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Abstract

Predicting future trajectories of surrounding agents is

essential for safety-critical autonomous driving. Most ex-

isting work focuses on predicting marginal trajectories for

each agent independently. However, it has rarely been ex-

plored in predicting joint trajectories for interactive agents.

In this work, we propose Bi-level Future Fusion (BiFF)

to explicitly capture future interactions between interac-

tive agents. Concretely, BiFF fuses the high-level future

intentions followed by low-level future behaviors. Then

the polyline-based coordinate is specifically designed for

multi-agent prediction to ensure data efficiency, frame ro-

bustness, and prediction accuracy. Experiments show that

BiFF achieves state-of-the-art performance on the interac-

tive prediction benchmark of Waymo Open Motion Dataset.

1. Introduction

Motion prediction is crucial for intelligent driving sys-

tems as it plays a vital role in enabling autonomous vehicles

to comprehend driving scenes and make safe plans in inter-

active environments. Predicting the future behaviors of dy-

namic agents is challenging due to the inherent multi-modal

behavior of traffic participants and complex scene environ-

ments. Learning-based approaches [1, 3, 4, 7, 8, 12, 50, 9]

have recently made notable strides in this area. By utiliz-

ing large-scale real-world driving datasets [2, 11], learning-

based frameworks can effectively model complex interac-

tions among agents and considerably enhance the accuracy

of motion prediction.

Most existing studies on trajectory prediction [4, 12, 17,

22, 25] tend to focus on generating marginal prediction

samples of future trajectories for each agent, without con-

sidering their future interactions. Thus, such marginal pre-

diction models may generate trajectories with a high over-

lap rate [41], then the unreliable results are provided for

the downstream planning module. To overcome this limi-

tation, recent works [14, 16, 31] propose joint motion pre-

Figure 1. A motivating example of BiFF. Left: Marginal heatmaps

of two interactive agents conflict with each other. Middle: For

each scene modality, assignment scores generated by the predic-

tion header become decoupled by fusing high-level future inten-

tions across agents. Right: For each scene modality, the predicted

trajectories are more scene-consistent by fusing low-level future

behaviors across agents.

diction models that generate scene-compliant trajectories.

However, previous models focus on capturing interaction

across agents in the tracking history, explicitly modeling fu-

ture interaction remains an open problem. The preliminary

research regarding future interaction is conducted in the re-

cent two works. M2I [41] classifies interactive agents as

influencer and reactor. Conditioning on the influencer, the

reactor benefit from future information, but the influencer

is not optimized. MTR [38] predicts future trajectories for

all the surrounding agents, but the future information is not

reliable enough since trajectories are directly regressed us-

ing polyline features without any iterative refinement. To

model the future interactions, we propose Bi-level Future

Fusion (BiFF), and the motivating example is presented in

Fig. 1, in which the unrealistic conflicting prediction be-

tween the marginal heatmaps is mitigated by the proposed

High-level Future Intentions Fusion (HFIF) and Low-level

Future Behaviors Fusion (LFBF).

Moreover, regarding these models [14, 16, 31], all target

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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agents are normalized to scene-centric coordinate, which

sacrifices prediction accuracy and model generalization,

therefore, requires heavy labor in data augmentation. One

possible solution is to simply extract local features for

agent-centric representation [52], but it is not memory-

efficient with redundant context encoding between different

target agents. To overcome these shortcomings, polyline-

based coordinate is specifically designed to make all pre-

dictions invariant to the global reference frame, and the fea-

ture fusion between different coordinates is performed with

relative positional encoding.

To summarize, our contributions remain as follows:

(1) We propose a novel Bi-level Future Fusion (BiFF)

model that incorporates a High-level Future Intention Fu-

sion (HFIF) mechanism to generate scene-consistent goals

and a Low-level Future Behavior Fusion (LFBF) mecha-

nism to predict scene-compliant trajectories. (2) For multi-

agent prediction, we design polyline-based coordinates to

provide agent-centric representations for all target agents

without redundant context encoding, which is memory-

saving, data-efficient, and robust to the variance of global

reference frame. (3) Our approach achieves state-of-the-

art performance on the interactive prediction benchmark of

Waymo Open Motion Dataset (WOMD).

