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Abstract

Visual tempo characterizes the dynamics and the tem-
poral evolution, which helps describe actions. Recent ap-
proaches directly perform visual tempo prediction on skele-
ton sequences, which may suffer from insufficient feature
representation issue. In this paper, we observe that rela-
tive visual tempo is more in line with human intuition, and
thus providing more effective supervision signals. Based
on this, we propose a novel Relative Visual Tempo Con-
trastive Learning framework for skeleton action Represen-
tation (RVTCLR). Specifically, we design a Relative Visual
Tempo Learning (RVTL) task to explore the motion informa-
tion in intra-video clips, and an Appearance-Consistency
(AC) task to learn appearance information simultaneous-
ly, resulting in more representative spatiotemporal fea-
tures. Furthermore, skeleton sequence data is much s-
parser than RGB data, making the network learn short-
cuts, and overfit to low-level information such as skeleton
scales. To learn high-order semantics, we further design
a new Distribution-Consistency (DC) branch, containing
three components: Skeleton-specific Data Augmentation (S-
DA), Fine-grained Skeleton Encoding Module (FSEM), and
Distribution-aware Diversity (DD) Loss. We term our entire
method (RVTCLR with DC) as RVTCLR+. Extensive exper-
iments on NTU RGB+D 60 and NTU RGB+D 120 datasets
demonstrate that our RVTCLR+ can achieve competitive re-
sults over the state-of-the-art methods. Code is available at
https://github.com/Zhuysheng/RVTCLR.
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Figure 1. The basic visual tempo prediction is considered a classi-
fication task, where the learned model is used to assign tempo la-
bels to individual video clips. We introduce relative visual tempo
learning and appearance-consistency based on contrastive learn-
ing. It’s more human-intuitive for modeling actions. The top-1
accuracy on NTU-60 Xsub benchmark supports our claim.

1. Introduction

As one of the most fundamental topics in video un-
derstanding, human action recognition has been widely
explored in many real-world scenarios, such as human-
computer interaction [22], autonomous driving [30], and
so on [34, 17]. Skeleton data provides more abstract and
well-structured information with less computation and s-
torage than raw RGB video. It is less susceptible to cam-
era viewpoint changes and background distractions. Thus,
skeleton-based action recognition has attracted extensive at-
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tention [39, 21, 28, 7, 35]. However, most of these methods
rely heavily on full supervision. The collection of massive
annotations is labor-intensive and time-consuming. Under
this circumstance, learning action representations directly
from the data in a self-supervised manner has attracted in-
creasing attentions.

Several existing works [11, 38, 41] draw inspiration from
video self-supervised learning and directly apply video pre-
text tasks on skeleton sequences, such as jigsaw puzzle
recognition [1, 9] and temporal order prediction [15, 37].
For sequence data, a commonly used technique to model
spatiotemporal information is visual tempo prediction [42,
29]. Action visual tempo describes the speed at which ac-
tions are performed, which is crucial for distinguishing ac-
tions that exhibit similar temporal evolutions (e.g., walking
and jogging). The basic idea is shown in the upper part
of Figure 1. For each video, clips are sampled at differ-
ent sampling frequencies to mimic different visual tempos
(e.g., 1× and 2×), and predictions are made using the back-
bone network. However, there are limitations in directly
applying it to skeleton sequences. People perform action-
s at their own tempo due to the influence of gender, age,
etc. Even at the same tempo, the athlete’s walking speed is
visibly faster than that of a child in a third-person perspec-
tive. Therefore, it’s obviously inappropriate to treat tempo
prediction as a classification task. Furthermore, this basic
strategy mainly focuses on motion information and cannot
explicitly encourage the model to explore appearance in-
formation that is equally important for recognizing actions.
Recently, contrastive learning has shown its great potential
in extracting informative features [10, 6] in skeleton-based
action recognition. Contrastive learning typically convert-
s the naive classification task to a matching problem and
learns an embedding space in which augmentations of same
skeleton sequence are kept closer together, while differen-
t augmentations are far apart. In this way, the above is-
sues can be alleviated in an elegant way. However, skeleton
sequence data is much sparser than RGB data, and apply-
ing contrastive learning naively without explicit guidance
may lead to model overfitting low-level information such
as skeleton scales and angles, while failing to learn high-
order semantics, resulting in insufficient feature representa-
tion capabilities.

