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Abstract

Image manipulation techniques have drawn growing
concerns as manipulated images might cause morality and
security problems. Various methods have been proposed to
detect manipulations and achieved promising performance.
However, these methods might be vulnerable to adversarial
attacks. In this work, we design an Adversarial Manipula-
tion Generation (AMG) task to explore the vulnerability of
image manipulation detectors. We first propose an optimal
loss function and extend existing attacks to generate adver-
sarial examples. We observe that existing spatial attacks
cause large degradation in image quality and find the loss
of high-frequency detailed components might be its major
reason. Inspired by this observation, we propose a novel
adversarial attack that incorporates both spatial and fre-
quency features into the GAN architecture to generate ad-
versarial examples. We further design an encoder-decoder
architecture with skip connections of high-frequency com-
ponents to preserve fine details. We evaluated our method
on three image manipulation detectors (FCN, ManTra-Net
and MVSS-Net) with three benchmark datasets (DEFACTO,
CASIAv2 and COVER). Experiments show that our method
generates adversarial examples significantly fast (0.01s per
image), preserves better image quality (PSNR 30% higher
than spatial attacks), and achieves a high attack success
rate. We also observe that the examples generated by AMG
can fool both classification and segmentation models, which
indicates better transferability among different tasks.

1. Introduction
With the rapid development of advanced editing soft-

ware, manipulated images are becoming more common on
social media. Despite the positive aspects, there are pos-
sibilities that manipulated images are used to spread fake
news and misleading information. Therefore, it is impor-
tant to develop methods that can automatically detect ma-
nipulated images.

Various image manipulation detectors [5, 20, 32, 4] have
been proposed and achieved high performance on manip-
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Figure 1. Adversarial examples generated under the proposed
AMG task. For the manipulated image, the manipulations of the
original image can be detected by a detector named MVSS-Net
[5]. After applying attacks, the detector fails to correctly detect
manipulations. For the authentic image, attacking the original im-
age results in false-positive detection. Compared to previous at-
tack methods, the examples generated by our method have much
less noise and can successfully fool the detector at pixel-level.

ulated image datasets [26, 7, 36, 16]. However, existing
methods can be vulnerable to adversarial examples. For a
manipulated image, adding imperceptible adversarial per-
turbations might cause the detector to detect a completely
wrong result. Several works have already studied adversar-
ial face forgery that fools the classification result of face
forgery detector by the adversarial examples [15, 19, 14].
Since the detectors developed recently not only focus on
classifying manipulated or authentic but also try to pin-
point the manipulated regions, we also go one step further
to generate adversarial examples for the detectors that ap-
ply semantic segmentation. We name this task Adversarial
Manipulation Generation (AMG). This topic has not been
studied before and it is more difficult because instead of
only fooling a class label, our target is to fool every pixel in
both manipulated and authentic regions. We further show
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the examples generated by AMG have better transferability
among different tasks (details in Section 5.5).

As shown in Figure 1, images added with imperceptible
perturbations generated by our task can successfully fool
the detector. This task is also different from dense adver-
sary generation [39, 3, 30] which is designed for segmen-
tation and detection models under an untargeted attack set-
ting. Our work considers applying targeted adversarial at-
tacks on the manipulated and authentic images to explore
the vulnerability of the image manipulation detectors. This
is a specific scenario that the adversarial examples actually
bring serious social problems. We first design a loss func-
tion that optimizes perturbation at pixel-level to generate
such adversarial examples.

Algorithms such as FGSM [11] and PGD [25, 18] can
be extended using our loss function to generate adversar-
ial examples. However, these examples can be easily rec-
ognized by human eyes since the images are perturbated
with visible noise. In addition, generating examples using
iterative methods such as PGD can be time-consuming. To
address these problems, we proposed a novel adversarial at-
tack that generates perturbations using both frequency and
spatial features to avoid image quality degradation. In addi-
tion, instead of optimizing each example against the target
model, our method only needs to train the generator once,
and then it can generate perturbation for any images ex-
tremely fast. The contributions of this work are three-fold:

• We explore the vulnerability of the image manipula-
tion detectors by proposing an AMG task. We design
a loss function and extend existing attacks to generate
adversarial examples. Although these attacks can fool
the detectors, the perturbations added to the image are
visible to human eyes. We perform an analysis and
find the loss of high-frequency components can be the
major reason to cause the degradation of image quality.

