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Abstract

Video deblurring aims to restore the latent video frames
from their blurred counterparts. Despite the remarkable
progress, most promising video deblurring methods only
investigate the temporal priors in the spatial domain and
rarely explore their its potential in the frequency domain.
In this paper, we revisit the blurred sequence in the Fourier
space and figure out some intrinsic frequency-temporal pri-
ors that imply the temporal blur degradation can be accessi-
bly decoupled in the potential frequency domain. Based on
these priors, we propose a novel Fourier-based frequency-
temporal video deblurring solution, where the core de-
sign accommodates the temporal spectrum to a popular
video deblurring pipeline of feature extraction, alignment,
aggregation, and optimization. Specifically, we design a
Spectrum Prior-guided Alignment module by leveraging en-
larged blur information in the potential spectrum to miti-
gate the blur effects on the alignment. Then, Temporal En-
ergy prior-driven Aggregation is implemented to replenish
the original local features by estimating the temporal spec-
trum energy as the global sharpness guidance. In addition,
the customized frequency loss is devised to optimize the pro-
posed method for decent spectral distribution. Extensive ex-
periments demonstrate that our model performs favorably
against other state-of-the-art methods, thus confirming the
effectiveness of frequency-temporal prior modeling.

1. Introduction

Video deblurring, as a fundamental vision task, aims to
recover the latent frame from the blurred sequence by lever-
aging intrinsic temporal information. Therefore, many re-
search efforts have been advocated to explore the potential
of hidden temporal information in blurred sequences, which
can be categorized into two groups: traditional optimization
and deep learning-based methods.
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Figure 1. (a) Clustering blurry and sharp frames in the spatial
domain and frequency domain via t-SNE, respectively. The blurry
and sharp frames in the frequency domain are separated while they
are tangly in the spatial domain. (b) Unfolding the sets of the fre-
quency domain in (a) along the temporal dimension. The blurred
video appears to have greater temporal fluctuation than the sharp
one in terms of the L2 norm of spectrums.

Traditional optimization methods often highlight the as-
sumptions over the blur degradation process and apply some
hand-crafted temporal priors to alleviate the video deblur-
ring, e.g., temporal sharpness prior [2], motion-blurred prior
[1], and temporal coherence prior [6]. However, these pri-
ors are difficult to design and the methods are also difficult
to optimize, limiting their practical usage.

In recent years, we have witnessed explosive deep
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Figure 2. Visualization comparison of several consecutive blurry
frames (green) and sharp frames (blue). (a) and (c) are in the spa-
tial domain, while (b) and (d) are in the frequency domain.

learning-based video deblurring approaches for addressing
the above challenges. Most of them follow the common
pipeline: feature extraction, alignment, fusion, and opti-
mization. Specifically, the pioneering EDVR [26] formu-
lates an implicit alignment via the redesigned deformable
convolution [42]. Instead, RTA [37] employs a gradual re-
finement scheme to execute the motion compensation for
more accurate temporal modeling. Despite the remarkable
progress, the above strategies only investigate the temporal
information from the perspective of spatial domain and have
not fully explored its potential. We thus wonder “Can we
provide a new solution to effectively model the temporal
prior information?”.

To answer this question, we first revisit the differences
between blurry-sharp pairs in the spatial and frequency do-
mains respectively (see Figure 1(a)), and then unfold the
frequency information of the blurry-sharp sets along the
time dimension (see Figure 1(b)). In addition, we crop
a video clip and perform the Discrete Fourier Transform
(DFT) to visually illustrate our motivation (see Figure 2).
On the basis of the above analyses, we can infer the follow-
ing rules to encourage us to effectively explore and exploit
the temporal prior information:

e (1) In terms of Figure 1(a), the feature distributions
of the blurry frames and their sharp counterparts are
intertwined in the spatial domain. Instead, their fre-
quency feature distributions are distinguished by em-
ploying DFT. Therefore, the blurred degradation can
be better modeled in the frequency domain.

* (2) In terms of Figure 1(b), due to the addition of mo-

tion blur, the spectral energy calculated by the L2 norm
in the blurry video fluctuates more intensely than in
the sharp ones temporally. Furthermore, for qualita-
tive comparison, Figure 2(b) and (d) shows that the
frequency spectrum of the blurry video has more obvi-
ous temporal differences than the spectrum of the sharp
video. In short, the frequency spectrum can enlarge the
unpredictable change of temporal motion blur.