To this end, we propose RVTCLR: a Relative Visual
Tempo Contrastive Learning framework for skeleton action
Representation. The basic idea is shown at the bottom of
Figure 1. First, we observe that it’s intuitively plausible to
compare relative visual tempos within videos rather than to
predict a specific visual tempo for each video. Specifically,
for each video, we sample 3 clips with different visual tem-
pos (e.g., 1×, 1×, and 2×) to construct the contrastive pairs
and train a network to pull the anchor-positive pairs clos-
er while repelling the anchor-negative pairs. Furthermore,

to make the representations explicitly focus on appearance
information, we design another Appearance-Consistency
(AC) task. In this task, pairs from the same video are attract-
ed no matter their visual tempos, while pairs from different
videos are pushed away. In this way, the learned represen-
tations are expected to focus on both skeleton motion and
appearance information simultaneously.

In addition, in order to encourage the models to learn
high-order semantics, we introduce a new Distribution-
Consistency (DC) branch based on RVTCLR, which con-
tains three components: Skeleton-specific Data Augmen-
tation (SDA), Fine-grained Skeleton Encoding Module (F-
SEM), and Distribution-aware Diversity (DD) Loss. We re-
fer to this as RVTCLR+. First, we leverage SDA to generate
more difficult contrastive pairs by applying more skeleton-
specific transformations (e.g., gaussian noise) at the input
level, since augmentation plays a key role in learning better
representations, as demonstrated by SimCLR [3] and Mo-
Co [8]. However, too much strong augmentations may blur
the joint connections compared to the normal augmented
sequence (i.e., crop and shear), resulting in performance
degradation. Benefiting from recent attention mechanism-
s [5, 13, 44], we try to emphasize these connections by de-
signing a novel module, FSEM, which contains an Intra-
Inter-Part block (IIPB) for local spatial modeling and a
Non-local block (NLB) [32] for global spatiotemporal mod-
eling. Finally, inspired by [33, 6], we introduce a DD loss
to minimize the distributional divergence between the nor-
mal augmented view and our DC branch. By combining
these components, we hope that the DC branch can better
learn local and global spatiotemporal features, which help
to extract discriminative high-order semantics.

To sum up, the contributions of this work include: (1) We
propose a novel contrastive representation learning frame-
work named RVTCLR. The proposed RVTCLR leverages
Relative Visual Tempo Learning (RVTL) task to learn bet-
ter skeleton motion information. By combining anoth-
er Appearance-Consistency (AC) task, our model explic-
itly learns to concentrate on skeleton appearance informa-
tion simultaneously. (2) To encourage models to focus on
high-order semantics, we propose RVTCLR+ by introduc-
ing a new Distribution-Consistency (DC) branch. This DC
branch contains three components: Skeleton-specific Da-
ta Augmentation (SDA), Fine-grained Skeleton Encoding
Module (FSEM), and Distribution-aware Diversity (DD)
Loss. (3) These contrastive tasks are jointly trained using
a two-branch structure such that the models can learn both
spatiotemporal and high-order semantics simultaneously.

2. Related Work
Self-supervised skeleton-based action recognition. To

meet the requirements of real-time recognition, it’s nec-
essary for the models to be able to directly extract dis-
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criminative action representations from the label-free online
videos. Recent progress in self-supervised skeleton-based
action recognition can be summarized into two categories:
pretext-task based learning [11, 38, 41, 43, 23] and con-
trastive learning [18, 10, 6, 25, 31, 24]. For example, Zheng
et al. [43] design a skeleton inpainting architecture to learn
the long-term dynamics. Lin et al. [11] integrate multiple
tasks such as jigsaw puzzle recognition to learn more gener-
al skeleton features. Xu et al. [38] propose reverse sequen-
tial predictions based on encoder-decoder structure to ex-
tract motion pattern. However, the representations learned
by these methods may not be good enough, in the sense
that they could be exclusively particular to the pre-designed
tasks. Inspired by the success of contrastive learning in im-
age classification (e.g., instance discrimination [36], Sim-
CLR [3], and MoCo [8]), Rao et al. [18] first propose to
perform contrastive learning among different augmentation-
s of unlabeled skeleton data, to learn inherent action pattern-
s. Thoker et al. [25] propose to generate contrastive pairs
based on different input-representations of the skeleton se-
quences, i.e., graph, sequence, and image representation.
By leveraging multiple views of the skeleton data, i.e., join-
t, bone, and motion, Li et al. [10] introduce SkeletonCLR
and CrosSCLR to perform the single-view and cross-view
contrastive learning. Guo et al. [6] further propose AimCLR
to learn from extremely augmented skeleton sequences.