2. Related Work

Recently, the rise in autonomous driving, as well as the

availability of the corresponding datasets and benchmarks

[2, 11, 48], have prompted significant research interest in

motion prediction. Due to the uncertainty in human in-

tent, numerous approaches have been explored to model

the intrinsic multi-modal distribution. Earlier works em-

ploy stochastic models such as generative adversarial net-

works (GANS) [18, 36, 51] or conditional variational au-

toencoders (CVAES) [3, 22, 34, 42] to draw samples ap-

proximating the output distribution. However, sample in-

efficiency at inference time prohibits them from being de-

ployed in safety-critical driving scenarios. Alternatively,

some works, including [4, 20, 28, 37, 39], utilize Gaussian

Mixture Models (GMMs) to parameterize multi-modal pre-

dictions and generate compact distributions. More recent

work conduct classification on a set of predefined anchor

trajectories [4, 32, 40] or potential intents such as goal tar-

gets [35, 13, 17, 50], such models have shown remarkable

success in popular motion forecasting benchmark.

2.1. Scene Context Representation

Motion prediction models typically take road map infor-

mation and agent history states as input. To encode such

scene context efficiently, earlier works [1, 7, 8, 10, 18, 32]

rasterize them into multi-channel BEV images for process-

ing with convolutional neural networks (CNNs). Such mod-

els predominantly operate at a scene level and sacrifice the

pose-invariance of each target. In addition, recent stud-

ies have demonstrated the efficiency and scalability of en-

coding scene context using vectorized data directly from

high-definition (HD) maps, as evidenced by the success

of [12, 25, 46, 15, 43]. All targets still share the global

frame in the vectorized methods above. By utilizing relative

positional encoding, the agent-centric schemes [52, 6, 21]

highly related to us are proposed, as they learn context

representations that are invariant to the global transforma-

tion. However, our proposed method differs in three signif-

icant ways. (1) The redundant map information in HiVT

[52] is precluded. (2) The feature encoder in our polyline-

based coordinate is more straightforward than [52, 6, 21],

where graph nodes aggregates features with hand-crafted

design. (3) We incorporate future interactions in the agent-

coordinate frame, similar to scene context encoding.

2.2. Interactive Trajectory Prediction

Multi-agent motion prediction is a crucial area, and one

of the most challenging problems in this field is predicting

scene-compliant future trajectories. To address this prob-

lem, agent interactions have been modelled using various

techniques, such as hand-crafted functions [19], graph neu-

ral networks [25, 30, 24, 23] and attention mechanisms

[40, 12, 28, 14, 5]. Recent studies have focused on using

Transformers [44] to capture the interactions among agents

and map elements [31, 16, 37, 26, 47]. While these mod-

els excel in modeling interactions in the encoding part, they

tend to independently predict the final trajectory candidates

losing scene-compliance.

In order to generate scene-consistent outputs, ILVM [3]

uses scene latent variables for interaction modeling and op-

timizes with ELBO. SceneTransformer [31] and AutoBots

[16] decode joint motion predictions with learnable queries

in the Transformer block. Thomas [14] directly designed

a recombination model to recombine the agents’ endpoints

generating joint futures. M2I [41] identifies an influencer-

reactor pair. To explicitly capture future interaction, the tra-

jectory of reactor is predicted depending on influencer. JFP

[27] utilizes a dynamic interactive graph model on top of the

trajectory candidates to generate consistent future predic-

tions. MTR [38] presents an auxiliary dense future predic-

tion task to facilitate future interaction modelling and guide

the model to generate scene-compliant trajectories.

3. Approach

3.1. Model Overview

The overall framework of BiFF is illustrated in Fig. 2.

For the scene encoder, we represent the driving scene in

a vectorized format for both agents and roads normalized

to their own polyline-based coordinate separately, which

achieves agent-centric representation for predicted agents

8261



A  S  D A S  2 

A K D A K T 2 

A K T 2 

A S D

Figure 2. BiFF framework overview. Left indicates the scene context encoder, with agents (in red and blue) and road (in dashed curves)

normalized to their own polyline-based coordinate separately. Right shows the motion decoder, with A predicted interactive agents, S

static intentions (conditional anchors), D hidden feature dimension, K predicted scene modalities, and T predicted future steps. NE , NL

and NH are the number of stacked layers. Details can be referred to Model Overview (Sec.3.1).

without any redundant context encoding (Sec.3.2). Then

agents and roads are encoded by a PointNet-like [33] poly-

line encoder followed by transformer encoder with relative

positional encoding. For the motion decoder, the High-level

Future Intentions Fusion (HFIF) module fuses static fu-

ture intentions across target agents followed by multi-modal

goal decoder and trajectory completion (Sec.3.3). Given the

predicted trajectory from HFIF, we take the Low-level Fu-

ture Behaviors Fusion (LFBF) module to fuse dynamic fu-

ture behaviors of interactive agents in each scene modality

(Sec.3.4). Finally, we present the details of training loss and

model inference (Sec.3.5).