• Inspired by the above observation, we propose an ad-
versarial attack that incorporates both spatial and fre-
quency features into the GAN architecture to gener-
ate adversarial examples. To preserve fine details,
an encoder-decoder with skip connections of high-
frequency components is also combined. Compared
with previous attacks, our method generates more im-
perceptible perturbations for human observers.

• We evaluate our method on three manipulation detec-
tors with three benchmark datasets, under both white-
box and black-box settings. Experiments show that our
method generates adversarial examples significantly
fast, preserves better image quality, and achieves a
high attack success rate. We further observe the ex-
amples generated by AMG have better transferability
and can fool both classification and detection models.

2. Related Work
In this section, we briefly introduce the development of

image manipulation generation and detection. Besides, we
summarize recent adversarial attack methods that could be
applied to image manipulation detectors.

2.1. Image Manipulation Generation

Image manipulation generation (also known as image
forensic) has gained growing attention as it is getting eas-
ier to create fake images and might cause problems, such as
spreading fake news and misleading information [34, 33].
Common image manipulation generation includes copy-
move (copy a region and paste it in the same image),
splicing (copy a region and paste it to another image) and
inpainting (remove a region) [26, 22]. Several datasets
[26, 7, 36] have been created and released, i.e. DEFACTO
[26] is a recently released large-scale dataset, containing
149k images sampled from MS-COCO [21]. Recently, gen-
erative adversarial networks (GANs) [10, 45] have also be-
come popular to generate forged images, especially in the
field of face forgery generation [15, 19, 14]. Instead of
only focusing on face manipulation, this work explores how
adversarial attack affects manipulation generation that in-
cludes various types of images.

2.2. Image Manipulation Detection

Image manipulation detection can be considered as a
classification task or a semantic segmentation task. In clas-
sification task, the goal is to distinguish the manipulated
image from the real one. Methods such as [6, 1, 31] are
proposed to learn the decision boundary between real and
fake faces for face forgery detection. On the other hand, in
semantic segmentation, the goal is to pinpoint manipulated
regions at the pixel level. [20, 43] propose to implement a
fully convolutional network (FCN) [23] to localize manipu-
lations. ManTra-Net [37] designs a self-supervised learning
task to learn robust image manipulation traces. MVSS-Net
[5] exploits noise distribution and boundary artifacts sur-
rounding manipulated regions to learn more generalizable
features. Since this work mainly focuses on the semantic
segmentation task, we selected one baseline method (FCN)
and two state-of-the-art methods (ManTra-Net and MVSS-
Net) for localizing manipulations and we demonstrate that
our method can fool all of these detectors.

2.3. Adversarial Attack

Adversarial examples are inputs added with small per-
turbations to confuse a neural network. FGSM [11] is a
well-known one-step attack method that uses gradients of
the loss with respect to the input image. PGD [25, 18] is
an iterative attack that performs FGSM with a smaller step
size and clips the updated adversarial sample into a valid
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range. Other methods such as CW [29], JSMA [28], MI-
FGSM [8], are also widely used. However, such attacks us-
ing iterative optimization can be time-consuming, and each
image should be optimized separately. Instead of optimiz-
ing each image, GAN-based methods [38, 17, 13] train a
generator to learn the adversarial distribution by optimizing
target loss and GAN loss. Once the generator is trained, it
can generate perturbations for any input and is much faster
than iterative-based methods. However, although the gen-
erated image can bypass the target model, it degrades the
image quality and is visible to human eyes.

For adversarial examples in image manipulation detec-
tion, several works [9, 14, 19, 27, 44] were proposed to es-
cape face forgery detection using adversarial attack. These
methods mainly generate examples in the spatial domain.
Recently, a few works [15, 24, 42] have been proposed
to combine the frequency features to generate more im-
perceptible examples. However, these works are usually
designed for the classification task, and the generation is
optimization-based which can be time-consuming. We pro-
posed a method that can generate high-quality adversarial
images and is faster than most of the previous methods.

