the biases, SphereFace [13] extends the L-softmax loss
to angular softmax loss (A-softmax) to learn hyperspheri-
cal features. At the same time, NormFace [24] normalizes
both the weights and the features, so that the loss only de-
pends on the cosine similarities between the weights and the
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features. CosFace [25] and ArcFace [6] adopt normaliza-
tion and introduce an additive margin which is more stable
than the multiplicative angular margin. Sphereface-R [12]
extends SphereFace by re-implementing the multiplicative
margin and proposes the Characteristic Gradient Detach-
ment (CGD) strategy to further stabilize training.

Though these methods show improvement over the soft-
max loss, none of them explicitly constrains that all the pos-
itive sample-to-class similarities are larger than all negative
sample-to-class similarities. GB-CosFace[3] also attempts
to use a global threshold to align the training objective and
the testing process. The threshold in [3] can only be calcu-
lated by a sophisticated hand-crafted statistical strategy in-
volving extra hyper-parameters, the threshold t in our UCE
loss, however, is automatically learned during training.

3. Methods

3.1. Revisiting Softmax Loss

Suppose M is a deep face model trained on a facial sam-
ple set D consisting of N subjects,

D =

N⋃
i=1

Di, (1)

where Di denotes the subset that contains the facial images
of the same subject i. For any sample X ∈ D, let

x = M(X) ∈ RM×1 (2)

denote the feature of X , where M is the length of feature
vector. Then, we can get a feature set F ,

F =

N⋃
i=1

Fi =

N⋃
i=1

{
x(i) = M(X(i))

}
X(i)∈Di

. (3)

In the face models trained with the softmax loss, a full
connection (FC) classifier, with weight matrix W and bias
b, is adopted to classify X based on its feature x, where

W =
(
W1,W2, · · · ,WN

)
∈ RM×N , (4)

b =
(
b1, b2, · · · , bN

)T ∈ RN×1. (5)

In Eq. (4), Wi ∈ RM×1 is the class proxy for subject i.
Following [13, 24], for convenience, we respectively

normalize W and omit b as

∥Wi∥ = 1, bi = 0, 1 ≤ i ≤ N, (6)

and, for all x ∈ F , we normalize the feature as ∥x∥ = s.

Randomly take N samples {X(i)}Ni=1 ⊂ D with X(i) ∈
Di for ∀ i. Then, for a given sample X(i), the typical multi-
class softmax loss is

Lsl(X
(i)) = − log

eW
T
i x(i)+bi

eWT
i x(i)+bi +

∑
j ̸=i eW

T
j x(i)+bj

(7)

= − log
es cos θ

(ii)
x,w

es cos θ
(ii)
x,w +

∑
j ̸=i es cos θ

(ij)
x,w

, (8)

where

θ(ij)x,w = arccos
⟨x(i),Wj⟩
∥x(i)∥∥Wj∥

(9)

= arccos(
1

s
WT

j x(i)) ∈ [0, π], ∀ i, j, (10)

and ⟨x(i),Wj⟩ denotes the inner product of the two vectors.
We term cos θ

(ii)
x,w = 1

sW
T
i x(i) the positive sample-to-

class similarity while cos θ
(ij)
x,w = 1

sW
T
j x(i) the negative

sample-to-class similarity, then we can get a sample-to-
class similarity matrix Ssam-cla,

Ssam-cla =


cos θ

(11)
x,w cos θ

(12)
x,w · · · cos θ

(1N)
x,w

cos θ
(21)
x,w cos θ

(22)
x,w · · · cos θ

(2N)
x,w

...
...