3.2. Scene Encoder with Polyline-based Coordinate

For the joint trajectory prediction, existing works ap-

ply scene-centric representation normalizing all context to

a unique global frame [14, 16, 31]. We argue that polyline-

based coordinate with relative positional encoding is more

efficient for interactive prediction.

Represent context with polyline-based coordinate.

We adopt vectorized method proposed in [12] to represent

agents and roads as polylines. The agent-centric strategy is

utilized with polyline-based coordinate. For the pose nor-

malization, each agent is centered to their own pose at the

current time step while each road is normalized to the cen-

ter of its own polyline. With the normalized features, for the

polyline construction, each agent is composed of all history

frames with state features (e.g. position, velocity, heading,

type, etc) while each road consists of maximum 10 points

sampled at intervals of 1 meter with point information (e.g.,

position, direction, type, etc.). Finally, we use PointNet-like

[33] architecture with an MLP followed by max pooling per

polyline to obtain the feature per element of agent or road.

Fuse polylines with relative positional encoding. We

leverage transformer encoder stacked with NE layers to

fuse features across polylines. Considering that all poly-

lines are self-normalized, to make each polyline aware of

the poses of others, the relative positional encoding is uti-

lized for performing pair-wise message passing. We take

the directional feature fusion between polylines pi and pj

(i.e., j → i) as an example, where the pairwise relative po-

sitional encoding pij is obtained using MLP to the relative

pose (e.g., Δxij ,Δyij , cos(Δθij), sin(Δθij)). Concretely,

by normalizing the coordinate of polyline j to polyline i,
(Δxij , Δyij) is the origin location and Δθij is the rotation

angle of polyline j in the coordinate of polyline i. Then we

incorporate pij into the vector transformation. The poly-

line i is used to calculate query vector, and the transformed

polyline j is considered as key and value vectors:
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where he
i and he
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polyline feature. The weight matrices are not shared across

different encoder layers. The scaled dot-product attention is

calculated by the given query, key and value:
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∑
j∈Ni

αe
ijv

e
ij , (3)

where Ni is the set of polyline i’s neighbors with k clos-

est polylines (whose polyline coordinates are closest to the

query polyline i), dk is the dimension of query or key. The

updated feature ĥe
i output from the final encoder layer is

considered as polyline feature for the motion decoder. For

simplicity, we omit the commonly used Multi-Head At-

tention, Layer Normalization, Feed-Forward Network and

Residual Connection of Transformer [44] in the equations.

3.3. High-level Future Intentions Fusion (HFIF)

Given the marginal target heatmap of each predicted

agent 1, we select top S intentions with the highest scores

as conditional anchors for High-level Future Intentions Fu-

sion (HFIF). As shown in the left part of Fig. 3, the trans-

former decoder with static query intentions is utilized to lo-

calize each goal and aggregate intention-specific context.

To fuse the high-level future intentions, the decoder is fur-

ther extended with HFIF. Finally, K group goals are gen-

erated with multi-modal decoder followed by a simple tra-

jectory completer. Note that in both HFIF (Sec.3.3) and

LFBF (Sec.3.4), all features fusion between different co-

ordinates are performed with relative positional encoding,

and the learnable weights are not shared across different de-

coder layers. The HFIF is stacked with NH layers, and the

detailed architecture is illustrated in the following.

Intention queries and attention module. In the HFIF-

based transformer decoder layer, to distinguish queries of

different agents, we initialized them using the fused feature

he of corresponding target agent obtained from the scene

encoder (Sec.3.2) in the first decoder layer, but using the

query content feature output from previous layer in the fol-

lowing decoder layers. Then the agent-specific queries are

1The details of model architecture and training for predicting marginal

heatmap can be found in Appendix.

further augmented with the corresponding static query in-

tentions in all decoder layers. Given S intentions normal-

ized to the predicted agent’s polyline coordinate, we ap-

ply MLP to encode each query intention s ∈ R
2 (x, y) as

eqi ∈ R
d and add it to the query content. Then the self-

attention layer (ISA) is utilized to propagate information

among S queries inner each agent, and the updated inten-

tion query hisa ∈ R
d is obtained.