* (3) In the vertical comparison of Figure 1(b), the spec-
trum norm of the sharp video is larger than the blur
one. Furthermore, the high-frequency information is
lost due to blur degradation, as demonstrated in Fig-
ure 2(b) and (d). This phenomenon implies that the
blur degradation may decay the energy spectrum of the
sharp videos.

Based on the above observations, we propose a novel
Fourier-based frequency-temporal solution for video de-
blurring. The key insight is to transform the blurred feature
sequences into the frequency domain applying DFT, then
explore and exploit the temporal sharp cues over the above
pipeline of video deblurring as follows:

¢ Feature extraction. Based on observation (1), the
blur degradation can be effectively modeled in the fre-
quency domain. Therefore, we design the Spatial-
frequency Feature Extraction (SFE) block by employ-
ing the Fourier transform and pure convolution unit.

e Alignment. Temporal alignment aims to reduce the
context difference between adjacent frames. How-
ever, it often becomes not so effective over the un-
predictable blur case where high-frequency details are
lost severely. Based on observation (2), we propose
the Spectrum Prior-guided Alignment (SPA) module
by excavating the enlarged blur degradation informa-
tion in the frequency spectrum to relieve the negative
impact caused by motion blur in the alignment.

e Fusion. Temporal fusion is responsible for aggregat-
ing clear patches from multiple frames. However, most
existing methods only focus on local spatial features,
which are limited by the preceding alignment results.
To address this issue, based on observations (2) and
(3), we propose the Temporal Energy Attention (TEA)
module, which equips the temporal spectrum energy as
the global sharpness guidance to achieve complemen-
tary effects with previous local spatial manners.

e Optimization. Frequency spectrum can be regarded
as an indicator of global blurriness. Based on obser-
vations (1) and (3), we devise the frequency spectrum
loss and energy loss functions to better optimize the
proposed solution in the frequency domain.
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Extensive experiments are performed over multiple
video deblurring tasks and validate the superiority of our
proposed method. Specifically, in Figure 1(b), our solution
is capable of restoring a closer spectrum distribution with
ground-truth frames.

2. Related Work

Image Deblurring. With the advances in vision bench-
marks, CNN models have excelled in various image en-
hancement tasks [5, 10, 11, 14,29, 35, 36, 38, 39, 41], by in-
novative architectures and specialized modules. Image de-
blurring seeks to produce sharp images from blurred ones.
Traditional efforts to refine deblurring performance hinge
on various priors for natural images and kernels, such as the
sparse kernel prior [4], [y gradient prior [30], normalized
sparsity prior [8], and dark channels [19]. Yet, these ap-
proaches often fall short when addressing spatially variant
blur. The advent of deep learning shifts focus towards ad-
vanced non-uniform deblurring techniques [16, 24, 25, 32,
, 34]. For instance, Nah et al. [17] employ a multi-scale
loss function for a fine-tuned approach. DeepRFT [16], on
the other hand, leverages the spectral difference between a
sharp image and its blurry one, addressing limitations in the
spatial domain.
Video Deblurring. While single image deblurring focuses
solely on one frame, video deblurring leverages temporal
information to yield visually compelling outcomes. Many
existing approaches employ CNN-based structures. In this
domain, temporal alignment is designed to harness sharp
patches from adjacent frames. Several methods use opti-
cal flow [23, 31] and deformable convolution [26] to esti-
mate the motions and align them with adjacent frames ex-
plicitly or implicitly. In addition to alignment, the rational
use of multiple frames is also significant. Li et al. [13]
effectively exploited the depth map as guidance through
Spatial Feature Transform (SFT) [27] to better extract the
blurred frames’ features. The authors in [18] developed a
temporal sharpness prior to achieve the decent latent frame
restoration. Lai et al. [12] crafted a correlation-based ag-
gregation module to efficiently process neighboring sharp
patches, while RTA [37] brought an iterative alignment pro-
cess, allowing for incremental motion compensation en-
hancements. However, the above methods less consider
the frequency spectrum, which may limit the exploration
of temporal information in video deblurring.

3. Motivation

As stated in the introduction, we derive some temporal
prior information from Figures 1 and 2 to guide the video
deblurring. In this section, some mathematical and visual
analyses are given to better motivate our work.