3. Adversarial Manipulation Generation
3.1. Problem Definition

Given an original image x and an image manipulation
detector f which segments the manipulated and authentic
region at pixel-level, we aim for generating adversarial ex-
amples that can completely fool the detector by adding im-
perceptible perturbations. We name this task Adversarial
Manipulation Generation (AMG). The original image x can
be either manipulated or authentic. In this work, we mainly
focus on the targeted attack which contains two cases: 1)
for the manipulated images, we add perturbations so that the
detector fails to segment any pixels in the manipulated re-
gion, and 2) for the authentic images, we generate examples
that the detector detects false-positive regions. Therefore,
we design two types of target map: authentic map S0 with
all pixels labeled as authentic and manipulated map S1 with
the manipulation regions generated by watershed segmen-
tation [2]. We select one random region from the watershed
segmentation results and let it be the target manipulation
region for each image. In order to determine which target
map to use, we first input x into f to obtain a predicted
map {f (x)}, then we apply Global Max Pooling (GMP) to
obtain the image-level prediction result GMP {f (x)} (au-
thentic: 0, manipulated: 1).

Our loss function to generate the adversarial examples is
as follows:

Ladv =

{
LDL [f (x′) , S0] GMP {f (x)} = 1
LDL [f (x′) , S1] GMP {f (x)} = 0

(1)

where x′ is the adversarial example generated by adding

pixel-wise perturbation to the original image x. Since this
is a semantic segmentation task, we use dice loss LDL to
calculate the difference between the predicted map and the
target map. x′ can be calculated by minimizing Ladv , where
x′ should be as close as possible to x.

3.2. Extending Existing Attacks

Existing adversarial attacks can be extended to AMG
using Equation 1. We selected three widely used attacks,
FGSM, PGD, and AdvGAN, and extend them to generate
the adversarial examples for AMG.

Fast Gradient Sign Method (FGSM) [11] is a one-step
attack method that uses gradients of the loss with respect to
the input image to calculate perturbations. The adversarial
example generation can be written as:

x′ = x− ε · sign [∇xLadv (x, S)] (2)

Projected Gradient Descent (PGD) [25] is an iterative
attack that performs FGSM with a smaller step size and
projects the updated adversarial sample into a valid range,
written as:

x′
t+1 = Proj {x′

t − ω · sign [∇xLadv (x, S)]} (3)

AdvGAN [38] is a GAN-based attack that trains a gen-
erator to learn the adversarial distribution by maximizing
the target loss and the GAN loss. A soft hinge loss is
also incorporated to bound the magnitude of the pertur-
bation. Therefore, the full objective can be expressed as
Ladv + αLGAN + βLhinge. By solving the minimax game
over the objective, the generator and discriminator can be
optimized, and the adversarial example can be obtained by
putting the original image into the generator.

Although these methods generate examples that can fool
the manipulation detectors, the generated images can be
easily recognized by human eyes since the images are per-
turbated with visible noise. Our work focuses on generat-
ing examples that can fool both target detectors and human
eyes. Such attacks are more dangerous and might cause se-
rious security problems.

3.3. Exploring Frequency Components

Previous works [40, 41, 35] have shown neural net-
works prefer to generate low-frequency signals that are
more superficial in complexity. Therefore, part of the high-
frequency signal might be lost during the feature extrac-
tion, and this results in generating images with noise and
aliasing artifacts. In order to explore whether a similar phe-
nomenon has occurred in generating the adversarial exam-
ples and thus design an optimized architecture, we first an-
alyze the changes in frequency components when applying
existing adversarial attacks.

The frequency components of the original image and the
adversarial examples using existing attacks are visualized
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Figure 2. Visualization of the frequency components. Rows from top to bottom: original image, adversarial examples using FGSM, PGD
and AdvGAN attack. Columns from left to right: image in the spatial domain, low-frequency component (LL), high-frequency horizontal
component (LH), high-frequency vertical component (HL), high-frequency diagonal component (HH). For each component of the attack
images, closer to that component of the original image indicates better preservation of the information.

in Figure 2 (row 1-4). We use wavelet transform to obtain
the frequency components. The low-frequency component
(LL) contains the general structure and most of the color
data, while the high-frequency component (LH, HL, HH)
contains rich details like the edges of the contents and image
texture. By comparing the components between the original
image and adversarial examples, we find that many details
of the high-frequency components such as the branches of
the tree, and the edge of the building windows, are lost,
meanwhile, artifacts appear in the background. We believe
the loss of details and the increasing artifacts in the high-
frequency components are major reasons that make adver-
sarial perturbations visible to human eyes.