Next, we introduce cross-attention block (ICA) with

relative positional encoding to aggregate intention-specific

context. For example, any intention of any target agent i is

used as the query vector, and any polyline j is considered

as key and value vectors. Motivated by [38], to decouple

the attention contribution from two types of features, we

concatenate query content with intention embedding while

concatenate key content with positional encoding:

qica
i =

[
Wica

q hisa
i ,Wica

qe e
qi
i

]
,

kica
ij =

[
Wica

k he
j ,W

ica
pospij

]
,

vica
ij = Wica

v he
j ,

(4)

where the intention feature hisa
i is returned by self-

attention module paired with the intention embedding e
qi
i ,

the polyline feature he
j is output from scene encoder, and

pij is the relative positional encoding (normalize polyline

coordinate of polyline j to target agent i). All [·, ·] denotes

concatenating two vectors ∈ R
d as one vector ∈ R

2d and

all W (omit superscript and subscript) are learnable ma-

trices from Eq. 4 to Eq. 7. Considering that information

aggregation from agent or road is inherently distinguished

in the attention mechanism, we adopt two groups of pro-

jection matrices for agent and road separately in both HFIF

(Sec.3.3) and LFBF (Sec.3.4). By calculating cross atten-

tion using Eq. 2 and Eq. 3, for any intention of any target

agent i, the updated query intention hica
i ∈ R

d is obtained.

The Ni in Eq. 2 is composed of features of all agent poly-

lines and the closest L road polylines (whose centers are

closest to the current query intention embedded as e
qi
i ) out-

put from scene encoder.

Fuse high-level future intentions across agents. We

introduce HFIF module to capture the interaction of fu-

ture intentions across target agents. Fig. 4 shows the de-

tails of HFIF, where any intention of any target agent aggre-

gates features of all static intentions from other targets using

cross-attention. For example, when performing message

passing from any intention of target agent j to any intention

of target agent i, the fused intention features paired with

their original embedding are incorporated into the attention

mechanism with relative positional encoding pij (normal-

ize polyline coordinate of target agent j to target agent i):
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Figure 3. Details of HFIF-based and LFBF-based decoder network structure.

Figure 4. HFIF: any intention aggregates features of all static in-

tentions from other target agents.

q
hif
i =

[
Whif

q hica
i ,Whif

qe e
qi
i

]
,

k
hif
ij =

[
W

hif
k hica

j +Whif
pospij ,W

hif
ke e

qi
j

]
,

v
hif
ij = Whif

v hica
j ,

(5)

where hica
i and hica

j output from cross attention module

is the scene-based features of any intention of target agent i
and agent j, while e

qi
i , e

qi
j are the corresponding intention

embedding, respectively. To make e
qi
i aware of the position

of e
qi
j , the location of any intention of agent j is normalized

to the polyline coordinate of agent i before embedding. The

computation in Eq. 2 and Eq. 3 is conducted for the high-

level intention fusion (hif ) with the neighbor Ni containing

all intention features of other target agents. Finally, we ob-

tain the updated feature h
hif
i ∈ R

d for any intention of any

target agent i, and the feature is used as the initialized query

content for the next decoder layer.

Figure 5. LFBF: any behavior aggregates features of all dynamic

behaviors in the same scene modality from other target agents.

Multi-modal decoder in HFIF. Given h
hif
i output

from the final decoder layer in HFIF, we introduce the

multi-modal decoder composed of goal regression followed

by trajectory completion. To extract different interactive

modes, we apply a multi-modal goal decoder containing

K = 6 headers to the fused intention features from HFIF-

based transformer decoder, and all headers are consist of 1D

convolution with identical structure. Each header predicts

scene-consistent goals for all target agents in each scene

modality. For example, to regress goals of the a-th agent

in the k-th modality, all fused intention features of the a-

th agent are passed through the k-th header followed by

a Softmax function to predict the assignment scores γa
k,s

(s is the s-th intention in all S conditional anchors). The

corresponding regressing goal ĝak can be computed by the

weighted sum of the conditional anchors’ coordinate pas ,

i.e., ĝak =
∑S

s=1
γa
k,sp

a
s . Given the goals predicted for each

scene modality, we concatenate each goal with the corre-
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sponding agent feature from scene encoder (Sec.3.2), then

pass the new embedding to an MLP to complete predicted

trajectory for each target in each scene modality.