. . .
...

cos θ
(N1)
x,w cos θ

(N2)
x,w · · · cos θ

(NN)
x,w

 . (11)

To correctly classify X(i), the softmax loss encourages
larger positive sample-to-class similarity (cos θ(ii)x,w) than
negative sample-to-class similarity (cos θ(ij)x,w), i.e.,

cos θ(ij)x,w ≤ cos θ(ii)x,w, ∀ i, j ̸= i. (12)

Then, ∃ ti, such that,

cos θ(ij)x,w ≤ ti ≤ cos θ(ii)x,w, ∀ i. (13)

However, the softmax loss does not consider the relation-
ship between cos θ

(ji)
x,w and cos θ

(ii)
x,w. In other words, there

might exists a negative sample-to-class pair (x(j),Wi),
whose similarity is even larger than that of the positive
sample-to-class pair, (x(i),Wi), i.e., there might exists a
sample X(j) ∈ Dj with j ̸= i, whose feature x(j) satisfies

ti ≤ cos θ(ii)x,w < cos θ(ji)x,w ≤ tj . (14)

We expect that the similarities from positive pairs are
larger than a threshold t and the similarities from negative
ones are smaller than t. Though both the facial images X(i)

and X(j) are correctly categorized into the right subjects in
Eqs. (13) and (14). We notice that, contrary to our expecta-
tion, the positive sample-to-class pair, (x(i),Wi), has even
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Figure 2. Geometric interpretations for four classes learned from
(a) the normalized softmax loss, (b) our UCE loss. x(i) is the
feature belonging to the class Wi. The dark dashed lines denote
the decision boundaries. Ideally, the sample features of the four
different classes (Wi) are respectively contained in the four differ-
ent sectors marked with four colors (i.e., blue, orange, yellow, and
green). For a model well trained using softmax loss or UCE loss,
its any sample feature x(i) is closer to its class proxy Wi than to
other class proxies Wj , j ̸= i. However, for the softmax loss, the
sample feature x(2) is closer to W1 than x(1).

smaller similarity than the negative pair, (x(j),Wi). Since
ti < tj , we can easily conclude that no unified similarity
threshold t = ti = tj is available to correctly separate the
positive sample-to-class pairs ((x(i),Wi) and (x(j),Wj))
from the negative pair ((x(j),Wi)) at the same time.

We can further highlight this difficulty in the selection
of a threshold with the sample-to-class similarity matrix
Ssam-cla in Eq. (11), i.e., the softmax loss only encourages
the diagonal element cos θ(ii)x,w be dominant in the row i to
achieve a good classification of sample X(i), but neglects
to encourage the domination of cos θ

(ii)
x,w in the column i,

which however is also important in face recognition.

3.2. Unified Cross-Entropy Loss

To avoid the problem in Eq. (14), and to encourage a
similarity matrix Ssam-cla (see Eq. (11)) that is diagonally
dominant in both its rows and columns. We expect a unified
threshold t, such that

cos θ(ij)x,w ≤ t ≤ cos θ(ii)x,w, and

cos θ(ji)x,w ≤ t ≤ cos θ(ii)x,w, ∀ i, j, with j ̸= i. (15)

If we define the maximum angle between the features
and their positive class proxy as θpos and the minimum angle
between the features and their negative class proxies as θneg,
that is

θpos = max
( N⋃

i=1

{
θ(ii)x,w : x(i) ∈ Fi

})
, (16)

θneg = min
( N⋃

i=1

N⋃
j=1
j ̸=i

{
θ(ij)x,w : x(i) ∈ Fi

})
, (17)

then, there exists a threshold t satisfying Eq. (15) for any
samples, if and only if θpos ≤ θneg, and the unified threshold
t = cos θt is valid for any

θt ∈ [θpos, θneg]. (18)

According to the analysis in Sec. 3.1, the softmax loss
does not consider the constraint of the unified threshold t.
For the first time, we incorporate the unified threshold t as
an automatic learnable parameter in a loss function. The
proposed Unified Cross-Entropy (UCE) loss is based on the
assumption that a unified threshold t = cos θt exists (i.e.,
θpos ≤ θneg). We elaborate on the derivations below, starting
from the original softmax loss in Eq. (8)

Lsl(X
(i))

=− 1

N

N∑
k=1

log
es cos θ

(ii)
x,w

es cos θ
(ii)
x,w +

∑
j ̸=i es cos θ

(ij)
x,w

(19)

=− 1

N

(
log

es cos θ
(ii)
x,w

es cos θ
(ii)
x,w +

∑
j ̸=i es cos θ

(ij)
x,w

+

N∑
k=1
k ̸=i

log
es cos θ

(ii)
x,w

es cos θ
(ii)
x,w + es cos θ

(ik)
x,w +

∑
j ̸=i
j ̸=k

es cos θ
(ij)
x,w

)
.