Nevertheless, none of the aforementioned methods con-
centrate on visual tempo, which is crucial for characteriz-
ing human action dynamics. To our best knowledge, Su et
al. [24] propose motion consistency and continuity learn-
ing, which has overlap with our framework. However, the
differences are obvious, which mainly lie in three aspect-
s: (1) contrastive pairs are generated differently. In [24],
speed-changed clips are considered as positive pairs, while
we focus on relative visual tempo and regard these clips as
negative pairs. (2) appearance information is modeled dif-
ferently. In [24], appearance information is implicitly mod-
eled in the contrastive learning process, while we design
another Appearance-Consistency (AC) task specifically for
spatial modeling. (3) learned features are enhanced differ-
ently. In [24], learned features are enhanced by designing a
self-reconstruction based motion continuity module, while
we introduce a novel Distribution-Consistency (DC) branch
to guide the models focus on high-order semantics.

Visual tempo modeling. Visual tempo describes the
speed of human movements, which has already been ap-
plied into various action recognition methods [4, 40, 14].
For example, Feichtenhofer et al. [4] first propose Slow-
Fast network to explore the potential of different visual tem-
pos. It consists of two pathways, operating at different
frame rates, to capture both spatial semantics and motion
dynamics. When it comes to video self-supervised learn-
ing [42, 29, 2], the potential of visual tempo in motion mod-

eling is further verified. Yao et al. [42] utilize video play-
back rates as self-supervision signals and propose playback
rate perception to learn spatiotemporal features in a collab-
orative discrimination-generation manner. The above meth-
ods usually require assigning visual tempos to each video
clip according to different sampling rates, and then elabo-
rate learning paradigms through reconstruction or predic-
tion, but this is suboptimal in learning discriminative repre-
sentations. Chen et al. [2] argue that relative speed is more
in line with motion pattern. They propose a new video self-
supervised learning framework (called RSPNet) to leverage
the relative speed between two video clips to supervise the
representation learning. Inspired by RSPNet, the proposed
RVTCLR focuses on relative visual tempo learning with
skeleton-specific modifications.

3. Methods
3.1. Preliminaries

SkeletonCLR. SkeletonCLR [10] utilizes ST-GCN [39]
as its backbone and follows the practice in MoCo [8] to
learn skeleton action representations. Suppose that a skele-
ton sequence s = (s1, s2, ...sT ) contains T consecutive
skeleton frames, where si ∈ R3×V×M means 3D coordi-
nates of V joints for M actors. A data augmentation mod-
ule T is first utilized to randomly transform the given s into
different augmentations xq and xk. Then, a query encoder
f(·; θq) and a momentum updated key encoder f(·; θk) are
leveraged to encode xq and xk into hidden space hq and
hk. These embeddings are further passed through a projec-
tor g(·; θq) and its momentum updated version g(·; θk) to
get the final query features q and key features k. In each
training step, samples in the queue Q = {mo}Ko=1 are pro-
gressively replaced by the key features k following a first-
in-first-out scheme. Following MoCo, q and k serve as pos-
itive pairs while q and embeddings in Q serve as negative
pairs. The InfoNCE loss [36] is used to guide the network
learning, which can be formulated as:

LInfo = − log
exp(q · k/τ)

exp(q · k/τ) +
∑K

o=1 exp (q ·mo/τ)
(1)

where τ is the temperature hyper-parameter, and · repre-
sents the similarity measured by dot product.

After computing the InfoNCE loss, the parameters of θq
are updated by gradient back-propagation while the param-
eters of θk are updated as their moving-average:

θk ← αθk + (1− α)θq (2)

where α is a momentum coefficient (set to 0.999 by default).
Nearest Neighbors Mining. Traditional InfoNCE re-

gards all samples in the memory bank as negative. This
overly hard approach may lead to non-generic feature em-
beddings. To address the above issue, [10, 6] propose

13915



…
Skeleton sequence 1

Skeleton sequence 2

…

Key 
encoder

Query 
encoder

RVTL

pull push

ℒ𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙

Memory bank

…

Skeleton sequence 3

Skeleton sequence 4

AC

ℒ𝐴𝐴𝐴𝐴 = 𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐴𝐴𝐼𝐼 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙

…
Skeleton sequence 1

DC

Query 
encoder

SDA

FSEM

ℒ𝐷𝐷𝐴𝐴 = 𝐷𝐷𝑇𝑇𝑙𝑙𝑇𝑇𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇𝑙𝑙𝐼𝐼 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙

1×

1×

2×

1×

2×

Query 
encoder

Key 
encoder

Query 
encoder

Figure 2. The pipeline of our method. For each skeleton sequence, we sample clips with varying visual tempos. Then, we use a two-branch
structure to extract discriminative feature from each sequence. Specifically, in RVTCLR, the Relative Visual Tempo Learning (RVTL)
is responsible for modeling motion dynamics. The Appearance-Consistency (AC) is responsible for modeling appearance characteristics.
These two tasks are combined into one branch to achieve a more comprehensive spatial-temporal representation. In another Distribution-
Consistency (DC) branch, we introduce Skeleton-specific Data Augmentation (SDA), Fine-grained Skeleton Encoding Module (FSEM),
and Distribution-aware Diversity (DD) Loss to guide the network to concentrate on extracting high-order semantics.

to leverage Nearest Neighbors Mining (NNM) to generate
more positive pairs:

LNNM = − log
exp(q · k/τ) +

∑
o∈N+

exp (q ·mo/τ)

exp(q · k/τ) +
∑K

o=1 exp (q ·mo/τ)
(3)

where N+ represents the top-N nearest neighbors that are
most similar to the query features q in the memory queue.

Since the model learned in the early training stages may
not be strong enough to provide confident nearest neigh-
bors, [10, 6] propose to perform a two-stage training, i.e.,
first train the model using Equation 1, and then train the
model to mine the nearest neighbors using Equation 3.

In this paper, we mainly implement our method based on
SkeletonCLR and two-stage training strategy.

3.2. RVTCLR

Relative Visual Tempo Learning (RVTL). Observing
that each person performs actions at his/her own visual tem-
po, we introduce a RVTL task, which aims to learn better
skeleton motion information. Specifically, given a skeleton
sequence s with T frames, we first sample 3 clips ci, cj
and ck with visual tempos vi, vj and vk, respectively, where
vi = vj 6= vk. Note that visual tempos can be set arbitrar-
ily, i.e., {1×, 2×, 3×, ..}. However, to avoid the temporal
ambiguity in skeleton sequences, we only consider 1× and
2×, which represent that the sampling interval is set to 1
and 2 frames. We sample from the first frame and keep

a duration of T/2 for each clip. Then, we apply normal
skeleton augmentations T on these three clips respective-
ly to construct a triplet, i.e., anchor a = T (ci), positive
p = T (cj) and negative n = T (ck). This triplet is further
fed into SkeletonCLR with a projection head gr(·; θqr ) and
its momentum updated gr(·; θkr

) to generate the encoded
features (qa, kp, kn). Finally, these features are normalized
and combined as anchor-positive pairs (qa, kp) and anchor-
negative pairs (qa, kn), and our goal is to pull (qa, kp) clos-
er while pushing (qa, kn) away. The assumption here is that
the network can only succeed in such a RVTL task if it un-
derstands the intrinsic visual tempo of each clip and learns
discriminative motion information. This task is realized by
a triplet loss [19]:

LRV TL = max {− (qa · kp − qa · kn) + margin, 0} (4)

where the margin (set to 1 by default) is a hyper-parameter
to control the distance between two components.

Appearance-Consistency (AC). Appearance informa-
tion is also essential for recognizing actions. To this end,
we introduce another AC task to explicitly learn such in-
formation. Specifically, given a skeleton sequence, we first
sample two clips ci, cj with visual tempos randomly select-
ed in {1×, 2×}. Then, they are normally augmented and
sent to SkeletonCLR with another projection head ga(·; θqa)
and its momentum updated ga(·; θka

) to generate the encod-
ed features (qi, kj). Note that the query and key encoders
in AC share weights with the encoders in RVTL while the
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projection heads ga(·; θqa) and ga(·; θka) have weights in-
dependent of gr(·; θqr ) and gr(·; θkr ). Here, the goal is to
pull qi and kj closer while pushing away qi and negative
samples in queue Q. Although from the same sample, clip-
s with various visual tempos show different temporal mo-
tion dynamics, by pulling such a pair closer while pushing
away different samples, we want the model to explicitly fo-
cus on appearance information. This task is realized by the
InfoNCE loss:

LAC = − log
exp(qi · kj/τ)

exp(qi · kj/τ) +
∑K

o=1 exp (qi ·mo/τ)
(5)

Based on SkeletonCLR, we jointly train these tasks. In
the first training stage, we train the model with the loss func-
tion: L1 = λ1LRV TL + λ2LAC , and then in the second
training stage, we try to obtain more positive samples by
using L2 = λ1LRV TL + λ2LAC′ , where λ (set to 1 by
default) is the coefficient to balance the loss and LAC′ is
defined in Equation 3.