3.4. Low-level Future Behaviors Fusion (LFBF)

After HFIF, we obtain K groups of predicted trajecto-

ries considered as dynamic anchors for Low-level Future

Behaviors Fusion (LFBF). Refer to the right part of Fig.

3, the transformer decoder with dynamic query behaviors

(predicted trajectories) is utilized to localize each modality

and aggregate behavior-specific context. We extend decoder

with LFBF to fuse the low-level future behaviors in each

scene modality. The LFBF-based transformer decoder is

stacked with NL layers to iteratively refine predicted trajec-

tories and fuse future behaviors. The details are illustrated

as follows.

Behavior queries and attention module. In the LFBF-

based transformer decoder layer, the dynamic query be-

haviors are initialized by the trajectories generated from

HFIF, and dynamically updated with the trajectories pre-

dicted from previous decoder layer, which is designed for

iteratively trajectory refine [38]. Given any future trajectory

y1:T ∈ R
T×2 normalized to the corresponding polyline co-

ordinate of any target agent, we encode the query behav-

ior as eqb ∈ R
d using polyline encoder (a small PointNet-

like [33] structure) and encode the endpoint yT ∈ R
2 as

eqeb ∈ R
d using MLP. The eqb is applied to the scene con-

text aggregation and future behaviors fusion while eqeb is

utilized to localize each modality. Regarding initializing

query content in each decoder, we take the same process

in HFIF, and the queries are added with dynamic eqeb to

distinguish each modality in all decoder layers. For the self-

attention layer (BSA), we apply it to propagate information

among K modalities inner each agent, and the updated be-

havior query hbsa ∈ R
d is obtained.

Next, we introduce cross-attention block (BCA) with

relative positional encoding to aggregate behavior-specific

scene context. For example, any future behavior of any tar-

get agent i is used as the query vector, and any polyline j is

considered as key and value vectors:

qbca
i =

[
Wbca

q hbsa
i ,Wbca

qe e
qb
i

]
,

kbca
ij =

[
Wbca

k he
j ,W

bca
pospij

]
,

vbca
ij = Wbca

v he
j ,

(6)

where the behavior feature hbsa
i is returned by self-

attention module paired with the behavior embedding e
qb
i ,

polyline feature he
j is output from scene encoder, and pij

is the relative positional encoding (normalize coordinate of

polyline j to target agent i). For any target agent i in any

scene modality, we update the query behavior as hbca
i ∈ R

d

by calculating cross attention with Eq. 2 and Eq. 3, where

Ni is composed of features of all agent polylines and the

closest L road polylines (whose centers are closest to the

center of the current query behavior embedded as e
qb
i ).

Fuse low-level future behaviors across agents. In each

scene modality, we introduce LFBF module to capture

the interaction of low-level future behaviors across target

agents. Fig. 5 illustrates the details of LFBF, where any be-

havior of any target agent aggregates features of all dynamic

behaviors in the same scene modality from other targets us-

ing cross-attention. For example, when performing mes-

sage passing from future behavior of target agent j to target

agent i in any scene modality, the fused future behavior fea-

tures paired with their trajectory embedding are introduced

to calculate query, key and value vectors with relative posi-

tional encoding pij (normalize polyline coordinate of target

agent j to target agent i):

q
lbf
i =

[
Wlbf

q hbca
i ,Wlbf

qe e
qb
i

]
,

k
lbf
ij =

[
W

lbf
k hbca

j +Wlbf
pospij ,W

lbf
ke e

qb
j

]
,

v
lbf
ij = Wlbf

v hbca
j ,

(7)

where hbca
i and hbca

j are the features of future behaviors

output from cross attention module for any target agent i
and agent j in any scene modality, while e

qb
i , e

qb
j are the

corresponding behavior embedding, respectively. To make

e
qb
i aware of the position of e

qb
j , the location of any future

trajectory of agent j is normalized to the polyline coordi-

nate of agent i before embedding. The resulting query, key

and value are utilized for low-level behavior fusion (lbf )

using Eq. 2 and Eq. 3, where the neighbor Ni contains all

future behavior features in the current scene modality from

other target agents. Finally, we obtain the updated feature

h
lbf
i ∈ R

d for the future behavior of any target agent i in

any scene modality, and the feature is used as the initialized

query content for the next decoder layer.