Blur kernel
K(to)

F(B(to+8))

~

: Direction of camera motion @ : Convolution operator

: Discrete Fourier Transform & : Exposure time

Figure 3. Different oriented blur kernels are used to simulate
the direction of the camera motion during the exposure time. The
spectrum of the captured image is shown in the bottom sequence.
We can observe that the spectrum implies a directional feature that
is relevant to the camera motion.
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Figure 4. Different sizes of motion blur kernels convolve the input
to produce frames with different blur degrees. From top to bottom,
as the blur degree increases, the spectrum energies of these frames
decrease gradually.

3.1. Approximate Motion Blur Modeling

In this work, for the sake of clarity and brevity, we leave
out the effect of depth variation. The camera shake degra-
dation model can be simplified mathematically:

By = S;x Ky + ny, (D

where K; is an unknown blur kernel and n, is additive
white noise. Note that although kernel-based modeling is
efficient, the existing datasets employ more advanced sim-
ulation methods, such as temporal averaging and bi-camera
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Figure 5. The framework of the proposed network. To exploit the potential frequency domain, we novelly adopt the frequency-temporal
information to accommodate the popular video deblurring pipeline, including feature extraction, alignment, fusion, and optimization.

shots. We will analyze the rationality of the following priors
on more realistic data in the supplementary material.

3.2. Blur Model on Temporal Fourier Spectrum

Prior 1. The blurred degradation can be better modeled
in the frequency domain.

It is well known that an image can be represented by
real gray values in the spatial domain, whereas by com-
plex frequency values in the frequency domain. From the
image representation perspective, because both motion and
frequency are directional, while the gray value is not, the
camera motion is much easier to be observed in the fre-
quency domain than in the spatial domain. Thus, the sharp
and blurred images are distinguished decently in the fre-
quency domain, as shown in Figure 1(a).

Prior 2. The frequency spectrum can enlarge the unpre-
dictable change of temporal motion blur.

As mentioned above, the Fourier transform is widely
utilized to assess the frequency characteristics of images.
For images that contain multiple color channels, the Fourier
transform is computed separately for each channel. Given
an image .S, the Fourier transform F transfers it to Fourier
space as the complex component, which is expressed as,

7j27r(%u+%'u)

H—-1W-—

F(S5)(u, ) Z Z
2
As shown in Figure 3, we give some motion blur kernels
with @ direction at ¢-th time, K (t), to simulate the camera
motion. These kernels have faint frequency responses along
the @ direction instead of extensive frequency responses
along the 6 + 7 /2 direction. According to Eq. (2), we per-
form the DFT for these kernels and observe that their fre-
quency spectrums have large magnitudes along the 6 + 7/2
direction, as shown in Figure 3. Furthermore, according to
the convolution theorem, the convolution operation in the

space domain is equal to the product in the Fourier fre-
quency domain, which can be expressed as:

F(Bt) :F(St*Kt) :F(St) F(Kt), (3)

where F'(.) stands for the Fourier transform function. Ac-
cording to Eq. (3), the special pattern of strips in the spec-
trums of motion kernels will bring into the spectrums of
blurred frames. Thus, the spectrums of blurred frames ob-
tain a directional pattern roughly perpendicular to the direc-
tion of the camera motion, as depicted in the bottom row of
Figure 3. Moreover, in terms of blur sizes, they can also be
represented by the spectrum, which is stated in Prior 3 be-
low. In summary, the frequency spectrum can amplify the
unpredictable fluctuations in temporal motion blur. Inspired
by this observation, we develop the SPA alignment module
to relieve the negative impact caused by motion blur in the
alignment.

Prior 3. The blur degradation may decay the energy spec-
trum of the sharp videos.

Without compromising generality, the blur kernel /; can
be normalized [3]. Because the integration of incoherent
light is always non-negative, the blur kernel should be non-
negative. In this case, we have the constraint condition to
the kernel as follows:

K;>0 and /Kt =1. @)

Based on this, we infer that motion blur does not amplify
the Fourier spectrum, which is proved in the following:

|F(K(x))] = ‘/Kt(x)e_jwdx

< /\Kt(x)|dx - /Kt(x)dx _1, )

where |.| denotes modulus value and z is the spatial location
of the kernel K;. Combining Eqgs. (3) and (5), the more
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Figure 6. The detail of the Spatial-Frequency Extraction (SFE)
block. The upper branch extracts features in the frequency do-
main, while the bottom branch extracts information from the spa-
tial domain.
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Figure 7. The detail of Spectrum Prior-guided Alignment (SPA).
Global direction information in the spectrum modulates the offsets
to align the input sequence effectively. Additionally, the pyramid
strategy is performed to adapt to various sizes of motions.

significant blur may mean more energy loss. We further
prove this conclusion by a toy experiment, as shown in the
right column of Figure 4. Motivated by this finding, we
design the temporal energy attention to take advantage of
the frames where their energies are not attenuated by blur
degradation in the temporal sequence.