Non-local block

Intra-Inter-Part block

Avgpool

Input

Linear

Output

Intra-Part Inter-Part

(a) FSEM module

(b) Intra-Inter-Part block 

(c) Non-local block 
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Figure 3. Illustration of FSEM. (a) The workflow of FSEM. (b)
IIPB is responsible for local spatial modeling, containing intra-
part and inter-part relational reasoning submodules. (c) NLB is
responsible for global spatial-temporal modeling.

3.3. RVTCLR+

The success of contrastive learning depends on the con-
struction of contrastive pairs and the difficulty of learning
paradigm. Given that the skeleton sequences are much s-
parser, naive contrastive learning may risk overfitting low-
level information such as skeleton scales. It would be even
better if we could design a new branch to explicitly learn
skeleton high-order semantics. We thus propose RVTCLR+
by designing our Distribution-Consistency (DC).

SDA. We leverage SDA to generate more difficult con-
trastive pairs. The SDA contains normal augmentations T :
crop and shear, and additional strong augmentations T ′:
gaussian noise, gaussian blur, and channel mask. Given a
skeleton sequence s, we apply T and T ′ to get the trans-
formed version: e = T ′(T (s)). Afterwards, we send it

to the weight-sharing query encoder to encode e into hid-
den space he, which is further passed through a projector
ge(·; θqe) to obtain the final embeddings qe.

FSEM. Such a direct modeling method may be subopti-
mal, since the additional augmentations may cause blurred
joint connections. Considering that skeleton sequences are
spatiotemporal cubes, we design FSEM to highlight these
connections. As shown in Figure 3, our FSEM contains an
Intra-Inter-Part block (IIPB), which is responsible for local
spatial modeling, and a Non-local block (NLB), which is re-
sponsible for global spatial-temporal modeling. Given the
encoded he ∈ RC×T×V , in IIPB, we first divide each hu-
man skeleton into 5 parts according to the physical topology
of the body. Then, average pooling is applied on each part
to generate the intra-part representations he′ ∈ RC×T×5. T-
wo 1× 1 convolution layers are further utilized to establish
the inter-part relations:

hê = Conv2(ReLU(Conv1(he′ ,W1)),W2) (6)

whereW1 ∈ RC
2 ×C andW2 ∈ RC×C

2 are learnable param-
eters. ReLU is the activation function. The intuition here
is that connections between body parts can sometimes bet-
ter describe actions (e.g., the coordination of arm and leg in
‘running’). By using IIPB, we establish the part-based con-
nections that seek to mitigate the effects of blurred joints.

IIPB can capture the local dependencies of intra-frame
parts. However, global inter-frame connections are ignored,
which are also essential for describing actions. We intro-
duce NLB to associate all possible frames of a skeleton se-
quence in a self-attention mechanism [27]. The non-local
operation computes frame dependencies by enumerating all
possible frames:

yt =
1

C(hê)
∑
∀t′

f
(
htê, h

t′

ê

)
g
(
ht

′

ê

)
(7)

where htê and ht
′

ê denote the input at frame t and t′, respec-
tively. g(·) is a linear function. C(·) is a normalization term.
An embedded gaussian function f(·, ·) [32] computes the
relationships between t and all t′. We wrap the non-local
operation in Equation 7 into NLB with a residual layer as:

hẽ =W3y + hê (8)

where W3 is a learnable embedding for y. Finally, we send
it to the projector to generate the new embeddings qẽ. Note
that FSEM can be plugged into different GCN layers, we
only insert the FSEM before the projector for the reduction
of experiment cost.

DD Loss. The distributional divergence between weakly
augmented counterparts and strongly augmented views en-
ables the framework to explore novel patterns, which may
help extract representative high-level features. Formally,
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given the encoded query features qa, the encoded key fea-
tures kp, and the memory queue Q = {mo}Ko=1, we can
obtain a conditional distribution:

p(kp|qa) =
exp(qa · kp/τ)

exp(qa · kp/τ) +
∑K

o=1 exp (qa ·mo/τ)
(9)

which encodes the likelihood of the query qa being assigned
to the key kp. By replacing kp with mo, we can also obtain
the likelihood that the query qa is assigned to the negative
embeddings in Q. Then, the InfoNCE loss in Equation 1
can be rewritten as:

LInfo = −q (kp|qa) log p (kp|qa)−
K∑
o=1

q (mo|qa) log p (mo|qa)