Multi-modal decoder in LFBF. For each LFBF-based

decoder layer, we append an MLP block to the output fea-

ture h
lbf
i for predicting future trajectory of any target agent

i in any scene modality.

3.5. Training Loss

The training loss is composed of goal regression LG and

trajectory regression LT for the total A target agents. For

the multiple scene modalities, a winner-takes-all (WTA)

strategy is taken to address mode collapse. More specif-

ically, both two losses are only calculated for the scene

modality that has the minimum final displacement error

summed by all target agents, e.g., the sum of Euclidean dis-

tance between the endpoint of predicted trajectory (output
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from the final decoder layer in LFBF) and ground truth:

LG =

A∑
a=1

Lreg(g
a, ĝak∗), LT =

A∑
a=1

Lreg(y
a, ŷa

k∗) (8)

where ga and ĝak∗ are the GT endpoint and regressed goal

from HFIF decoder, respectively. ya and ŷa
k∗ are the GT tra-

jectory and predicted trajectory from LFBF-based decoder

layer, respectively. Lreg is the smooth l1 loss. k∗ is the in-

dex of the selected scene modality. The final loss is the sum

of the LG and the LT with equal weights, where the LT is

applied to each LFBF-based decoder layer.

For inference, trajectories generated by the last decoder

layer are considered as the final prediction result. The joint

likelihood of each scene modality is calculated by the prod-

uct of all target agent scores in each modality. To obtain

agent modality score, we take the endpoint of each pre-

dicted trajectory to query the closest intention in the corre-

sponding marginal heatmap (conditional anchors), then the

queried intention score is used to calculate joint likelihoods.

4. Experiments

4.1. Experimental Setup

Dataset and metrics. We train and evaluate our BiFF in

the Waymo Open Motion Dataset (WOMD) [11], a large-

scale dataset with the most diverse interactive cases col-

lected from realistic traffic scenes. We focus on the inter-

active challenge where the task is to predict 8s future tra-

jectories for two interactive agents given 1s tracking his-

tory. The WOMD contains about 487k training samples,

44k validation samples and 44k testing samples. The met-

rics [11] are calculated with the official tool. Besides, to

measure the consistency of the joint trajectory prediction

for all K scene modalities, we adopt Cross Collision Rate

(CCR) 2 [48] metric. Concretely, for a modality of a case,

the collision is counted if the two agents overlap at any pre-

dicted time step. Then the ratio of collision is calculated by

Ncoll/K. The final CCR is averaged over all samples.

Implementation Details. Our model is trained for 30

epochs with 4 RTX 3090 GPUs using AdamW optimizer,

and the initial learning rate, batch size are set to 0.0001 and

80 respectively. The learning rate is half decayed every 2

epochs from epoch 20. For the scene encoder, we stack

NE = 6 layers for the transformer encoder. The map is

pruned with marginal heatmaps using half circle and half

ellipse to ensure model accurately focusing on the inter-

est area. The number of neighbors k is set to 16 for local

self-attention. The hidden feature d is set as 256. For the

2Note that the official metric Overlap Rate (OR) in the challenge only

calculates collision between prediction and ground truth for the modality

with the highest score but not count overlap among joint predicted trajec-

tories and not including other scene modalities

Figure 6. Illustration of conflict resolution in HFIF model. Left:

Marginal heatmaps. Right: Scene-compliant assignment scores

from different headers of motion decoder. Brightness in red and

blue signifies the score of two interacting agents, with the asterisk

denoting the ground truth goal points.

transformer decoder, we stack NH = 1 layer for HFIF and

NL = 3 layers for LFBF. The number of map polylines L
is set to 256 for scene context aggregation. The number of

static future intentions S is set to 100 as the conditional an-

chors for HFIF. No data augmentation and model ensemble

is used. More details can be referred to appendix.

4.2. Comparison with the State-of-the-art

We compare our BiFF with the SOTA methods on both

validation and test interactive WOMD. The quantitative re-

sults of proposed BiFF and all baselines are shown in Tab.

1, where BiFF-200 denotes BiFF with intention number

S = 200. For the results in validation set, our BiFF outper-

forms both Waymo Full Baseline and Scene Transformer in

terms of all metrics except for mAP over cyclist. For the

results in test set, compared to the approaches without en-

semble models, BiFF achieves SOTA in minFDE and MR.