4. Frequency-aware GAN Attack

4.1. Architecture Overview

Inspired by the above observation, we propose an attack
method to generate high-quality adversarial examples for
AMG. As shown in Figure 3, the architecture of our method
has three components: a generator G, a discriminator D,
and a target model f . We focus on designing a G that can
generate imperceptible perturbation. G consists of an en-
coder and a decoder to generate pixel-level perturbations.
The encoder extracts high-level feature representation from
the input image, and the decoder uses the representation to
generate perturbations. In this work, instead of directly per-
turbating the image in the spatial domain, we transform the
input image into the frequency domain, combine the fre-

quency feature and the spatial feature and add noise on the
mixed domain to avoid degradation of image quality. The
perturbations are then added to the input image to obtain an
adversarial image.

The discriminator D is a classifier that distinguishes the
original input image from the adversarial image. A min-
imax GAN loss LGAN can be obtained, where D tries to
distinguish the adversarial image and the input image, and
G tries to generate perturbations that are indistinguishable
by the D. To obtain the adversarial example, we first apply
the white-box attack, where the target model f is known
and used to train the model. The input of f is the adversar-
ial image, and the output is the predicted segmentation. An
adversarial attack loss Ladv can be calculated between the
predicted and target result.

4.2. Frequency-aware Generator

We propose a generator that combines both spatial and
frequency features as well as incorporates skip connections
of the high-frequency components to generate impercepti-
ble adversarial examples. The architecture of the generator
is shown in Figure 3.

Encoder. The encoder consists of convolutional layers
(conv), pooling layers, and discrete wavelet transform lay-
ers (dwt). The first conv layer extracts spatial features from
the input image and passes the feature to the dwt layer. We
used 2D discrete wavelet transform to decompose the fea-
tures into the low-frequency component (Li) and the high-
frequency component (Hi). These components are concate-
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Figure 3. Overview of our frequency-aware GAN attack.

nated channel-wise, denoted as concat(Li, Hi). On the
other hand, the spatial feature extracted by conv layer is
downsampled and then combined with the frequency fea-
ture concat(Li, Hi). Finally, the features containing both
spatial and frequency information are sent to the next conv
layer. We construct 4-level layers to extract the high-level
feature representation.

Decoder. The decoder consists of conv layers, upsam-
pling layers, and inverse discrete wavelet transform layers
(idwt). To avoid losing fine details, we conduct skip connec-
tions of the high-frequency components from the encoder
to the decoder. This helps the decoder generate perturba-
tions with more details and less noise, and thus makes the
generated image less distinguishable by human eyes. The
processing of the decoder is as follows. The feature gener-
ated by the encoder is upsampled to obtain feature A. On
the other hand, 2D inverse discrete wavelet transform is per-
formed on the high-frequency feature directly from the en-
coder, then we obtain feature B. These two features are
combined as A + B and sent to the conv layer. We also
construct 4-level layers to decode the feature and generate
the perturbation for the input image.

4.3. Optimization

As in the white-box attack setting, the target model f is
known and fixed, we need to optimize the generator G and
the discriminator D during training. The total loss consists
of two terms: adversarial attack loss Ladv and GAN loss
LGAN . Ladv can be obtained by summarizing the loss in
Equation 1 for a set of input image and LGAN can be writ-
ten as:

LGAN = Ex logD (x)+Ex log {1−D [x+ clip(G (x))]},
(4)

where Ex = Ex∼Pdata
and Pdata is original data distri-

bution, and clip stands for clipping G(x) into a valid range.
The adversarial example can be obtained by x+clip(G (x)).

Finally, the objective function for training our model can
be written as:

min
G

max
D

V (D,G) = Ladv + γLGAN , (5)

where γ is a weight to control the importance of two losses.
By minimax game between the G and D, optimal parame-
ters of the model can be obtained.

5. Experiments
In this section, we evaluate our proposed methods un-

der both white-box and black-box attack settings. In the
white-box setting, we first train the generator and discrim-
inator using a target model, then during the attack, we put
images into the trained generator to generate adversarial ex-
amples for that target model. In the black-box setting, we
use a transferability-based attack, where one target model
is selected to train the generator and obtain adversarial ex-
amples, then these adversarial examples are directly used
to attack another unknown model. We perform evaluations
on several image manipulation datasets and compare our
method with existing adversarial attack methods, FGSM,
PGD and advGAN. We run all experiments on an NVIDIA
A100 80GB GPU.