(20)

According to Eqs. (16) - (18), we can get

Lsl(X
(i))

≤− 1

N

(
log

es cos θ
(ii)
x,w

es cos θ
(ii)
x,w +

∑
j ̸=i es cos θt

+
∑
k ̸=i

log
es cos θt

es cos θt + es cos θ
(ik)
x,w +

∑
j ̸=i
j ̸=k

es cos θt

)
(21)

=
1

N

[
log

(
1 + e−s cos θ(ii)

x,w +s cos θt+log(N−1)
)

+
∑
j ̸=i

log
(
1 + es cos θ

(ij)
x,w −(s cos θt+log(N−1))

)
+ (N − 1) log(N − 1)

]
. (22)

Note that the detailed derivations of this inequality are de-
scribed in Supplementary.

We define the UCE loss Luce(X
(i)) as

Luce(X
(i)) = log(1 + e−s cos θ(ii)

x,w +b̃)

+

N∑
j ̸=i
j=1

log(1 + es cos θ
(ij)
x,w −b̃), (23)
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where b̃ = s cos θt+log(N −1) is a constant to be learned.
UCE loss is based on the more vital constraint between

positive and negative sample-to-class features than the soft-
max loss (via t in Eq. (15)). When a model is trained using
UCE loss instead of softmax loss, it is expected that the fi-
nal sample features are more discriminative. As depicted in
Fig. 2, in the feature space partitioned by the proposed UCE
loss, the similarity between x(1) and W1 is increased from
the original softmax loss, while the similarity between x(2)

and W1 is decreased.
Though the final formula of UCE loss (Eq. (23)) is simi-

lar to binary cross entropy (BCE) loss, there are several key
differences between them. Firstly, UCE loss is designed
from the objective of an explicit unified threshold t to con-
strain the similarity of both positive and negative sample-to-
class pairs, while BCE loss and its variants [27] do not have
such explicit constraints. Secondly, we derive the UCE loss
from softmax loss, and we present the relationship between
the unified threshold t and bias b̃ = s cos θt + log(N − 1)
with a clear mathematical derivation, we then evaluate that
the t is in line with the expectation of face verification with
a qualitative illustration in Fig. 3 (c). Lastly, we systemati-
cally compare the UCE loss and BCE loss on a large bench-
mark dataset, where we compare (1) a standard BCE loss
assigning respective biases for different classes (in Table 1),
and (2) a simple modification of BCE loss excluding any
biases, implying bias b = 0 (in Supplementary). The ex-
perimental results show continuous improvements by UCE
loss over the two naive variants of BCE loss.

3.3. Rethinking UCE Loss for Face Verification

In real face verification systems, for any two facial image
samples, X(i) ∈ Di, X(j) ∈ Dj , a unified threshold t∗

is chosen to verify whether they are taken from the same
subject, by comparing their feature similarity g(x(i),x(j))
with the threshold t∗. This process implies a loss Lv,

Lv(X
(i),X(j))

=

{
αmax(0, t∗ − g(x(i),x(j))) i = j
αmax(0, g(x(i),x(j))− t∗) i ̸= j

, (24)

where α is a re-weighting parameter.
Then, in the training, for a given X(i), its loss is

Lv2(X
(i)) =

∑
x∈F

Lv(x,x
(i))

=
∑
x∈Fi

Lv(x,x
(i)) +

∑
x∈Fj
j ̸=i

Lv(x,x
(i)). (25)