Compared to the approaches with ensemble models, BiFF

still achieves SOTA in minFDE over vehicle and pedestrian

while all other metrics are near SOTA except for mAP. Al-

though BiFF has lower mAP, it improves the minFDE and

MR by a large margin over the methods without ensemble

models, meaning BiFF predicts more accurate trajectories

with efficient scene multi-modality. To illustrate that, we

visualize the representative qualitative results in Fig. 9.

4.3. Ablation Study

To study the importance of each module in BiFF, we con-

duct ablation studies on the Waymo interactive validation

set over joint metrics of vehicles at 8s. To improve the effi-

ciency of ablation study, we resort to the alternative training

8266



Table 1. Comparison with top-ranked entries on the WOMD Interaction Leaderboard. † refer to ensemble methods.

Method

Vehicle(8s) Pedestrain(8s) Cyclist(8s)

mFDE↓ MR↓ mAP↑ mFDE↓ MR↓ mAP↑ mFDE↓ MR↓ mAP↑

Test

Waymo LSTM baseline [11] 12.40 0.87 0.01 6.85 0.92 0.00 10.84 0.97 0.00

HeatIRm4 [29] 7.20 0.80 0.07 4.06 0.80 0.05 6.69 0.85 0.01

AIR2 [45] 5.00 0.64 0.10 3.68 0.71 0.04 5.47 0.81 0.04

SceneTransformer [31] 4.08 0.50 0.10 3.19 0.62 0.05 4.65 0.70 0.04

DenseTNT [17] 4.75 0.52 0.20 3.32 0.59 0.11 5.15 0.73 0.05

M2I [41] 5.65 0.57 0.16 3.73 0.60 0.06 6.16 0.74 0.03

BiFF (Ours) 3.82 0.46 0.13 2.79 0.54 0.06 4.33 0.68 0.03

BiFF-200 (Ours) 3.71 0.47 0.12 2.73 0.56 0.05 4.29 0.69 0.03

† MTR [38] 4.04 0.49 0.21 2.86 0.53 0.13 4.24 0.65 0.05

† JFP [27] 3.88 0.45 0.19 2.81 0.54 0.15 4.19 0.63 0.06

Val

Waymo Full Baseline [11] 6.07 0.66 0.08 4.20 1.00 0.00 6.46 0.83 0.01

SceneTransformer [31] 3.99 0.49 0.11 3.15 0.62 0.06 4.69 0.71 0.04

BiFF (Ours) 3.74 0.44 0.16 2.70 0.53 0.06 4.42 0.67 0.03

BiFF-200 (Ours) 3.64 0.46 0.16 2.64 0.54 0.07 4.31 0.69 0.03

scheme with total 15 epochs where the learning rate is ini-

tialized as 0.0001 and decayed to half from epoch 10.

Importance of HFIF. For simplicity, we name Goal Re-

gression (GR) indicating the transformer decoder in Sec.3.3

without HFIF. For the HFIF-based transformer decoder, il-

lustrated in Tab. 2, with HFIF module, MR is noticeably im-

proved, which indicates that in interactive scenarios, HFIF

plays a crucial role in goal prediction since the future inten-

tions of target agents are likely to be intensely interactive.

The future intentions of the interactive counterpart provide

useful future information for predicting goals of each target.

In Fig. 6, an interactive sample is visualized to show the

scene-consistent goals generated from multi-modal decoder

in HFIF. On the left, the marginal heatmaps (conditional an-

chors) of two interactive agents are highly multi-modal and

conflicting since the peaks are overlapped with each other.

Our HFIF is aimed to decompose multi-modal to uni-modal

[49] for each heatmap while splitting goals across target

agents in each scene modality. On the right, we show the as-

signment scores of both two interactive agents predicted by

K different headers. We observe that each header focuses

on the distinctive interactive modality and the overlap is

successfully eliminated in each scene modality, which ver-

ifies that the high-level future intention interaction across

target agents is modeled efficiently by our HFIF.

Table 2. Effects of different components in BiFF. GR: Goal Re-

gression, TR: Trajectory Refine, CCR: Cross Collsion Rate.

