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Abstract

Backdoor defense, which aims to detect or mitigate the
effect of malicious triggers introduced by attackers, is be-
coming increasingly critical for machine learning security
and integrity. Fine-tuning based on benign data is a nat-
ural defense to erase the backdoor effect in a backdoored
model. However, recent studies show that, given limited be-
nign data, vanilla fine-tuning has poor defense performance.
In this work, we firstly investigate the vanilla fine-tuning
process for backdoor mitigation from the neuron weight per-
spective, and find that backdoor-related neurons are only
slightly perturbed in the vanilla fine-tuning process, which
explains its poor backdoor defense performance. To en-
hance the fine-tuning based defense, inspired by the obser-
vation that the backdoor-related neurons often have larger
weight norms, we propose FT-SAM, a novel backdoor de-
fense paradigm that aims to shrink the norms of backdoor-
related neurons by incorporating sharpness-aware minimiza-
tion with fine-tuning. We demonstrate the effectiveness of
our method on several benchmark datasets and network
architectures, where it achieves state-of-the-art defense per-
formance, and provide extensive analysis to reveal the FT-
SAM’s mechanism. Overall, our work provides a promising
avenue for improving the robustness of machine learning
models against backdoor attacks. Codes are available at
https://github.com/SCLBD/BackdoorBench.

1. Introduction
As deep neural networks (DNNs) have been increas-

ingly applied to safety-critical tasks such as face recog-
nition, autonomous driving, and medical image process-
ing [16, 1, 28, 29, 33, 31, 44, 52, 30], the threat exhib-
ited by DNNs has drawn attention from both the indus-
trial and academic community. Recently, backdoor attacks
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Figure 1: Left: T-SNE [45] visualization on the backdoored
model and the model after fine-tuning. FT fails to remove
backdoor effect. Right: the neuron weight norm distribution
between the two models. The weight seems to have remained
mostly unchanged after the fine-tuning process.

[50, 15, 34, 14, 2] have emerged as a new practical and
stealthy threat to DNNs, for which the attacker plant pre-
defined triggers to a small portion of the dataset and misleads
the DNNs trained on such dataset to behave normally with
benign inputs while classifying input with trigger into the
target class. To detect or mitigate the effect of backdoor, sub-
stantial efforts have been done in inversing triggers, splitting
dataset, or pruning the DNNs, while fine-tuning, a natural
choice for backdoor defense has received much less atten-
tion. Although complex techniques such as unlearning and
pruning have achieved remarkable performance, they usually
come at the cost of accuracy on the original tasks. Addi-
tionally, the effectiveness of pruning is contingent upon the
network structure, as highlighted by Wu et al. [51, 49], un-
derscoring the necessity for meticulous pruning strategies.
In contrast, fine-tuning, a more general approach, can mod-
erately restore the model’s utility.

Although vanilla fine-tuning has been adopted as a compo-
nent of some backdoor defense methods [32, 27], fine-tuning
a backdoored model to remove the backdoor is still challeng-
ing when only limited benign data is given[49]. Previous
work [49] has found that fine-tuning is a powerful technique
in some situations. However, it cannot resist strong backdoor
attacks such as Blended [7] and LF [55]. One of the possible
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reasons is the backdoored model already fits the benign sam-
ples well; hence, vanilla fine-tuning can only make minor
changes to the weights of neurons and fail to mitigate the
backdoor effect. To demonstrate this, we adopt the Blended
[7] attack with poisoning ratio 10% on CIFAR-10 dataset
[21] and PreAct-ResNet18 model [17], and the backdoored
model is fine-tuned using 5% benign training samples. As
shown in Figure 1, FT fails to mitigate backdoor effect and
there’s only slight changes on neuron weight norms. In this
paper, we focus on the problem of designing a new objec-
tive function that can alter the backdoor-related weights and
mitigate the backdoor effect via fine-tuning.

To address this problem, we first take a closer look at the
fine-tuning process from neurons’ perspective. We empiri-
cally observe that the weight norm of neurons has a positive
correlation with backdoor-related neurons in our experiment,
which is also implied in [57]. Intuitively, the neurons with
large norms can cause the backdoor features to override the
normal features, making the model incorrectly pay atten-
tion to the trigger’s feature. Motivated by the relationship
between the neuron weight norms and the backdoor effect,
we propose to adopt Sharpness-Aware Minimization (SAM)
with adaptive perturbations [11, 22] to fine-tune the back-
doored model, which can revise the large outliers of weight
norms and induce a more concentrated distribution of weight
norms [24]. In detail, SAM considers a min-max formulation
to encourage the weights in neighbors with a uniformly low
loss. The adaptive constraints on perturbations can facilitate
greater change of backdoor-related neurons. By leveraging
SAM on the backdoored model, we empirically show that
the model not only benefits from escaping the current local
minima but also receives more perturbations on backdoor-
related neurons than the normal weights. Therefore, SAM
implicitly facilitates the learning of backdoored neurons and
helps to mitigate the backdoor effect.

To demonstrate the effectiveness of our method, we con-
duct experiments on three benchmark datasets with two net-
works, and compare them to seven state-of-the-art defense
methods. The results show our method is competitive with
and frequently superior to the best baselines. Our method is
also robust across different components. Additionally, we
empirically confirm that our strategy can take the place of
fine-tuning, which can be used in conjunction with current
backdoor defense techniques to make up for accuracy drop.