(10)
where q(·|·) is the ideal distribution of the likelihood,
p(kp|qa) is the distribution learned by network. In In-
foNCE, q(kp|qa) and q(mo|qa) are simply set to 1 and
0 based on one-hot distribution, respectively. When ap-
plied to qẽ, a straightforward approach is to directly re-
place qa in Equation 10 with qẽ. However, as demonstrated
in [33, 6], the one-hot distribution cannot mimic the ide-
al distribution and thus cannot help representations learning
any more. Conversely, the similarity distribution of weakly-
augmented queries for the same instance in a queue can pro-
vide useful clues for strong-augmentation based learning.
This inspires us to leverage p(kp|qa) and p(mo|qa) as the
ideal distribution to supervise qẽ:

LDC = −p (kp|qa) log p (kp|qẽ)

−
K∑
o=1

p (mo|qa) log p (mo|qẽ)
(11)

By combining DC, the final loss our RVTCLR+ can be
formulated as L1 = λ1LRV TL + λ2LAC + λ3LDC and
L2 = λ1LRV TL + λ2LAC′ + λ3LDC .

4. Experiments
4.1. Datasets

NTU RGB+D 60 Dataset [20]: It contains 56880 skele-
ton video clips over 60 action classes capture from 40 sub-
jects and 3 different camera view angles. Each clip provides
25 body joints with 3D coordinates for at most 2 subjects.
There are two evaluation benchmarks: cross-subject (Xsub)
and cross-view (Xview). In Xsub, clips of 20 subjects are
used for training, and the rest are used for testing. In Xview,
clips of camera 2 and 3 are used for training, and clips of
camera 1 are used for testing.

NTU RGB+D 120 Dataset [12]: It is an extension of N-
TU RGB+D 60 with 113945 samples over 120 classes cap-
ture from 106 subjects and 32 different camera setups. T-
wo evaluation benchmarks are recommended: cross-subject

(Xsub) and cross-setup (Xset). In Xsub, clips of 53 subjects
are used for training, and the rest are used for testing. In
Xset, clips of even camera IDs are used for training, and
clips of odd IDs are used for testing.

4.2. Implementation Details

For data pre-processing, we follow CrosSCLR [10] and
AimCLR [6] except for that we resize the length of skeleton
sequences to 100 frames, rather than 50 frames (Actually,
by 2× temporal sampling, we also maintain 50 frames for
each clip). The mini-batch size is set to 128.

Data Augmentation. For skeleton sequences, shear and
crop are used as the normal augmentations T . For strong
augmentations T ′, we mainly use gaussian noise, gaussian
blur, and channel mask. Since [18, 6] use more augmenta-
tions, we test if these augmentations (spatial flip, temporal
flip, rotate) work in our approach.

Self-supervised Pre-training. The baseline is Skeleton-
CLR which follows the MoCo [8] framework. The queue
size Q and temperature τ are set to 32768 and 0.07, respec-
tively. For the backbone, we adopt ST-GCN [39], but the
number of channels in each layer is reduced to 1/4 of the
original settings. For the optimizer, we use SGD with mo-
mentum 0.9 and weight decay 0.0001. The pre-training runs
300 epochs with the initial learning rate 0.1 and multiplied
by 0.1 at 250 epochs. For the two-stage training strategy,
we train 150 epochs with the loss function L1, and another
150 epochs with L2. In the second training stage, nearest
neighbors N is set to 1.

Linear Evaluation Protocol. We add a linear classifier
after the pre-trained encoder. During the linear evaluation,
we freeze the parameters in encoder and only train the pa-
rameters in linear classifier. We use SGD with momentum
0.9. The model runs 100 epochs with the initial learning
rate 3.0 and decayed by 10 at 80 epochs.

Finetune Protocol. We add a linear classifier after the
pre-trained encoder. During the finetune, we train the whole
model with SGD optimizer, the momentum is set to 0.9 and
the weight decay is set to 0.0001. The model runs 100 e-
pochs with the initial learning rate 0.01 and decayed by 10
at 80 epochs.

Semi-supervised Evaluation Protocol. We add a linear
classifier after the pre-trained encoder. During the semi-
supervised evaluation, we train the whole model with on-
ly 1% or 10% randomly selected labeled data. We choose
SGD optimizer with momentum 0.9 and weight decay
0.0001. The model runs 100 epochs with the initial learning
rate 0.01 and decayed by 10 at 80 epochs.

4.3. Ablation Study

Tempo Prediction or RVTCLR. We first compare RVT-
CLR with the tempo prediction. Table 1 shows the com-
parison results of the joint stream on the NTU RGB+D 60
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dataset using the linear evaluation protocol. It is obviously
found that tempo prediction cannot bring good performance
compared to RVTL, which verifies our claim that predict-
ing each video’s specific visual tempo results in unreason-
able action features. The outcome of AC demonstrates that
explicit consideration of apparent information also plays
an important role in modeling actions. AC+RVTL’s per-
formance proves that relative visual tempo and appearance
modeling can work collaboratively to better concentrate on
both skeleton motion and appearance clues. By further
combining NNM, the performance of RVTCLR boosts to
74.4% (79.4%) on Xsub (Xview) benchmark, surpassing
the tempo prediction by a large margin.