GR HFIF TR LFBF mADE↓ mFDE↓ MR↓ CCR↓

� � � � 2.2292 5.0402 0.6033 0.1932

� � � � 2.0167 4.5718 0.5572 0.1810

� � � � 1.9283 4.3520 0.5564 0.1547

� � � � 1.8401 4.1497 0.5121 0.1397

Importance of LFBF. For simplicity, the transformer

decoder in Sec.3.4 without LFBF is termed as Trajectory

Refine (TR). From Tab. 2, for the LFBF-based trans-

former decoder, both components TR and LFBF can im-

prove the performance. First, with TR module, the model

can iteratively refine the future trajectory by aggregating the

behavior-specific scene context in the future. We find that

MR is not improved compared with HFIF, which further

verifies the efficiency of HFIF in predicting goals. More-

over, the CCR significantly improves with TR, presumably

because the predicted future behavior is more similar to the

realistic driving scenario using TR. Thus, TR makes it more

reliable for LFBF to perform local future fusion. Second,

with LFBF module, the prediction of each target agent can

rely on the future location of the interactive counterpart,

which is useful since reliable information is strongly asso-

ciated with future predictions. All metrics are continuously

improved, which suggests the importance of LFBF in fusing

low-level future behavior across interactive agents.

Importance of polyline-based coordinate. In order to

substantiate the efficacy of polyline-based coordinates in

enhancing data efficiency and frame robustness, we design

a variant of BiFF with scene-centric reference frame, where

all scene context is translated to the center location of two

target agents at the current time step. To demonstrate data

efficiency, we train BiFF and scene-centric BiFF using 5%,

10%, 20% and 100% frames uniformly sampled from the

WOMD training set, and evaluate them on the interactive

validation set. From Fig. 7, we can find that compared

to scene-centric variant, BiFF achieves the same perfor-

mance with fewer training data. The final prediction accu-

racy also becomes better, which verifies the improved abil-

ity of model generalization with polyline-based coordinate.

To show the robustness to coordinate, from Fig. 8, we can

observe that our BiFF is robust to the rotation while the per-

formance of the variant severely gets worse with the angle

variation. Besides, by normalizing scene-centric BiFF to
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Figure 7. Data efficiency.

Figure 8. Robustness to rotation angles.

any polyline-based coordinate, the results become not ap-

plicable but the performance of our BiFF is still unchang-

ing, which verifies the robustness to the variant of reference

frame by adopting polyline-based coordinate.

We measure memory efficiency with the Average Poly-

line Number (APN) for each target agent on the Waymo

interactive validation set. By using polyline-based coordi-

nate, the agent-centric strategy is achieved without redun-

dant context, all target agents in each case share the scene

context and the APN is 179. However, when encoding local

context for each target separately, it causes the redundant

context and the APN is 291 meaning requiring much more

memory during training and inference.

Table 3. Effects of quantity of conditional anchors.

Anchor Num mADE↓ mFDE↓ MR↓

50 1.9442 4.4522 0.5229

100 1.8401 4.1497 0.5121

200 1.8284 4.1058 0.5434

500 1.9405 4.4488 0.6009

Table 4. Effects of quality of conditional anchors.

Anchor Quality (mFDE) mADE↓ mFDE↓ MR↓

4.24 2.1138 4.9617 0.6371

3.99 1.9572 4.4918 0.5554

3.42 w/o score 1.8401 4.1497 0.5121

3.42 w score 1.8501 4.1694 0.5258

Analysis of conditional anchors. We analyze the ef-

fects of the quantity and quality of conditional anchors. For

the quantity of conditional anchors, by changing the num-

Figure 9. Qualitative results on WOMD validation set (K=3).

ber of intentions in Tab. 3, we observe that within a cer-

tain range, the minFDE is improved with anchor number

increasing while the minMR becomes worse. For the qual-

ity of conditional anchors, we define marginal minFDE 3 to

quantify the quality of marginal heatmap (conditional an-

chors). From Tab. 4, all metrics are improved with quality

enhancement, which motivates the prediction performance

to be further improved by using higher-quality marginal

heatmaps. We also find that the performance is slightly

dropped by adding the confidence score to each intention,

and the marginal score may mislead the model.

5. Conclusion

In this paper, we propose BiFF to model the future in-

teractions, where HFIF fuses high-level future intentions

and LFBF fuses low-level future behaviors. With polyline-

based coordinates, BiFF becomes data-efficient, robust to

global frame and more accurate in prediction. Experimental

results demonstrate that BiFF achieves SOTA performance,

underscoring the importance of each proposed module.

Acknowledgments. We would like to thank Lu Zhang for

helpful discussions on the manuscript.

3We obtain 6 endpoints by using NMS on the marginal heatmap, and

marginal minFDE is obtained by evaluating on the validation set.
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