In summary, our main contributions are three-fold: (1) We
reveal the reason of the weak backdoor defense performance
of the vanilla fine-tuning based on a deep investigation from
the perspective of backdoor-related neurons’ weight changes.
(2) By leveraging SAM, we design an innovative fine-tuning
paradigm to effectively remove the backdoor effect from
a pre-trained backdoored model by perturbing the neurons.
(3) Experimental results and analyses demonstrate that the
proposed method can achieve state-of-the-art performance

among existing defense methods and boost existing defense
methods based on fine-tuning.

2. Related work

Backdoor Attack. Several backdoor attacks [8, 56] have
been proposed, including data poisoning attacks [47, 61, 12]
and training controllable attacks [37, 25]. In data poisoning
attacks, BadNets [15] is one of the earliest attacks, in which
they revise a small part of the data by patching a pre-defined
pattern onto the images and relabeling them to the targeted
class. Then the DNN trained on the poisoned dataset will
be planted a backdoor. Blended [7] design a more strong
backdoor attack by blending benign images with a whole
pre-defined image. Recently, more advanced backdoors have
been proposed to increase concealment of the triggers, such
as LF [55], Wanet [37], and Input-aware [36]. Training
controllable backdoor attacks assume that the attacker can
control the training process, such that the attack can flexibly
design triggers or decide the images to attack. To better
evade backdoor detection, clean-label attacks[39, 3] succeed
by destroying the subject information of images and building
a connection between the planted trigger and targeted label.

Backdoor Defense. In general, backdoor defense meth-
ods can be categorized into training-stage defenses [13] and
post-training defenses [58]. The former considers that a
defender is given a backdoored dataset to train the model.
The defender can leverage the different behaviors between
benign and poisoned images in the training process to escape
attacks, such as the loss dropping speed [26] and clustering
phenomenon in the feature space[5, 19, 6]. Most defense
methods belong to post-training defenses [57, 60, 48], where
the defender is given a suspicious model and has no access
to the full training dataset. They need to remove backdoor
threats by using a small set of benign samples. Post-training
defenses can be roughly divided into fine-tuning-based de-
fenses (NC [46], NAD [27], and i-BAU [54] ) and pruning-
based defenses ( FP [32] and ANP [51] ). FP assumes that
poisoned and benign samples have different activation paths.
They remove backdoors by pruning the inactivated neurons
of benign data and then fine-tuning the pruned model. ANP
assumes that backdoor-related neurons are more sensitive
to adversarial neuron perturbations. They search for and
mask these suspicious neurons by a minimax optimization
on benign samples. NC searches for a possible trigger by op-
timization and retrains the model by regularizing the model
to predict correctly on the images with the recovered trig-
ger. NAD first fine-tunes a teacher model on a small subset
of benign data and then fine-tunes a student model under
the guidance of the teacher model. I-BAU borrows ideas
from universal adversarial perturbations and proposes the
implicit backdoor adversarial unlearning algorithm to solve
the minimax problem.
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Sharpness-Aware Minimization. Loss landscape has
long been considered related to generalization in deep learn-
ing. Hochreiter and Schmidhuber [18] have provided nu-
merical support for the hypothesis that flat and wide minima
generalize better than sharp minima. Chaudhari et al. [4]
propose entropy-SGD to explicitly search for wider min-
ima. Recently, SAM [11] improves model generalization
by simultaneously minimizing loss value and loss sharp-
ness. Besides, several variants of SAM have been proposed
[62, 43, 42, 20, 35, 59] to search for flat minima. For exam-
ple, ASAM [22] proposes a new learning method for flat loss
surface which is invariant to parameter re-scaling. GSAM
[62] defines a surrogate gap and they minimize the surro-
gate gap and perturbed loss synchronously. Besides, PGN
[53] improves generalization by directly minimizing the loss
function and the gradient norm. Randomized smoothing
[10] is another way to improve generalization and has been
widely used in adversarial training [9].

In contrast to existing post-processing defenses, our ap-
proach introduces a minimax formulation to enhance the
process of fine-tuning for backdoor removal. Notably, our
approach does not require any modification to the network
architecture and preserves the model’s utility. Furthermore,
our work sheds light on the efficacy of sharpness-aware min-
imization technique for fine-tuning in backdoor defenses.

3. Methodology
3.1. Problem

Threat Model. We assume that an adversary carries out a
backdoor attack on a DNN model fw with weights w ∈ Rd,
where d is the number of parameters in the model. The
poisoning ratio is defined as the proportion of poisoned
samples in the training dataset. The goal of the attacker is to
make the model trained on the poisoned dataset classify the
samples with triggers to the target labels while classifying
clean samples normally.

Defender’s Goal. We consider that the defender is given
a backdoored model and a few benign samples Dbenign.
The defender’s goal is to fine-tune the model so that the
benign data performance is maintained, and the backdoor
effect is removed, i.e., the ratio of poisoned samples that are
misclassified as the target label is low.

3.2. Investigating the Vanilla Fine-Tuning

In the vanilla fine-tuning (FT) based backdoor defense
[32], it is assumed that limited benign samples Dbenign (e.g.,
only 5% benign samples), which are drawn from the same
distribution as the original benign training dataset, are avail-
able to fine-tune the backdoored model. As evaluated in the
latest backdoor learning benchmark, i.e., BackdoorBench
[49], FT has some effect on mitigating the backdoor behav-
ior in some cases, but doesn’t work well when facing several
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Figure 2: First two columns: Comparison of the defense
models by vanilla fine-tuning (FT, top row) and by FT-SAM
(bottom row), respectively. The first column illustrates the T-
SNE visualizations of the two models. The two figures in the
middle depict the changes in neuron norms in the last convo-
lution layer of the two models, sorted by the neuron weight
index of the backdoored model in descending order. Last
column: A positive correlation between TAC value [57] and
weight norms for each neuron in the last convolution layer
of two backdoored models. The TAC metric is introduced as
a measure to quantify the association between the backdoor
impact and neurons. A higher TAC value attributed to a
neuron signifies a stronger connection to backdoors.

advanced backdoor attacks. We hypothesize that since the
backdoored model has already fitted the benign training sam-
ples Dbenign well during the pre-training process, FT on
Dbenign cannot provide sufficient power to escape from the
current solution (i.e., current model weights), such that the
backdoor effect cannot be mitigated well.