4. Method

The overall framework of the proposed method is shown
in Figure 5, which aims to restore the latent frame Iy
given 2N + 1 consecutive blurred frames B;;;, where
1 = 0,%x1,£2,...,&£N, under the supervision of the
ground truth S;. We innovatively incorporate the frequency-
temporal information into the widely-used video deblurring
pipeline, which includes feature extraction, alignment, fu-
sion, and optimization. The specific details will be de-
scribed in the following subsections.

4.1. Spatial-Frequency Extraction Block

In this work, we find that the blur degradation can be
efficiently modeled in the frequency domain, as shown in
Prior 1 of Section 3.2. Motivated by this, we develop the
Spatial-Frequency Extraction (SFE) block, which consists
of a spatial branch and a frequency branch, as shown in
Figure 6. For the spatial branch, we adopt several convolu-
tions to capture the spatial content and details. Meanwhile,
the frequency branch is responsible for the blur degradation
modeling, which divides the input features into the ampli-
tude spectrum and phase spectrum by DFT. Then, to effec-
tively modulate the frequency information, these spectrums
are processed by 1 x 1 convolution kernel and inverse them
to the spatial domain by IDFT, which is expressed as:

FILE = P (e (Amp(FZT™)), e (Pha(FE))),
(0)
where Amp and Pha separately denote the amplitude spec-
trum and the phase spectrum, and F'~! stands for the IDFT
transform. Finally, the extracted feature from the two
branches of the SFE block is expressed as:

re spa input
tefizc3<[th+i7thi])+Ft+zP ) (7

where c1, co, and c3 represent different convolution layers
with 1 x 1 kernels.

4.2. Spectrum Prior-guided Alignment

Existing temporal alignment methods usually focus on
spatial features only to reduce content differences. How-
ever, due to the temporal unpredictable motion blur, most
of them achieve sub-optimal results. To solve this problem,
we deepen it by revisiting the blur degradation in the Fourier
domain and observe that the frequency spectrum can en-
large the unpredictable change of temporal motion blur, as
shown in Prior 2 of Section 3.2. Motivated by this prior, we
propose the Spectrum Prior-guided Alignment (SPA) mod-
ule by exploiting the enlarged blur information from the fre-
quency spectrum to relieve the negative impact of the un-
predictable blur in the alignment. Specifically, as shown
in Figure 7, we first apply the Fourier transform to obtain
the spectrum of the spatial features. To efficiently align
adjacent frames, we adopt deformable convolution to learn
the warping function from the (¢ 4 4)-th features to the ¢-
th features implicitly. For the deformable convolution, the
learned offset for each location usually is obtained by each
2M channel, where M denotes the size of the convolution
kernel. To improve the alignment in large blurred cases, we
perform the global average pooling for the spectrum fea-
ture to exploit the global motion information to modulate
the offset of each location. So, given extracted features
Ffr; and their spectrum features FyY7¢, the offset Az
for (t + 4)-th time is learned by:

Azpy; = 04([Ftw7Ftefi]) '9([Ft8peca Ftsffc])a (®)
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Table 1. Quantitative comparison in terms of PSNR, SSIM and model size on the video deblurring dataset [22]. The best results are in

bold.
Method Kimelal. Taoetal. DGN STFAN  EDVR SFE TSP PVD PVD-small RTA Ours Ours-small
PSNR (dB) 26.94 29.98 30.19 31.15 31.91 31.68 32.13 32.31 31.25 32.92 33.25 32.48
SSIM 0.8158 0.8842 09194 09049 09211 09157 0.9268 0.9260 0.9080 0.9480  0.9491 0.9291
Model size (M) - 3.80 11.36 5.37 23.60 16.25 16.19 10.50 6.10 16.70 14.76 4.04

(e) STEAN [40]

-

(g) PVD [21] (h) Ours

Figure 8. Deblurred results on the test dataset [22]. The proposed method generates much clearer frames.
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Figure 9. The detail of Temporal Energy Attention (TEA) fu-
sion. Multiple frames are fused decently based on the difference
of spectral norms in the temporal dimension.

where ¢4(.) and g(.) denote several standard convolution
and global average pooling functions. With the learned off-
sets, we warp the adjacent frame to the reference by the de-
formable convolution. In addition, the degree of motion is
sensitive to change due to the depth variation. To tackle the
problem, we use a feature pyramid strategy [15] to ensure
the adaptation for different scales of blurs.