Table 1. Comparisons between Tempo Prediction and RVTCLR.
We report linear evaluation results of the joint stream on the NTU-
60 dataset.

Methods NTU-60
Xsub Xview

Tempo prediction 52.7 58.0
RVTL 63.1 73.4
AC 65.1 68.4
AC+RVTL 73.3 77.8
AC+RVTL+NNM 74.4 79.4

Effectiveness of RVTCLR+. We then verify the ef-
fectiveness of RVTCLR+. Table 2 shows the comparison
results of three streams. From the table, we have sever-
al observations: (1) RVTCLR performs much better than
SkeletonCLR in most cases. For example, we can ob-
tain +4.2% (+9.2%) performance gain on Xsub (Xview) in
the motion stream. By further combining DC branch, our
RVTCLR+ can still significantly improve the accuracy by
+13.3% and +12%, respectively, which shows the efficacy
of our method. (2) DC plays a more important role in the
motion and bone streams. The primary reason we believe
is due to the inherent presence of higher-order semantics in
these two streams. The sparsity of skeleton data, however,
may hinder the ability of naive contrastive learning to ful-
ly release their potential. As a result, recognition success
may be limited to relying solely on low-level information.
Our DC, however, force the model to focus on high-level
semantics, thereby enabling the learning of more discrimi-
native representations. (3) our 2-stream and 3-stream fusion
results are always better than the comparative counterparts.

We also conduct experiments in the motion stream to val-
idate the effect of DC. As shown in Table 3 (a), we first
determine whether all augmentations mentioned in [18, 6]
applicable to SDA. Compared to the normal augmentation,
we can find that gaussian noise, gaussian blur, and channel
mask work well on both benchmarks. Although the other-
s may perform better on Xsub, their results on Xview are
relatively poor. Through empirical experimentation, we de-
termine the former three augmentations as our best choice,
yielding +12.7% and +11.4% accuracy increases over using

Table 2. Linear evaluation compared with SkeletonCLR. ‘2s’ and
‘3s’ means two-stream and three-stream fusion, respectively.

Methods DC Stream NTU-60
Xsub Xview

SkeletonCLR joint 68.3 76.4
RVTCLR joint 74.4 79.4
RVTCLR+ X joint 74.7 79.1
SkeletonCLR motion 53.3 50.8
RVTCLR motion 57.5 60.0
RVTCLR+ X motion 70.8 72.0
SkeletonCLR bone 69.4 67.4
RVTCLR bone 68.1 71.7
RVTCLR+ X bone 72.2 78.4
2s-SkeletonCLR joint+motion 70.5 77.9
2s-RVTCLR joint+motion 75.7 81.6
2s-RVTCLR+ X joint+motion 77.8 82.2
3s-SkeletonCLR joint+motion+bone 75.0 79.8
3s-RVTCLR joint+motion+bone 77.2 82.0
3s-RVTCLR+ X joint+motion+bone 79.7 84.6

the normal augmentation.
FSEM is designed to emphasize the blurred joint con-

nections. As shown in Table 3 (b), IIPB brings +3.3%
performance improvement on Xview, proving its ability to
adeptly capture the local spatial features. The accuracies
of NLB are 70.0% and 70.7%, respectively, which demon-
strate that constructing global dependencies among frames
can achieve a more representative feature extraction. By
combining these two blocks, the performance of our final
FSEM further boots to 70.8% and 72.0%.

DD loss is introduced to help learn more representative
high-level features. From the Table 3 (b), we can see a large
performance drop when we replace the DD loss with the o-
riginal one. This suggests that compared to the one-hot dis-
tribution, the weakly augmented view provides more suit-
able supervision signals.

Table 3. Comparisons of DC’s each component. We report linear
evaluation results of the motion stream on the NTU-60 dataset.