To verify the above hypothesis, we conduct a deep in-
vestigation of FT based backdoor defense. Specifically, we
fine-tune the backdoored model using 5% benign training
samples for 100 epochs with the same learning rate as in the
training of the backdoored model. All experiments adopt the
Blended [7] attack with poisoning ratio 10%, on CIFAR-10
dataset [21] and PreAct-ResNet18 model [17]. The accu-
racy on benign testing dataset (i.e., benign accuracy) of this
backdoored model is 93.44%, and the Attack Success Rate
(ASR) is 97.71%. After FT defense, the benign accuracy
and ASR are changed to 92.48% and 82.22%, respectively.
As shown in the first two figures in the top row of Figure
2, we provide two perspectives to analyze the FT’s effect in
this experiment:

1. T-SNE Visualization. The left-top T-SNE visualization
in Figure 2 shows the feature space before the fully con-
nected layer in the FT defended model, on both benign
testing images (i.e., colored points) and poisoned test-
ing samples (i.e., black points). The poisoned samples
are still clustered together. This phenomenon explains
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the high ASR value after FT.

2. Changes of Neuron Weight Norms. As shown in
the middle-top sub-plot of Figure 2, we compare the
changes of neuron weight norms in the last convolu-
tional layer (containing 512 neurons) between the back-
doored model (see green bins) and the FT defended
model (see purple bins). It is observed that FT treats
all neurons equally and there are only slight changes on
most neuron weights. It verifies that FT cannot generate
a new model that is far from the current model.

3.3. Proposed Method

Motivation. To motivate our method, we first introduce
one crucial observation of the relationship between the neu-
ron weight norms and backdoor-related neurons in a back-
doored model, as shown in the last column of Figure 2. Note
that TAC shown at the horizontal axis indicates the trigger
activated change metric [57], and it is utilized to quantify
the association between the backdoor effect and neurons.
TAC value in the lth layer is defined as the activation dif-
ferences of channel-wise neurons in the lth layer between
the benign samples and the corresponding poisoned ones in
the model, and higher TAC value indicates stronger correla-
tion. It is evident that neurons associated with backdoors
tend to exhibit large neuron weight norms across various
backdoored models. Inspired by this finding, we attempt to
design a strategy that can significantly perturb the neurons
with large weight norms (i.e., the backdoor-related neurons),
in order to mitigate backdoor effect.

Min-Max Formulation. We propose the following opti-
mization problem:

min
w

max
ϵ∈S

L(w + ϵ), (1)

where L(w + ϵ) = E(x,y)∈Dbenign
[ℓ(fw+ϵ(x), y)] with

cross-entropy loss ℓ, S = {ϵ : ∥T−1
w ϵ∥2 ≤ ρ}, and ρ > 0

is the hyper-parameter for the budget of weight perturbation.
Inspired by ASAM [22], we introduce

Tw = diag (|w1|, |w2|, . . . , |wd|) ∈ Rd×d, (2)

where wi is the i-th entry of w, to set adaptive perturbation
budget for different neurons and encourage larger perturba-
tions to the neurons with larger weight norms, which are
more likely to be related to the backdoor effect. We refer to
our method as FT-SAM.
Optimization. As described in Algorithm 1, Problem (1)
can be efficiently solved by alternatively updating w and ϵ.

• Inner Maximization: Given model weight wt, the
weight perturbation ϵ could be updated by solving the
following sub-problem:

max
ϵ∈S

L(wt + ϵ). (3)

Algorithm 1 Fine-Tuning with SAM (FT-SAM)

1: Input: Training set Dbenign, backdoored model fw,
learning rate η > 0, perturbation bound ρ > 0, loss
function L, max iteration number T .

2: Output: Model fine-tuned with SAM.
3: Initialize w0.
4: for t = 0, ..., T − 1 do
5: Sample a mini-batch B from Dbenign;
6: Update Twt

via Equation (2) with wt;
7: Update ϵt+1 via Equation (4);
8: Update wt+1 via Equation (6);
9: end for

10: return fwT

Utilizing Taylor expansion, the first-order approxima-
tion of Problem (3) and the corresponding solution are
formulated as follows:

ϵt+1 = argmax
ϵ∈S

L(wt + ϵ)

≈ argmax
ϵ∈S

L(wt) + ϵ⊤∇wt
L(wt)

= ρ
T2

wt
∇wt

L(wt)

∥Twt
∇wt

L(wt)∥2
.

(4)

A detailed derivation of the above update is provided in
Section A of Supplementary Material.

• Outer Minimization: Given ϵt+1, the model weight w
can be updated by solving the following sub-problem

min
w

L(w + ϵt+1), (5)

which is optimized by stochastic gradient descent, i.e.,

wt+1 = wt − η∇wL(w + ϵt+1)|w=wt , (6)

where η is the learning rate.