4.3. Temporal Energy Attention Fusion

In video deblurring, the key challenge is exploiting
sharper patches in the adjacent frames and aggregating them
into the latent frame. Most existing methods [12, 18, 26]
only focus on local spatial features, which are limited by
the preceding alignment results. To mitigate the problem,
we explore the global guidance in the aggregation via the

Fourier transform and find that the sharper region usually
contains more considerable spectrum energies, as shown in
Prior 3 of Section 3.2. Therefore, we equip the temporal
spectrum energy into the aggregation to estimate the sharp-
ness degree of inter-frames for more effective temporal fu-
sion. Specifically, we develop the Temporal Energy Atten-
tion (TEA) fusion shown in Figure 9, which combines the
advantage of the spatial and frequency domains. For the
frequency domain, we take the energy spectrum of multi-
ple frames as a classifier to judge the importance of these
frames. The frequency attention map can be computed as:

elFFEEM)|

spec __
At+i -

)

N IFEEI
Z¢=_N € t+

where F/l'9" denote the aligned feature in the (¢ + i)-th
time. Then, to aggregate more local textures and details,
the spatial attention as [26] is performed along with the
temporal energy attention. Finally, the aligned feature is
aggregated under the guidance of the spatial and frequency
information, and the output th %€ is obtained.

4.4. Optimization

For video deblurring, we consider two loss functions to
measure the difference between the restored image ;4 ; and
sharp image Sy, from two perspectives, i.e., spatial domain
and frequency domain. In the spatial domain, we adopt the
Charbonnier penalty function [9] as the spatial loss to focus
on the pixel-wise details for restoration, which is defined as:

Lapa = \/ (It = S1)° + €2, (10)
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Figure 10. Qualitative comparison on the real blurred videos [22]. The deblurred results in (b)-(g) are still not clear. The proposed method

removes the blur and generates better details.

where € is set to 1x 1073 and ||.|| denotes the L2 norm. Mo-
tivated by Figures 1 and 2, we find that the spectrum can not
only contain high and low-frequency signals, but also pull
apart the difference in terms of blur degrees. Therefore, to
further recover high-frequency details, the frequency loss
consisting of Lgpec and Leye, is developed for the supervi-
sion from the ground-truth amplitude and energy spectrums
during the training stage, which is defined as:

Lopee =/ (F(L) = F(S0))". an
Lener = Norm[F(I;)] — Norm[F(S;)] (12)

where I’ and Norm denote the Fourier transform and L2-
norm operator. The overall loss function for deblurring is:

Lall = Lspa + )\(Lspec + Lener)a (13)

where )\ is the weight factor and is set to 0.1 empirically.

5. Experiments
5.1. Implementation Details

We randomly crop a 256 x 256 patch from each image
and set the mini-batch size for each GPU as 4. The channel
size in each residual block is set to 128. The network takes
five consecutive frames (i.e., N = 2) as inputs unless other-
wise specified. We augment the training data with random
horizontal flips and 90° rotations. We train our model with
Adam optimizer [7] by setting 81 =0.9 and B3 =0.999. The
learning rate is initialized as 1 x 10~* and decayed by 50%
every 200K iterations. The proposed network converges af-
ter 900K iterations. We implement our model with the Py-
Torch framework and train it using 4 NVIDIA 3090 GPUs.
The proposed network is trained on the DVD dataset [22],
which contains 71 videos (6,708 blurred-sharp pairs). The
61 videos (5,708 pairs) for training and 10 videos (1,000
pairs) for testing.