It will cost a large number of computations for every sam-
ple. A reasonable loss is designed using the class proxy Wi

instead of the all features x(i) in Fi, for ∀ i,

Lv3(X
(i)) =Lv(Wi,x

(i)) +

N∑
j=1
j ̸=i

Lv(Wj ,x
(i)) (26)

=αmax(0, t∗ − g(Wi,x
(i)))

+
∑
j ̸=i

αmax(0, g(Wj ,x
(i))− t∗). (27)

In Eq. (27), the loss adopts the function ReLU(x) =
max(0, x), which is not differentiable at x = 0. A proper
substitution can be the softplus function,

softplus(x) =
1

β
log(1 + exp(βx)), (28)

which tends to ReLU(x) when β tends to +∞.
Using the softplus function, then Lv3(X

(i)) can be sub-
stituted as

Lv4(X
(i)) =

α

β
log(1 + eβ(t

∗−g(Wi,x
(i))))

+
∑
j ̸=i

α

β
log(1 + eβ(g(Wj ,x

(i))−t∗)). (29)

When we set α = β = s, and

g(Wj ,x
(i)) =

1

s
WT

j x(i) =
WT

j x(i)

∥WT
j ∥∥x(i)∥

= cos θ(ij)x,w ,

(30)

the loss Lv4(X
(i)) is our proposed UCE loss Luce(X

(i))
with b̃∗ = st∗. To this end, we have linked the design of the
proposed UCE loss with face verification.

3.4. Further Improvements

Marginal UCE Loss. Previous works [25] demonstrate
that marginal softmax loss achieves better performance than
the original one. We here extend the proposed UCE loss to
marginal UCE loss by adding a cosine margin m,

Luce-m(X
(i))

= log(1 + e−s(cos θ(ii)
x,w −m)+b̃) +

N∑
j ̸=i
j=1

log(1 + es cos θ
(ij)
x,w −b̃).

(31)

Balanced UCE Loss. Luce or Luce-m computes the simi-
larity for only one positive sample-to-class pair (x(i),Wi),
but N −1 negative pairs (x(i),Wj),∀ j, j ̸= i. This imbal-
ance would result in unsatisfactory performance. Inspired
by [2, 1] and [27], we introduce two parameters to balance
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the number of positive and negative pairs,

Luce-mb(X
(i)) = log(1 + e−s(cos θ(ii)

x,w −m)+b̃)

+ λ

N∑
j=1

j ̸=i,pj<r

log(1 + es cos θ
(ij)
x,w −b̃), (32)

where pj is a random number sampled from a uniform dis-
tribution (i.e., U(0, 1)) for a negative sample-to-class pair
(x(i),Wj). λ and r are respectively the re-weighting and
sampling parameters for all negative sample-to-class pairs.
The impacts of different λ and r are depicted in Fig. 3.

4. Experiments
4.1. Datasets and Evaluations

Datasets. For training, we use 4 publicly available
datasets i.e., CASIA-WebFace [29] (0.5M images of 10K
identities), Glint360K [2] (17.1M images of 360K identi-
ties), WebFace42M [31] (42.5M images of 2M identities),
and WebFace4M, which is a subset of WebFace42M and
has 4.2M images of 0.2M identities.

For face verification, we adopt the online testing of
ICCV-2021 Masked Face Recognition Challenge (MFR
Ongoing)[4], which contains not only previous popular test-
sets, like LFW [8], CFP-FP [18], AgeDB [16], and IJB-C
[15], but also its own testsets such as the Mask set, Chil-
dren set, and Multi-Racial set (MR-All, containing 4 differ-
ent racial faces: African, Caucasian, S-Asian, and E-Asian).

For face identification, we employ the MegaFace Chal-
lenge 1[10] as the test set, which contains a gallery set with
more than 1M images from 690K different identities, and
a probe set with 3,530 images from 530 identities. Note
that the MegaFace Challenge 1 has an additional verifica-
tion track, which is also included in our experiments.