Remark. To show the effectiveness of FT-SAM on back-
door mitigation, here we present two example sub-plots at
the first two columns in the bottom row of Figure 2. The T-
SNE visualization at the left-bottom shows that the poisoned
features are dispersed and lie closely to features of benign
samples, demonstrating that the backdoor effect has been
well mitigated, while the clean accuracy is maintained. The
middle-bottom sub-plot shows the neurons, especially those
with large weight norms, are more significantly perturbed
via our FT-SAM defense strategy, compared to FT. It prelim-
inarily explains why FT-SAM is more effective than FT on
backdoor mitigation. Moreover, we present further in-depth
analysis to understand the mechanism of FT-SAM, from the
perspectives of neuron weight norms and weight gradient
norms in Section 4.4.
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4. Experiment
4.1. Experimental Setup

Attack Settings. We consider 10 popular state-of-the-art
(SOTA) backdoor attacks: BadNets [15] with two attack
settings (BadNets-A2O and BadNets-A2A refer to attacking
one class and all classes, respectively), Blended backdoor
attack (Blended) [7], Input-aware dynamic backdoor attack
(Input-aware)[36], Clean-label attack (CLA)[39], Low fre-
quency attack (LF) [55], Sinusoidal signal backdoor attack
(SIG) [3], Sample-specific backdoor attack (SSBA) [25],
Trojan backdoor attack (Trojan) [34], and Warping-based
poisoned networks (WaNet) [37]. We follow the default
attack configuration as in BackdoorBench [49] for a fair
comparison, such as trigger patterns and optimization hyper-
parameters. The poisoning ratio is set to 10% in all attacks
and the 0th label is set to be the targeted label except for
BadNets-A2A, in which the target labels for original labels y
are set to yt = (y + 1) mod C. Here C is the total number
of classes and mod is short for "modulus". We evaluate
all the attacks on 3 benchmark datasets, CIFAR-10 [21],
Tiny ImageNet [23], and GTSRB [41] over two networks,
PreAct-ResNet18 [17] and VGG19-BN [40] except for two
clean-label attacks SIG and CLA, where the 10% poisoning
ratio cannot be reached by attacking only one class. We also
compare our method to SOTA methods with a 5% poisoning
ratio on CIFAR-10 and Tiny ImageNet on PreAct-ResNet18.
More implementation details and the comparison with SOTA
defense methods with 5% poisoning ratio can be found in
Sections B and C of Supplementary Material.

Defense Settings. We compare the proposed method with
vanilla fine-tuning (FT) and seven SOTA backdoor defense
methods: Fine-pruning (FP) [32], NAD [27], AC [5], NC
[46], ANP [51], ABL [26], and i-BAU [54]. All the defense
methods can access 5% benign training data except for AC
and ABL, which use the entire poisoned dataset and train a
model from scratch. We follow the default configurations
for SOTA defense as in BackdoorBench [49]. We use a
learning rate of 0.01 with batch size 256 for 100 epochs on
CIFAR-10 and Tiny ImageNet, and 50 epochs on GTSRB
for FT and FT-SAM. The analysis of sensitivity to different
numbers of benign training samples can be found in Section
4.3. For FT-SAM, the most crucial hyper-parameter is the
perturbation radius ρ. We set ρ = 2 for CIFAR-10 and
ρ = 8 for Tiny ImageNet and GTSRB on PreAct-ResNet18.
More implementation details can be found in Section B of
Supplementary Material.

Evaluation Metric. We use three metrics to evaluate the
performance of different defenses: ACCuracy on benign
data (ACC), Attack Success Rate (ASR), and Defense Ef-
fectiveness Rating (DER). ASR measures the proportion of
backdoor samples that are successfully misclassified to the

target label. DER ∈ [0, 1] is firstly proposed in this work
to evaluate defense performance considering both ACC and
ASR. It is defined as follows:

DER = [max(0,∆ASR)−max(0,∆ACC) + 1]/2, (7)

where ∆ASR denotes the drop in ASR after applying de-
fense, and ∆ACC represents the drop in ACC after applying
defense. For instance, a value of DER = 1 means the de-
fense successfully reduces the ASR from 1 to 0 without any
drop in ACC; DER = 0 means ACC drops from 1 to 0 and
ASR doesn’t change. The max is added to the metric since
the increase of ACC or ASR rarely occurs in defenses. A
superior defense is indicated by a lower ASR, higher ACC,
and higher DER. To ensure a fair comparison between dif-
ferent strategies for the target label, we remove samples
whose ground-truth labels already belong to the target class.
Note that among all defenses, the one with the best perfor-
mance is indicated in boldface, and the value with underline
denotes the second-best result. We provide PyTorch1 and
MindSpore2 implementations of FT-SAM.

4.2. Experimental Results

We verify the effectiveness of our method by comparing
it against the seven SOTA defense methods on CIFAR-10
and Tiny ImageNet with 10% poisoning ratio on PreAct-
ResNet18. The results are presented in Table 1 and Table
2. As shown in Table 1, Badnets-A2O and Wanet can be
defended by almost all the defense methods. FT shows
promising defense performance and maintains ACC on sev-
eral attacks, but it cannot resist complex attacks, such as
Blended, LF and SSBA. The results of NAD are very similar
to FT as both methods fine-tune the model with limited data.
I-BAU demonstrates a noticeable effect against almost all
attacks with average ASR < 6%, but it sacrifices ACC to
achieve a robust model, as evidenced by a low DER. ANP
and ABL also show potential in defending against some at-
tacks but their results are unstable, with fluctuating ASR,
low ACC, and low DER on different attacks. The sensitivity
of the pruning threshold among different attacks in ANP
may explain this result, while ABL’s process of combining
learning and unlearning may harm the model’s utility. NC
performs comparably well in some attacks while the aver-
age DER is low, indicating that NC’s resilience is not that
high. In comparison, our approach receives a high DER in
most cases, indicating the effectiveness of our method in
defending against various attacks. It demonstrates the power
to decrease ASR on average (2.47%) across all attacks.