5.1. Experimental Settings

Datasets. We evaluate the proposed method on three
image manipulation datasets, DEFACTO [26], CASIAv2
[7] and COVERAGE [36]. DEFACTO contains 149k im-
ages with copy-move, splicing, and inpainting manipula-
tions. This dataset is constructed over MS-COCO [21] and
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contains natural images with various contents, such as nat-
ural scenes, objects, etc. As we need both manipulated and
authentic images, similar to [5], we randomly sample 64k
manipulated images from DEFACTO and 20k authentic im-
ages from MSCOCO to construct a dataset. CASIAv2 is
a natural image forgery dataset that contains 4795 images,
1701 authentic and 3274 forged with copy-move and splic-
ing manipulations. COVERAGE (COVER) contains 100
copy-move forged images and their originals with similar
but genuine objects. The ground-truth masks are provided
in all datasets. Since AdvGAN and our method need train-
ing data, we further split each dataset into half and half. We
use the half dataset to train AdvGAN and our method and
use the other half to evaluate all attack methods.

Target models. For the image manipulation detectors,
we selected three models, FCN [23], ManTra-Net [37] and
MVSS-Net [5]. These models are all trained on part of the
DEFACTO dataset, and their performance has been com-
pared in previous works [5]. As all these detectors with pre-
trained models and optimized parameters are already avail-
able, we directly use them as our target models.

Evaluation metrics. We compute pixel-level F1 (pF1)
for semantic segmentation of the manipulated region. Since
we also have authentic images, we report image-level F1
(imF1) as well. Please note authentic images are only used
to calculate im-F1, while manipulated images are used to
calculate both metrics. As the purpose of this work is to
explore the robustness of the manipulation detectors by the
adversarial attack, we also use attack success rate (ASR) as
one of the evaluation metrics. We define “success” as the
opposite of the ground-truth which means 1) for manipu-
lated images, every pixel is detected as authentic, and 2)
for authentic images, part of the image is detected as ma-
nipulated. The proportion of the image that is successfully
attacked over the total test dataset is denoted as the ASR.

Implementation details. The architecture of the gener-
ator is shown in Figure 3. For the discriminator, we use a
similar architecture to the discriminator in AdvGAN [38].
We set the weight of GAN loss γ = 0.1 and clipping range
clip = 0.1. During the model training, we set the batch size
to 128 and the learning rate to 0.001. The input image size
of three target models is 512× 512× 3. For the FGSM and
PGD attack, we set maximum perturbation ϵ = 0.05.

5.2. White-box Attack

In this setting, we generate adversarial examples against
each target model. We evaluate our method using differ-
ent manipulation detectors with different datasets. We first
measure the performance of original images using three ma-
nipulation detectors and then apply four types of adversarial
attacks to see the changes in performance. The results of
pF1, imF1, and ASR are shown in Table 1. We observe that
for three different image manipulation detectors, p-F1 and

im-F1 largely drop when applying adversarial attacks. A
similar trend can be observed for all datasets. These results
show that even though the selected detectors perform well
on specific manipulation datasets, they can still be vulner-
able to adversarial examples that only have small changes
from the original ones.

On the other hand, compared with the existing attacks,
the ASR of our method is higher than FGSM and slightly
higher than PGD and AdvGAN for most of the cases.
We also decompose the adversarial examples generated by
our method into frequency components, and an example is
shown in Figure 2 (row 5). Compared with existing attack
methods, our method can preserve most of the details, espe-
cially the high-frequency components such as the branches
of the tree, and the edge of the building windows, as well
as keep noises and artifacts as fewer as possible. The run-
ning time of generating adversarial images for each dataset
is shown in Table 1. For generating one image, the average
running time is: FGSM 0.09s, PGD 20s, AdvGAN 0.02s,
ours 0.01s. Our method is significantly fast than iterative-
based attack methods.

5.3. Black-box Attack

We also conduct experiments to evaluate the transferabil-
ity of our attack method. We use one target model to train
the generator and obtain adversarial examples, then directly
use these examples to attack other target models.