5.2. Comparison with State-of-the-Arts

We evaluate our network against several state-of-the-art
methods, including one conventional model [6] and some
CNN-based techniques [18, 20, 21, 25, 26, 28, 37, 40]. On
the DVD dataset [22], our network excels the others in terms
of PSNR and SSIM (see Table 1). A streamlined version of
our model, with feature channels reduced to 64, matches
the leading methods but is more size-efficient. Figure 8
highlights our deblurring outcomes. The method by Tao et
al. [25] often faces challenges in rendering textures and de-
tails accurately. Similarly, techniques proposed by Xiang et
al. [28] and Pan et al. [18] have their distinct limitations. In
contrast, our method not only proficiently removes blur but
also preserves fine details with aplomb. To further demon-
strate our method’s capabilities, we tested it on real-world
blurry videos from Su et al. [22]. The results, evident in
Figure 10, show our approach’s superior performance, es-
pecially in addressing significant blurs and in restoring in-
tricate details.

6. Ablation Studies and Discussion

In this section, we briefly discuss the effectiveness of
the main proposed methods for lack of space. More details
and discussions are presented in supplementary materials to
confirm the effectiveness of frequency-temporal modeling.

6.1. Effectiveness of the TEA Fusion Module

We develop the TEA fusion module to mine the sharp
patches from neighboring frames. To better understand this
module, we visualize the learned frequency attention map,
as shown in Figure 11. The sharp frame (top left) is paid
more attention, and the significantly blurry frame (top right)
has been less exploited. To further prove the effectiveness of
the TEA fusion module, we perform ablation experiments,
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Figure 11. Visualization in the TEA. The top row is a video piece,
while the bottom is the corresponding attention map. It is shown
that the sharper frame (left) obtains more attention and vice versa.
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18.66

L2 norm of spectrums (M)

GT Ours RTA PVD STFAN SFE EDVR TSP Tao.etal Blur
Methods

Figure 12. The spectrum norm comparison with existing methods,
where M denotes million. Our method achieves the closest results
to the ground truth among all methods.

as depicted in Table 2. The last two columns indicate our
proposed fusion strategy can assist the model in leveraging
the information from the adjacent frames better than direct
concatenating and using single frequency and single spatial
attentions.

6.2. Effectiveness of the SPA Module

To validate the effectiveness of the SPA module, we per-
form the ablations, as shown in Table 3. Due to the intro-
duction of the frequency spectrum and the pyramid strategy,
we achieve better performance in terms of PSNR and SSIM.

6.3. Loss Investigation

We present the qualitative results of the proposed method
by diversely combining the frequency loss functions in Ta-
ble 4. The results without the frequency loss achieve poor
performance due to the lack of frequency-aware constraint.
Meanwhile, the large weight for frequency loss may not
bring better results. The frequency loss for the global struc-
ture and the spatial loss for the local texture are mutually
reinforcing to supervise the deblurring jointly. As shown
in Figure 12, our deblurring results have closer frequency
distribution to the ground truth than the other methods.

Table 2. Comparison of different types of attentions on the blurry
videos of DVD. A, A, Ay, and Ay, represent “without atten-

tion”, “with spatial attention”, “with frequency attention”, and
“with frequency-spatial attention”, respectively.

Method wo/A w/A, w/Ay wlAgs
PSNR?T 32.74 33.05 33.11 33.25
SSIM?T 0.9314 09426 09452  0.9491

Table 3. The effectiveness of the spectrum prior alignment. “Ms”
and “Fs” mean the multi-scale and frequency spectrum modulating
operations, respectively.

Method wo/SPA wo/Ms wo/Fs w/SPA
PSNR?T 32.51 32.91 33.03 33.25
SSIM+t 0.9296 0.9341 0.9415 0.9491

Table 4. Ablation studies about the loss weight in terms of PSNR
and SSIM.

A 1 0.5 0.1 0.05 0
PSNRt 33.13  33.17 33.25 33.14 33.09
SSIM?T 09484 0.9489 0.9491 0.9485 0.9478

7. Conclusion

Motion blur caused by hand-held devices is a major
problem in video deblurring. In this work, based on the
motion blur modeling, we probe into the temporal spec-
trum and find that the temporal frequency is beneficial to
model the temporal information in video deblurring. To this
end, we propose a Fourier-based Frequency-Temporal Net-
work for video deblurring. Specifically, we devise the Spec-
trum Prior-guided Alignment for the different-range adja-
cent frame in a global-to-detail strategy. Then, the tem-
poral energy attention is developed to effectively aggregate
sharper scene patches from neighboring frames. Besides,
the frequency losses are applied to reconstruct the latent
frame with decent spectral distribution. Extensive exper-
iments illustrate that our proposed model performs favor-
ably against previous state-of-the-art methods, confirming
its contribution to frequency-temporal modeling for video
deblurring.
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