Table 2 presents the experimental results on Tiny Ima-
geNet with PreAct-ResNet18. We observe that all compared
defense methods fail to maintain both ACC and ASR on

1https://github.com/SCLBD/BackdoorBench
2https://github.com/JulieCarlon/FTSAM-MindSpore
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Table 1: Comparison with state-of-the-art defenses on CIFAR-10 dataset with 5% benign data on PreAct-ResNet18 (%).

Attack
Backdoored FT FP [32] NAD [27] AC [5] NC [46] ANP [51] ABL [26] i-BAU [54] FT-SAM(Ours)
ACC/ASR ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

BadNets-A2O[15] 91.82/93.79 90.29/1.70/95.28 91.77/0.84/96.45 88.82/1.96/94.42 48.84/16.57/67.12 57.22/0.90/79.14 91.65/3.83/94.89 80.10/0.00/91.03 87.43/4.48/92.46 92.21/1.63/96.08

BadNets-A2A[15] 91.89/74.42 91.07/1.16/86.22 92.05/1.31/86.56 90.73/1.61/85.83 87.23/67.03/51.37 89.79/1.11/85.61 92.33/2.56/85.93 44.39/40.65/43.14 89.39/1.29/85.32 91.87/1.03/86.69
Blended[7] 93.44/97.71 92.48/82.22/57.26 92.57/8.32/94.26 92.09/55.04/70.66 88.82/95.10/49.00 91.91/84.31/55.94 93.00/57.38/69.95 74.31/0.10/89.24 88.24/6.00/93.26 92.44/4.91/95.90

Input-aware[36] 94.03/98.35 93.00/65.85/65.74 94.05/10.95/93.70 94.08/10.43/93.96 51.37/90.94/32.38 94.11/98.98/50.00 94.06/11.10/93.63 50.58/98.82/28.28 89.91/8.92/92.66 93.76/1.07/98.51
CLA[39] 84.55/99.93 90.38/10.76/94.59 90.67/78.72/60.61 90.01/8.53/95.70 81.57/99.11/48.92 90.87/4.56/97.69 82.55/0.18/98.88 68.14/0.00/91.76 85.66/18.99/90.47 90.72/3.52/98.21
LF[55] 93.01/99.06 92.37/93.89/52.26 92.05/21.32/88.39 91.72/75.47/61.15 52.28/94.34/31.99 93.01/99.06/50.00 92.53/26.38/86.10 71.68/0.86/88.44 88.92/11.99/91.49 91.07/3.81/96.65
SIG[3] 84.49/97.87 90.47/5.74/96.06 90.81/7.06/95.41 90.05/6.60/95.63 81.33/98.23/48.42 84.50/97.87/50.00 83.87/97.24/50.00 48.06/0.00/80.72 85.87/1.32/98.27 91.16/0.80/98.53

SSBA[25] 92.88/97.07 92.47/90.04/53.31 92.21/20.27/88.07 92.15/70.77/62.79 46.75/67.63/41.65 92.88/97.07/50.00 92.02/16.18/90.01 79.87/0.33/91.86 86.53/2.89/93.91 92.12/2.80/96.75
Trojan[34] 93.47/99.99 92.59/35.50/81.80 92.24/67.73/65.51 92.18/5.77/96.47 89.47/100.00/48.00 91.85/51.03/73.67 92.71/84.82/57.20 70.70/0.02/88.60 89.29/0.54/97.63 92.75/4.12/97.57

Wanet[37] 92.80/98.90 93.14/1.26/98.82 92.94/0.66/99.12 93.07/0.73/99.08 52.81/11.86/73.52 92.80/98.90/50.00 93.24/1.54/98.68 67.23/92.97/40.18 90.70/0.88/97.96 92.87/0.96/98.97

Avg 91.24/95.71 91.83/38.81/78.45 92.14/21.72/86.99 91.49/23.69/86.01 68.05/74.08/49.22 87.89/63.38/64.49 90.80/30.12/82.57 65.51/23.37/73.30 88.19/5.73/93.47 92.10/2.47/96.62

Table 2: Comparison with state-of-the-art defenses on Tiny ImageNet dataset with 5% benign data on PreAct-ResNet18 (%).

Attack
Backdoored FT FP [32] NAD [27] AC [5] NC [46] ANP [51] ABL [26] i-BAU [54] FT-SAM(Ours)
ACC/ASR ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

BadNets-A2O[15] 56.12/99.90 55.56/0.44/99.45 48.81/0.66/95.96 48.35/0.27/95.93 49.21/99.76/46.62 56.12/99.90/50.00 47.34/0.00/95.56 48.34/0.00/96.06 51.63/95.92/49.74 51.91/0.21/97.74

BadNets-A2A[15] 55.99/27.81 55.04/22.28/52.29 47.88/3.19/58.26 48.29/2.30/58.91 47.71/13.15/53.19 54.12/18.72/53.61 40.70/2.39/55.07 49.60/29.44/46.81 53.52/12.89/56.23 52.24/2.09/60.99
Blended[7] 55.53/97.57 54.74/87.18/54.80 47.45/34.40/77.54 49.52/67.60/61.98 48.51/96.50/47.02 52.79/0.04/97.39 40.21/28.78/76.73 47.95/0.10/94.94 49.30/26.34/82.50 50.81/1.03/95.91