We use the DEFACTO dataset, where half of the data is
used to train AdvGAN and our method, and the other half
is used to generate adversarial examples. Then these gen-
erated examples are sent to the target models to obtain the
ASR. The results are shown in Table 2. The model used to
generate the adversarial example is denoted as the trained
model (Train), and the model used to calculate ASR is de-
noted as the target model (Target). For better comparison,
we also add the result of the white-box setting (the trained
model and the target model are the same). We denote FCN,
ManTra-Net, and MVSS-Net as model A, B, and C.

From Table 2, we observe that for FGSM and PGD at-
tacks, the ASR of the black-box attack drops more than
10% compared to the white-box attack in several cases,
while AdvGAN and our method seem to have better trans-
ferability. This is probably because FGSM and PGD are
optimized-based attacks where each image should be opti-
mized separately against the target model, while AdvGAN
and our method try to learn and approximate the distribu-
tion of the datasets. Another interesting finding is that for
different target models, the adversarial examples generated
by models with more complex architecture (i.e. MVSS-Net
= model C) seem to have better transferability than the ex-
amples generated by the baseline model (FCN = model A).
We consider the reason as complex models usually use the
baseline model as their backbone, therefore the examples
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Data Method FCN ManTra-Net MVSS-Net Run
TimepF1 imF1 ASR pF1 imF1 ASR pF1 imF1 ASR

Origin 0.68 0.65 - 0.70 0.66 - 0.72 0.68 - -
FGSM 0.28 0.25 50.5% 0.27 0.29 48.2% 0.28 0.27 50.2% 2.5h

DEFACTO PGD 0.21 0.19 58.5% 0.19 0.18 58.9% 0.23 0.19 57.2% 470h
AdvGAN 0.17 0.16 60.2% 0.18 0.17 59.9% 0.20 0.18 60.8% 30min

Ours 0.17 0.15 60.5% 0.16 0.16 60.6% 0.21 0.18 60.5% 15min
Origin 0.59 0.50 - 0.60 0.58 - 0.69 0.62 - -
FGSM 0.29 0.26 48.2% 0.26 0.25 48.5% 0.30 0.30 44.2% 10min

CASIAv2 PGD 0.21 0.18 56.5% 0.20 0.21 50.7% 0.23 0.20 51.4% 36h
AdvGAN 0.18 0.16 59.7% 0.19 0.19 55.8% 0.20 0.15 58.8% 2.1min

Ours 0.20 0.17 58.8% 0.18 0.16 58.2% 0.18 0.14 60.2% 1.1min
Origin 0.48 0.39 - 0.44 0.41 - 0.63 0.55 - -
FGSM 0.20 0.18 50.0% 0.19 0.17 52.3% 0.22 0.24 50.1% 18min

COVER PGD 0.14 0.14 61.1% 0.14 0.14 55.3% 0.16 0.15 60.3% 68min
AdvGAN 0.14 0.13 61.5% 0.14 0.12 57.1% 0.15 0.15 60.6% 4.1s

Ours 0.14 0.12 61.9% 0.13 0.11 59.1% 0.13 0.12 62.2% 2.5s

Table 1. The performance of different attacks under AMG task. The evaluation is performed on three datasets (DEFACTO, CASIAv2 and
COVER) with three manipulation detectors (FCN, ManTra-Net and MVSS-Net) as the target models. For the attack method, higher ASR
(lower pF1 and imF1) means better performance. Run time shows the generation time for all examples in that dataset.

Original PGD OursAdvGANFGSM

Figure 4. Comparison of generated adversarial examples under different attack methods.

generated by the complex model might naturally have the
ability to attack baseline models. These findings give us a
new perspective to generate adversarial examples with bet-
ter transferability.

5.4. Image Quality Assessment

In this section, we show that our method could keep high
image quality while fooling the target model. We evaluate
the generated examples qualitatively and quantitatively on
MVSS-Net with the CASIAv2 and COVER datasets. For
qualitative evaluation, the visualization examples of four at-

tack methods are shown in Figure 4. We can observe that
compared with the existing attacks, the adversarial exam-
ples generated by our method have much less noise, look
more natural and are more imperceptible to human eyes.
For quantitative evaluation, we use metrics MSE, PSNR,
and SSIM to calculate the difference between the original
image and the adversarial example. As shown in Table 3,
the image quality of the adversarial examples generated by
our method outperforms others by a large margin. This re-
sult suggests that our method is able to keep high image
quality while successfully attacking target models.
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Train Target FGSM PGD AdvGAN ours