Evaluation. For MFR, we directly submit the trained
models to the online MFR Ongoing Challenge server and
report the performance. 1:1 verification accuracy is reported
for LFW, CFP-FP, and AgeDB. True Accept Rate (TAR)
@ False Accept Rate (FAR) = 1e-4 and TAR@FAR= 1e-5
are reported on the IJB-C. TARs@FAR= 1e-4 are reported
for Mask and Children, and TARs@FAR=1e-6 are reported
for the MR-All. For MegaFace Challenge 1, we used
the official MegaFace devkit and dataset archived by In-
sightFace, reporting Rank1 accuracy for identification and
TAR@FAR=1e-6 for verification.

4.2. Implementation Details

Preprocessing. We only use the standard face prepro-
cessing. Each face image is first aligned using similarity
transformation based on the five face landmarks detected
by RetinaFace [5], and then cropped the center 112 × 112
patch. The intensity of all images is normalized to [−1, 1]
and is randomly horizontal-flipped for data augmentation.

Training. Following [6], we use the customized ResNets
as our backbone. All models are implemented using Py-
torch and trained with the SGD optimizer (5e-4 weight de-
cay and 0.9 momentum). Following [25, 6], the feature
norm s in our UCE is fixated at 64 in all experiments. We
investigate the impact of different hyper-parameters in Sec.
4.4. All training details are contained in the Supplementary.

Testing. Given a face image, two 512-D features are ex-
tracted from the original and its horizontal-flipped image,
such features are then added together as the final represen-
tation. The matching score is measured by cosine similarity.

4.3. Ablation Study

Effectiveness of the Proposed UCE Loss. In Table 1,
the first two rows are the baseline results of a ResNet-50
model trained on the CASIA-WebFace dataset using the
original normalized softmax loss Lsl and BCE loss Lbce,
while the 3rd row lists the results from our UCE loss Luce,
which is about 1% higher than both the original normalized
softmax loss and BCE loss in terms of TAR@FAR=1e-6
on MR-All. The performance gains are more significant in
terms of TAR@FAR=1e-4 on IJB-C: our UCE loss outper-
forms the original normalized softmax loss and BCE loss
by 3.27% and 5.12%, respectively. When comparing to the
marginal softmax loss Lsl-m and marginal BCE loss Lbce-m,
the performance of our marginal UCE loss Luce-m are re-
spectively 5.65% and 42.48% higher than Lsl-m in terms
of TAR@FAR=1e-6 and TAR@FAR=1e-4 on MR-All and
IJB-C, and are 2.1% and 4.77% higher than those of Lbce-m.

These improvements clearly suggest the effectiveness of
our proposed UCE loss. In the last two rows of Table
1, though the balanced UCE loss introduces a slight per-
formance fluctuation on the small LFW dataset, both re-
weighting (λ) and sampling (r) improve the performance
on much larger datasets, i.e., MR-All and IJB-C, which sug-
gests the superiority of the balanced UCE loss.

Scalability. The UCE loss can directly replace the
softmax-based loss in different frameworks. In Table 2, we
integrate the UCE loss into three state-of-the-art face mod-
els i.e., SphereFace-R[12], ArcFace[6], and CosFace[25].
We then retrain these models and term them as Sphere-
UniFace, Arc-UniFace, and Cos-UniFace. We can observe

Loss UT m λ r MR-All IJB-C LFW
Lsl ✗ ✗ ✗ ✗ 18.52 71.53 98.30
Lbce ✗ ✗ ✗ ✗ 18.90 69.68 98.68
Luce ✓ ✗ ✗ ✗ 19.59 74.80 98.45
Lsl-m ✗ ✓ ✗ ✗ 41.80 46.17 99.50
Lbce-m ✗ ✓ ✗ ✗ 45.35 83.88 99.46
Luce-m ✓ ✓ ✗ ✗ 47.45 88.65 99.56
Luce-mb-λ ✓ ✓ ✓ ✗ 48.54 88.96 99.55
Luce-mb-r ✓ ✓ ✗ ✓ 48.72 88.94 99.30

Table 1. Ablation study on the proposed UCE loss. The “UT”
marks whether an explicit threshold t is considered in losses.
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Method MR-All IJB-C LFW
SphereFace-R v1[12] 39.92 86.35 99.38
Sphere-UniFace 41.00 88.42 99.43
ArcFace[6] 45.59 60.31 99.40
Arc-UniFace 47.97 88.70 99.43
CosFace[25] 41.80 46.17 99.50
Cos-UniFace 47.45 88.65 99.56

Table 2. Performance of UCE loss with different frameworks.