Input-aware[36] 57.67/99.19 57.86/0.68/99.26 49.18/3.75/93.48 50.08/0.61/95.50 49.48/98.73/46.14 56.15/84.64/56.52 50.62/0.46/95.84 49.42/0.10/95.42 53.96/1.29/97.10 52.69/1.01/96.60

LF[55] 55.21/98.51 54.53/94.14/51.85 48.18/63.83/63.83 49.61/58.01/67.45 49.68/98.17/47.41 53.08/90.48/52.95 41.75/65.98/59.54 45.37/0.02/94.33 53.65/94.27/51.34 51.30/3.58/95.51
SSBA[25] 55.97/97.69 55.17/92.08/52.40 48.06/52.25/68.76 47.67/69.47/59.96 49.02/97.44/46.65 53.30/0.26/97.38 41.83/14.24/84.65 47.39/0.00/94.55 52.39/84.64/54.73 51.87/0.38/96.60

Trojan[34] 56.48/99.97 55.70/37.11/81.04 45.96/8.88/90.28 48.83/1.01/95.66 49.82/99.96/46.68 54.43/1.54/98.19 45.36/0.53/94.16 46.31/0.00/94.90 51.85/99.15/48.10 52.28/0.21/97.78

Wanet[37] 57.81/96.50 57.37/0.18/97.94 50.35/1.37/93.83 50.02/0.87/93.92 48.99/99.68/45.59 57.81/96.50/50.00 30.34/0.00/84.51 47.01/0.02/92.84 53.04/69.82/60.95 54.32/0.79/96.11

Avg 56.35/89.64 55.75/41.76/73.64 48.23/21.04/80.24 49.05/25.02/78.66 49.05/87.92/47.21 54.73/49.01/69.50 42.27/14.05/80.76 47.67/3.71/88.63 52.42/60.54/62.59 52.18/1.16/92.16

Table 3: Performance with different benign ratio under different attacks on CIFAR-10 dataset on PreAct-ResNet18 (%).

Benign Ratio
Model BadNets-A2O[15] BadNets-A2A[15] Blended[7] Input-aware[36] CLA[39] LF[55] SIG[3] SSBA[25] Trojan[34] Wanet[37]

ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

Backdoored 91.82/93.79/- 91.89/74.42/- 93.44/97.71/- 94.03/98.35/- 84.55/99.93/- 93.01/99.06/- 92.65/95.89/- 84.49/97.87/- 92.88/97.07/- 93.47/99.99/-

10%
FT 91.67/1.17/96.24 90.42/1.61/85.67 92.62/77.20/59.85 94.17/10.44/93.96 91.53/5.68/97.13 92.12/69.22/64.47 91.18/0.88/96.77 92.42/65.32/66.27 92.68/99.61/49.90 93.57/1.50/99.24

FT-SAM 91.94/1.26/96.27 92.46/1.01/86.71 92.53/3.94/96.43 94.22/0.93/98.71 91.44/4.90/97.52 92.64/3.83/97.43 91.46/1.13/96.78 91.75/2.63/97.62 92.94/2.50/97.28 93.23/0.78/99.48

5%
FT 90.29/1.70/95.28 91.07/1.16/86.22 92.48/82.22/57.26 93.00/65.85/65.74 90.38/10.76/94.59 92.37/93.89/52.26 90.47/5.74/93.98 92.47/90.04/53.91 92.59/35.50/80.64 93.14/1.26/99.20

FT-SAM 92.21/1.63/96.08 91.87/1.03/86.69 92.44/4.91/95.90 93.76/1.07/98.51 90.72/3.52/98.21 91.07/3.81/96.65 91.16/0.80/96.80 92.12/2.80/97.53 92.75/4.12/96.41 92.87/0.96/99.22

1%
FT 89.25/6.14/92.54 91.98/1.42/86.50 92.09/87.98/54.19 92.23/69.51/63.52 88.12/11.61/94.16 92.36/98.87/49.77 87.80/3.07/93.99 92.08/94.87/51.50 92.61/99.70/49.87 92.65/9.79/94.69

FT-SAM 88.96/1.29/94.82 90.43/1.12/85.92 90.83/3.01/96.05 93.12/0.81/98.31 88.74/3.13/98.40 90.88/4.64/96.14 88.31/1.00/95.27 91.11/1.51/98.18 90.63/4.36/95.23 90.79/0.91/98.20
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Figure 3: Performance of FT-SAM with ρ from 1 to 8 against attacks on CIFAR-10 and 10% poisoning ratio with PreAct-
ResNet18.

complex attacks, which is reflected in a low DER. FT, FP,
and NAD demonstrate similar defense performance as they
cannot defend against complex attacks. ABL is successful
in removing backdoors while reducing ACC synchronously,
while i-BAU fails on Tiny ImageNet, possibly due to the
larger input size which increases the difficulty of minimax
optimization. In contrast, the proposed method shows robust-

ness against all the attacks, with only a slight drop in ACC
and remarkably high DER. The defense results on the GT-
SRB dataset and the performance on VGG19-BN network
can be found in Section C of Supplementary Material.
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Table 4: Combination with SOTA defenses on CIFAR-10 dataset with 5% benign data on PreAct-ResNet18 (%).