A A 50.5% 58.5% 60.2% 60.5%
B 39.3% 43.3% 50.2% 55.1%
C 42.6% 40.2% 52.1% 58.3%

B B 48.2% 58.9% 59.9% 60.6%
A 43.6% 50.7% 55.1% 53.1%
C 37.3% 46.2% 50.6% 52.4%

C C 50.2% 57.2% 60.8% 60.5%
A 45.3% 52.3% 54.2% 58.4%
B 42.3% 52.1% 56.3% 62.2%

Table 2. Attack success rate under the black-box attack settings.
First column (train) is the model we use to generate adversarial
example, and second column (target) is the target model to attack.
A, B and C represent FCN, ManTra-Net and MVSS-Net model.

Metric FGSM PGD AdvGAN ours
MSE (↓) 0.71 0.69 0.59 0.50
PSNR (↑) 26.4 30.4 28.9 40.1
SSIM (↑) 0.61 0.79 0.71 0.98

Table 3. Image quality assessment of the adversarial examples gen-
erated by different attacks. Our method has significantly better
image quality than other attacks.

5.5. Analysis

In this section, we first analyze the advantage of the pro-
posed AMG task and then design four ablations to study the
mechanism of the proposed attack.

To analyze the advantage of the proposed AMG task, we
compared the adversarial examples generated under AMG
and traditional classification task (CAE), shown in Figure 5.
PGD attack is used to generate examples for both CAE and
AMG task. We randomly selected 1000 manipulated im-
ages and 1000 authentic images from DEFACTO, CASIAv2
and COVERAGE datasets for evaluation. Two target mod-
els, a classification model named ResNet-50 [12] and a seg-
mentation model named FCN [20] are selected as the target
models. The adversarial examples generated under CAE are
used to attack both ResNet-50 (white-box attack) and FCN
(transferability-based attack), and vice versa. We observe
that although the examples generated under CAE have a
high ASR for attacking the classification model, the ASR
drops largely when they are used to attack the detection
model. On the other hand, the examples generated under
our AMG task is able to attack both models, which indi-
cates better transferability among different tasks.

To analyze the behavior of each component in the pro-
posed method, We evaluated four ablations : 1) we use dis-
crete wavelet transform (DWT) but remove the skip connec-
tion (SC) when generating the perturbations, 2) we only ap-
ply the SC of the low-frequency components, 3) we remove
both DWT and SC, 4) our method. The results are shown

Original CAE AMG 

Image  

Mask

ASR-class
ASR-pixel

-
-

Pred. Manipulated Authentic Authentic

57.6%8.9%
98.0% 85.4%

Figure 5. Comparing the transferability of the adversarial exam-
ple generated by AMG and classification (CAE) task. Prediction
(Pred.) and mask are obtained from ResNet-50 and FCN, respec-
tively. ASR-class and ASR-pixel stand for the attack success rate
of classification accuracy and pixel-level detection accuracy.

DWT SC ASR (↑) PSNR (↑) SSIM (↑)
✓ × 59.8% 33.5 0.84
✓ Low 60.0% 35.5 0.89
× × 58.6% 30.8 0.74
✓ High 60.5% 40.0 0.97

Table 4. Ablation study of the proposed method on DEFACTO
dataset with MVSS-Net detector. DWT is discrete wavelet trans-
form, and SC is skip-connection (low or high means low-/high-
frequency component).

in Table 4. By comparing 1st and 3rd rows, we observe that
using the frequency features improves PSNR and SSIM by
a large margin. By comparing the types of SC (1st, 3rd and
4th rows), we also observe that preserving high-frequency
components have the most effect for improving the image
quality. These quantitative results show the effect of two
main components of the proposed method.

6. Conclusion

In this work, we propose an AMG task to explore the
vulnerability of image manipulation detectors. We extend
the existing attacks and explore the changes in frequency
components during adversarial attacks. Moreover, we pro-
pose a novel adversarial attack that incorporates both spatial
and frequency features into the GAN architecture to gen-
erate imperceptible examples. Experiments show that our
method generates adversarial examples significantly fast
and preserves better image quality while achieving a high
attack success rate. This work shows the vulnerability of
current image manipulation detectors and suggests more ro-
bust detectors are needed to correctly detect the manipu-
lations. Adversarial defense that can protect the detectors
from various attacks is an interesting topic in future work.
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