Figure 3. Left: impacts of different m of the compared losses, our
marginal UCE loss stably improves the performance with larger
m. Right: impacts of different λ and r of our balanced UCE loss
on the average results of MFR ongoing testset.

a consistent improvement brought by our UCE loss.

4.4. Parameter Study

We study the impact of different hyper-parameters of the
two proposed marginal and balanced UCE losses below.

Qualitative Results. To better understand the proposed
UCE loss, in Fig. 4, we plot the positive and negative
sample-to-class similarity distributions of the normalized
softmax loss, BCE loss, and UCE loss. From this figure, we
can observe that an intersection between positive and nega-
tive similarities exists in the softmax and BCE losses, while
they are well separated in our UCE loss. We further com-
pute the unified threshold t ≈ 0.2928 from the b̃ learned by
the UCE loss in Eq. (23), which can well separate the posi-
tive and negative sample-to-class pairs and again proves that
our UCE loss can solve the difficulty of softmax loss in the
selection of a unified threshold. On the other hand, we ran-
domly select 10 identities to plot their changes in sample-to-
class verification accuracy regarding the threshold, we can
clearly observe that all 10 identities achieve stable and sim-
ilar accuracy around the unified threshold t ≈ 0.2928 with
our UCE loss, while there is large variance regarding the
accuracy with the other two losses. These findings suggest
the advantage of learning a unified threshold t.

Robustness Against Different Margins. We first inves-
tigate the impact of different margins (m in Eq. (31)) of
the marginal UCE loss. In Table A of Supplementary, when
increasing the m from 0.2 to 0.6 with an interval of 0.05,
the average performance of the original marginal softmax
loss and that of the Exclusive Regularization loss [30] first
improves and then rapidly drops. For our marginal UCE
loss, however, the performance is stably increased. To help
clarify the differences between the three methods, we plot

(d) (e) (f)

𝑡=0.2928

(a) (b) (c)

Figure 4. (a, d) normalized softmax loss, (b, e) BCE loss, and (c,
f) our UCE loss. First row: Positive and negative sample-to-class
similarity (cos θ(ii)x,w and cos θ

(ij)
x,w ) distributions of 490,623 samples

in CASIA-WebFace. The positive and negative sample-to-class
similarities are well separated for our UCE loss, while large over-
lapping exists for both normalized softmax loss and BCE loss. The
red line indicates the final unified threshold t ≈ 0.2928. Second
row: The changes of verification accuracy with the threshold on
10 randomly selected identities (blue lines), while the red curves
are averaged on all identities.

the changes in the average performance with increasing m
in the left sub-figure of Fig. 3, which suggests that our
UCE loss is more robust and less sensitive to larger mar-
gins, while both the original marginal loss and the Exclusive
Regularization loss [30] are not.

Effects of Different Balance Strategies. We then study
different hyper-parameters for the proposed balanced UCE
loss. As per Eq. (32), we have two alternative ways to bal-
ance the proposed UCE loss, i.e., re-weight all the negative
sample-to-class losses with λ or randomly sample the neg-
ative sample-to-class losses with a ratio of r × 100%. We
examine different λ and r from 0.1 to 1.0 in Table B of Sup-
plementary. It shows that proper adjustment of these param-
eters can improve the final performance, while a too-small
value can lead to performance drops. To display the differ-
ence more clearly, we also plot the average results in 3 (the
right sub-figure). It suggests that, with proper parameters,
the balanced UCE loss can further improve the performance
of the marginal UCE loss. Experimentally, the sampling
strategy is better than the re-weighting strategy when r and
λ are small, otherwise, the re-weighting strategy is better
than the sampling strategy.