Attack
BadNets-A2O[15] Blended[7] Input-aware[36] CLA[39] LF[55] SIG[3] SSBA[25] Wanet[37]
ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER ACC/ASR/DER

Backdoored 91.82/93.79/- 93.44/97.71/- 94.03/98.35/- 84.55/99.93/- 93.01/99.06/- 92.65/95.89/- 84.49/97.87/- 93.47/99.99/-

Pruning 82.52/97.22/45.35 81.25/99.31/43.91 84.66/99.90/45.32 75.42/99.72/45.54 83.22/99.78/45.11 75.57/78.57/50.12 80.75/98.53/48.13 83.38/99.84/45.03
Pruning+FT(FP [32]) 91.77/0.84/96.45 92.57/8.32/94.26 94.05/10.95/93.70 90.67/78.72/60.61 92.05/21.32/88.39 90.81/7.06/93.50 92.21/20.27/88.80 92.94/0.66/99.40
Pruning + FT-SAM 91.20/0.62/96.27 92.07/5.42/95.46 93.84/1.14/98.51 90.18/33.76/83.09 92.03/17.42/90.33 90.30/5.06/94.24 91.83/14.73/91.57 92.52/0.57/99.24

ANP [51] 91.65/3.83/94.89 93.00/57.38/69.95 94.06/11.10/93.63 82.55/0.18/98.88 92.53/26.38/86.10 83.87/97.24/45.61 92.02/16.18/90.84 93.24/1.54/99.11
ANP [51] + FT 92.24/1.41/96.19 92.90/42.28/77.45 94.17/1.11/98.62 91.47/6.44/96.74 92.71/63.33/67.71 91.22/0.08/97.19 92.57/35.46/81.21 93.36/0.66/99.61

ANP [51] + FT-SAM 90.99/1.12/95.92 91.51/2.57/96.61 93.03/1.09/98.13 91.08/2.09/98.92 91.71/4.00/96.88 89.57/0.08/96.37 91.49/4.16/96.86 91.90/0.78/98.82

4.3. Ablation Studies

Performance with Different Values of Hyper-parameter ρ.
The most crucial hyper-parameter in our defense approach
is the constraint bound ρ imposed on the perturbation ϵ. A
higher value of ρ increases the weight perturbation, thereby
improving the network’s robustness. However, in cases
where we are given limited training data, a smaller value
of ρ could better maintain model’s performance while re-
ducing the effectiveness of defenses. Here we evaluate the
sensitivity of ρ by conducting four complex attacks using
a learning rate of 0.01 and different values of ρ. Figure 3
displays the defense results. A smaller value of ρ may not
completely remove backdoors, which is more obvious for
complex attacks, e.g., Blended and LF. But it shows that
FT-SAM can enhance the model’s robustness and exhibit a
certain level of ACC and DER when faced with different ρ.
Overall, the hyper-parameter ρ is not very sensitive, and a
wide range of values can be selected without significantly
impacting the model’s performance. It can be attributed to
the adaptive strategy (parameters norm times ρ) in FT-SAM
scales the perturbation ϵ. Thus, there is a wide range of ρ to
keep stable performance, and a larger ρ often accelerates the
BM process.

Performance under Different Components. To evalu-
ate the effectiveness of FT-SAM in various scenarios, we
conducted experiments with different numbers of benign
training samples, backbones, and poisoning ratios. Table
3 presents defense results of FT-SAM on the CIFAR-10
dataset with a 10% poisoning ratio under different ratios of
benign samples. The hyper-parameter ρ is set to 2 across
all experiments. We observed that FT-SAM demonstrates a
robust defense mechanism across various numbers of benign
samples, with only a modest decrease in performance given
1% benign samples. Contrarily, different attacks cause dif-
ferent trends in the effectiveness of FT at various numbers
of benign samples, and poor results can be observed through
the exceptionally low DER especially when the ratio is low.
In contrast, our method exhibits consistently high DER. Fur-
ther results on the performance of FT-SAM with different
backbones (VGG19-BN) and poisoning ratios can be found
in Sections C and D of Supplementary Material.

Combination with SOTA Defenses. As discussed in Sec-
tion 3.3, FT-SAM, as a kind of fine-tuning method, shows
superiority over vanilla fine-tuning and has the potential to
replace it in fine-tuning-based defense processes. Moreover,
we hypothesize that FT-SAM can also enhance pruning-
based defense methods, which suffer from performance
drops if the defense configuration is not well optimized.
To verify our hypothesis and demonstrate the versatility of
FT-SAM, we combined it with two existing post-processing
defense methods: FP [32] and ANP [51]. FP first prunes
the suspicious neurons of the model and then fine-tunes the
pruned model with limited samples. We replace fine-tuning
to FT-SAM in the second step of FP. ANP identifies the back-
door neurons that mostly enlarge the loss function and then
masks these neurons. We keep the mask computed by ANP
and fine-tune it with FT-SAM. The experiment is conducted
on the CIFAR-10 with PreAct-ResNet18. We also display
results for pure pruning, as well as the combination of ANP
and fine-tuning (ANP + FT) for a fair comparison. As shown
in Table 4, the original defense methods show susceptibil-
ity to various attacks, including ANP against Blended and
FP against CLA. Additionally, ANP shows a low ACC and
DER. Although the ANP + FT sometimes worked, it per-
forms poorly in other attacks. On average, our proposed
approach improves both defense strategies with a high DER.
This result may inspire the development of new robust de-
fense strategies with the help of FT-SAM.