5. Comparison with the State-Of-The-Art

5.1. MFR Ongoing Benchmarks

We first compare the proposed UniFace with a number
of state-of-the-art methods, such as SphereFace-R[12], GB-
CosFace[3], SphereFace2[27], ArcFace[6], CosFace[25],
and Regularization[30]. For a fair comparison, we re-
implement these methods and employ the optimal hyper-
parameters recommend in their original papers. All the
compared models are trained with a ResNet-50 backbone
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Method Network + Dataset MFR IJB-C Verification Accuracy
Mask Children African Caucasian S-Asian E-Asian MR-All 1e-4 1e-5 LFW CFP-FP AgeDB

CosFace[25]

R50 + CASIA

37.32 29.12 46.53 61.06 56.91 22.23 43.34 79.78 38.82 99.36 96.60 94.53
CosFace[25] + Regularization[30] 39.70 30.27 43.69 59.73 56.30 24.67 44.57 85.84 61.59 99.36 96.70 94.61
GB-CosFace[3] 29.25 22.97 34.63 52.60 44.92 16.06 32.92 85.97 76.40 99.35 97.18 93.81
ArcFace[6] 39.38 32.48 49.52 64.38 59.37 19.55 45.59 60.31 17.20 99.40 97.27 94.96
SphereFace-R v1[12] 32.80 28.09 40.24 57.24 50.38 22.30 39.92 86.35 75.81 99.38 96.95 94.48
SphereFace2[27] 35.40 30.55 46.65 62.69 56.23 26.65 44.20 88.41 79.18 99.46 97.42 94.96
UniFace, Luce-m 38.75 31.67 49.25 66.39 60.44 28.58 47.45 88.65 78.42 99.56 97.24 94.71
UniFace, Luce-mb-λ 37.86 32.74 49.81 64.82 60.55 29.70 48.54 88.96 78.40 99.55 97.47 95.36
UniFace, Luce-mb-r 39.25 33.11 50.79 66.46 61.47 29.71 48.72 88.94 78.30 99.30 97.20 94.95
Partial FC [1]

R50+WF4M

72.28 - 84.86 91.57 88.57 67.52 86.85 - - - - -
UniFace, Luce-m 75.48 69.00 86.62 92.99 90.26 68.81 88.30 96.92 95.16 99.80 99.10 97.96
UniFace, Luce-mb-r 75.56 69.49 87.30 93.38 90.59 69.09 88.49 96.97 94.85 99.76 99.14 97.71
UniFace, Luce-mb-λ 75.46 69.32 86.89 93.02 90.36 69.46 88.55 96.96 94.90 99.80 98.98 97.88
Partial FC [1] R200 + WF42M 91.87 - 97.79 98.70 98.54 89.52 97.70 97.97 96.93 99.83 99.51 98.70
Partial FC [1] ViT-L + WF42M 90.88 92.37 98.07 98.81 98.66 89.97 97.85 98.00 97.23 99.83 99.44 98.67
UniFace, Luce-mb-r R200 + WF42M 92.43 93.11 98.14 98.98 98.84 90.01 97.92 97.91 96.68 99.83 99.42 98.66
UniFace, Luce-mb-λ 92.18 93.05 98.02 98.89 98.69 89.52 97.78 97.98 96.88 99.81 99.40 98.66

Table 3. Comparisons between different methods on MFR-Ongoing (Results of Partial FC are from the original paper[1]).

and the CASIA-WebFace dataset. As reported in Table 3,
our UniFace achieves clear improvement over other meth-
ods. In order to further explore the capacity of the proposed
UniFace, we also compare our method with Partial FC[1],
which is the leading method on the MFR ongoing challenge.
To guarantee a fair comparison, following Partial FC[1], we
train the proposed UniFace on the WebFace4M and Web-
Face42M datasets using two different architectures, i.e.,
ResNet-50 and ResNet-200. We can observe that, on av-
erage, our performance is better than that of the Partial FC.

5.2. MegaFace Challenge 1

We compare the identification performance of UniFace
with a number of state-of-the-art methods on MegaFace
Challenge 1, such as SphereFace[13], CosFace[25],
ArcFace[6], UniformFace[7], MV-AM-Softmax[26], Cir-
cle Loss[20], CurricularFace[9], and Partial FC[2]. For
a fair comparison, as per the official protocols, UniFace
trained on the CASIA-WebFace is compared with the mod-
els trained on ‘Small’ datasets while UniFace trained on
Glint360K is compared with the models trained on ‘Large’
datasets in Table 4. Among the compared models trained
on ‘Small’ datasets, UniFace achieves the highest accuracy,
i.e., 77.83% identification and 93.64% verification accu-
racy. When the label refinement [6] is used, the accura-
cies can further be increased to 92.75% and 95.17% re-
spectively. Among the compared models trained on ‘Large’
datasets, UniFace also achieves the highest accuracy on
both identification and verification, whether the label refine-
ment is used, or not. Both the verification and identification
results prove the effectiveness of the proposed UniFace.

6. Conclusion

In this paper, by explicitly introducing a learnable thresh-
old to constrain the similarity of both positive and negative
sample-to-class pairs, we propose the UCE loss, which is
the first work that incorporates the unified t as an automatic
learnable parameter in a deep face recognition framework.

Method Protocol Refine Iden. Veri.
Softmax Loss [13] Small No 54.85 65.92
Triplet Loss [13, 17] Small No 64.79 78.32
Softmax + Contrastive Loss [13, 19] Small No 65.21 78.86
Softmax + Center Loss [13, 28] Small No 65.49 80.14
L-Softmax Loss [13, 14] Small No 67.12 80.42
SphereFace [13] Small No 72.72 85.56
SphereFace+ [11] Small No 73.03 -
CosFace [25] Small No 77.11 89.88
ArcFace, R50 [6] Small No 77.50 92.34
CurricularFace, R50 [9] Small No 77.65 92.91
UniFace, Luce-mb-λ, R50 + CASIA Small No 77.83 93.64
ArcFace, R50 [6] Small Yes 91.75 93.69
CurricularFace, R50 [9] Small Yes 92.48 94.55
UniFace, Luce-mb-λ, R50 + CASIA Small Yes 92.75 95.17
FaceNet [17] Large No 70.49 86.47
RegularFace [30] Large No 75.61 91.13
UniformFace [7] Large No 79.98 95.36
ArcFace, R100 [6] Large No 81.03 96.98
CurricularFace, R100 [9] Large No 81.26 97.26
CosFace [25] Large No 82.72 96.65
UniFace, Luce-mb-λ, R100 + Glint360K Large No 84.87 97.85
SphereFace2 [27] Large Yes 89.84 91.94
CosFace, R100 [6, 25] Large Yes 97.91 97.91
MV-AM-Softmax [26] Large Yes 98.00 98.31
SphereFace-R v1 [12] Large Yes 98.03 98.30
SphereFace-R v2 [12] Large Yes 98.04 98.48
SphereFace [13] Large Yes 98.16 98.46
ArcFace, R100 [6] Large Yes 98.35 98.48
Circle Loss, R100 [20] Large Yes 98.50 98.73
CurricularFace, R100 [9] Large Yes 98.71 98.64
Partial FC, r=0.1, R100 [2] Large Yes 98.94 99.10
Partial FC, r=1.0, R100 [2] Large Yes 99.13 98.98
UniFace, Luce-mb-λ, R100 + Glint360K Large Yes 99.27 99.19

Table 4. Comparisons on the MegaFace Challenge 1.

The proposed UCE loss matches well with the expectation
of real face recognition applications and achieves clear im-
provement over the state-of-the-art methods.
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