4.4. Further Analysis

Understanding FT-SAM’s Mechanism from the Perspec-
tive of Neuron Weight Norms. We first present scatter
plots of neuron weight norms w.r.t. TAC values of ten back-
door attacks in Figure 4. We have three observations. 1)
The neuron weight norms and TAC are highly correlated
in the backdoored models across all attacks, which further
verifies the preliminary observation shown in the last col-
umn of Figure 2. 2) There are only minor changes in the
neuron weight norms between the backdoored models and
the models after FT across all attacks, which further explains
the weak performance of FT on backdoor mitigation. 3)
There are notable decreases in the overall neuron weight
norms after conducting FT-SAM defense on the backdoored
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Figure 4: Scatter plot to demonstrate the relationship between neuron weight norms and TAC for backdoored models, models
after FT, and models after FT-SAM on various attacks with a 5% poisoning ratio on CIFAR-10 and PreAct-ResNet18.
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Figure 5: Parameters distribution comparison to the back-
doored model between FT and FT-SAM defenses on CIFAR-
10 and 5% poisoning ratio with PreAct-ResNet18.

models. And, the decreasing magnitude increases along with
the TAC value, demonstrating that the backdoor-related neu-
rons are more changed. It explains the good performance
of FT-SAM on backdoor mitigation. Furthermore, we also
show the distributions of neuron weight norms of different
models in Figure 5. It is observed that the variance of the
distribution of the model after FT-SAM is smaller than those
of the backdoored model and the model after FT. It reveals
that the model relies more evenly on different neurons for
decision-making, such that it is less likely to be dominated
by some particular neurons, i.e., having lower backdoor risk.

Understanding FT-SAM’s Mechanism from the Perspec-
tive of Weight Gradient Norms. To further understand
the mechanism of FT-SAM on backdoor mitigation in com-
parison with FT, we perform more analysis from the weight
gradient norms’ perspective. Specifically, we visualize the
gradient norms calculated by FT (i.e., ∥∇wL(w)∥2) and
FT-SAM (i.e., ∥∇wL(w + ϵ)∥2) in Figure 6(a) and 6(b),
respectively. The gradients’ ℓ2 norms are calculated on one
mini-batch training data (i.e., 256 samples) by FT and FT-

SAM optimization. We sort the 512 neurons of the last
convolutional layer of PreAct-ResNet18 by the TAC value
[57] in ascending order. Our analysis is expanded from the
following two aspects.

• In Terms of the Model after FT, as shown in Figure
6(a), we can obtain two observations. 1) All gradient
norms are very small, which explains the slight neuron
weight changes of FT on backdoored models. 2) There
are no significant differences in gradient norms between
these neurons. It implies that the weight changes be-
tween backdoor-related and non-backdoor-related neu-
rons are similar. This explains why the backdoor effect
is not mitigated well after FT.

• In Terms of the Model after FT-SAM, Figure 6(b)
tells: the gradient norms are much larger than those of
the model after FT, and there is a positive correlation
between gradient norms and backdoor related neurons.
This explains the above observation in Figure 4 that
the backdoor-related neurons are highly perturbed by
FT-SAM. Furthermore, we investigate why FT-SAM
could give such gradients, and find that the weight per-
turbation ϵ (see Equation (1)) and Tw (see Equation
(2)) are the main reasons. As shown in Figure 6(c),
we study the relationship between the perturbation and
the gradient norms. Specifically, we vary the pertur-
bation budget ρ (see the descriptions under Equation
(1)) and calculate the corresponding average gradient
norms over 512 neurons. For the backdoored models
across various backdoor attacks, there is a common
positive correlation between perturbation budget and
average gradient norm, i.e., larger perturbation, larger
average gradient norm. It explains that the gradient
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Figure 7: Grad-CAM [38] of regions contributed to model
decision under different attacks by FT-SAM defense com-
paring to the backdoored models on CIFAR-10 dataset and
5% poisoning ratio with PreAct-ResNet18.

norms in FT-SAM are much larger than those in FT.
Besides, if given a fixed ρ, we study the relationship
between the specific perturbation norm and the neuron
weight norm for each neuron in FT-SAM. If utilizing
the vanilla SAM (i.e., Tw in Equation (1) is set to iden-
tity matrix), SAM tends to perturb more on neurons
with large weight norms, as shown in Figure 6(d). If
utilizing the adaptive SAM (i.e., Tw is defined in Equa-
tion (2)), this tendency is further boosted, as shown in
Figure 6(e). It explains the positive correlation between
gradient norms and backdoor-related neurons.

Grad-CAM Visualization under Different Attacks.
Grad-CAM [38] figures can provide insights into how a
neural network makes its predictions. If the original model

generates a strong signal in a subject region of the image
that is highly relevant for the classification task, then this
could indicate that the defense mechanism has successfully
removed the backdoor. Figure 7 displays the benign image
of a deer and its Grad-CAM figure, along with the samples
from nine attacks and their Grad-CAM figures. As shown
in the figure, compared to the backdoored model, all the
Grad-CAM figures of the defense models focus on the sub-
ject region of the image, i.e., the head of the deer instead of
the triggers. This demonstrates that the backdoor has been
eliminated successfully.

5. Conclusion
In this work, we investigate the impact of fine-tuning

on backdoor defenses and provide insights into why fine-
tuning fails from a neuron-level perspective. Specifically,
we explore the relationship between the norms of network
neurons and their contribution to backdoor attacks and find
that neurons with larger norms contribute more to backdoor
attacks. Leveraging this observation, we propose a novel fine-
tuning technique, dubbed FT-SAM, that employs sharpness-
aware minimization to perturb backdoor-related neurons. We
empirically demonstrate that our method can significantly
reduce the weight norm of backdoor-related neurons and
shows its effectiveness by investigating the gradient of neu-
ron weight computed by FT-SAM. Extensive experiments
demonstrate that our method reliably eliminates the injected
backdoor and offers the highest robustness against various
cutting-edge backdoor attacks while preserving high accu-
racy. Finally, integrating our method with other defense
methods demonstrates FT-SAM is a promising defense strat-
egy against backdoor attacks.
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