SDA NTU-60
Xsub Xview

Normal 55.2 58.2
Gaussian noise 66.8 72.6
Gaussian blur 56.2 59.4
Channel mask 57.3 58.6
Rotate 55.5 57.1
Spatial flip 57.6 56.1
Temporal flip 59.4 55.9
Best Combination 67.9 69.6

(a) SDA

FSEM NTU-60
Xsub Xview

- 67.9 69.6
IIPB 68.0 72.9
NLB 70.0 70.7
IIPB+NLB 70.8 72.0

DD loss NTU-60
Xsub Xview

X 70.8 72.0
- 64.6 63.6

(b) FSEM and DD loss

4.4. Performance Comparison

Linear Evaluation. Table 4 and Table 5 show the com-
parisons on NTU-60 and NTU-120 under linear evaluation
protocol. From the Table 4, we observe that our joint-stream
RVTCLR+ achieves competitive results compared to the
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most recent SkeletonCLR [10] and AimCLR [6]. For ex-
ample, 74.7% vs 74.3% on Xsub when compared to Aim-
CLR. When multiple streams are fused, the performance of
our method can be further improved. From the Table 5, we
find that the performance of our 3s-RVTCLR+ remains at
the forefront.

Finetune Evaluation. Table 6 shows the comparison-
s on NTU-60 and NTU-120 under fineture evaluation pro-
tocol. The table reveals that our single-stream RVTCLR+
achieves 0.8%˜2.1% improvement over AimCLR on both
datasets. Notably, 3s-ST-GCN [39] is pretrained under full
supervision, and its performance is the ensemble of multi-
streams, compared to it, our single-stream RVTCLR+ can
still get comparable performance. When combining dif-
ferent streams, the accuracy of our 3s-RVTCLR+ can be
further increased by 2.6%˜5%, greatly outperforming Aim-
CLR.

Table 4. Linear evaluation results on NTU-60 dataset.
Methods NTU-60

Xsub Xview
Single-stream
LongT GAN [43] 39.1 48.1
P&C [23] 50.7 76.3
MS2L [11] 52.6 -
PCRP [38] 54.9 63.4
AS-CAL [18] 58.5 64.8
CRRL [31] 67.6 73.8
SeBiReNet [16] - 79.7
SkeletonCLR [10] 68.3 76.4
AimCLR [6] 74.3 79.7
RVTCLR+ (ours) 74.7 79.1
Three-stream
3s-SkeletonCLR [10] 75.0 79.8
3s-Colorization [41] 75.2 83.1
3s-CrosSCLR [10] 77.8 83.4
3s-AimCLR [6] 78.9 83.8
3s-RVTCLR+ (Ours) 79.7 84.6

Table 5. Linear evaluation results on NTU-120 dataset.
Methods NTU-120

Xsub Xset
P&C [23] 42.7 41.7
PCRP [38] 43.0 44.6
AS-CAL [18] 48.6 49.2
CRRL [31] 56.2 57.0
ISC [25] 67.9 67.1
3s-CrosSCLR [10] 67.9 66.7
3s-AimCLR [6] 68.2 68.8
3s-RVTCLR+ (Ours) 68.0 68.9

Semi-supervised Evaluation. As shown in Table 7,
with only 1% and 10% labeled data, the results of our 3s-
RVTCLR+ far exceed MCC [24], 3s-CrosSCLR [10] , and
3s-AimCLR. For example, 3s-RVTCLR+ increases the ac-
curacies by 2.5% and 4.6% compared with 3s-AimCLR on
NTU-120 dataset. These results suggest that the represen-
tational capacity of our learned features is considerable.

Qualitative Results. We apply t-SNE [26] with fixed
settings to show the embedding distribution of Skeleton-

Table 6. Finetune evaluation results on NTU-60 and NTU-120 das-
tasets. †means using the same bone stream. ‡means the model is
pretrained under full supervision.

Methods NTU-60 NTU-120
Xsub Xview Xsub Xset

SkeletonCLR† [10] 82.2 88.9 73.6 75.3
MCC [24] 83.0 89.7 77.0 77.8
AimCLR† [6] 83.0 89.2 76.4 76.7
RVTCLR+†(Ours) 84.4 91.3 77.2 78.4
3s-ST-GCN‡ [39] 85.2 91.4 77.2 77.1
3s-CrosSCLR [10] 86.2 92.5 80.5 80.4
3s-AimCLR [6] 86.9 92.9 80.1 80.9
3s-RVTCLR+ (Ours) 87.5 93.9 82.0 83.4

Table 7. Seim-supervised evaluation on NTU-60 and NTU-120
dastasets. * means the results are obtained by their released codes.

Methods NTU-60 NTU-120
Xsub Xview Xsub Xset

1% labeled data
ISC [25] 35.7 38.1 - -
3s-Colorization [41] 48.3 52.5 - -
3s-CrosSCLR [10] 51.1 50.0 28.6* 28.0*
3s-AimCLR [6] 54.8 54.3 34.8* 32.6*
3s-RVTCLR+ (Ours) 54.9 53.6 33.3 32.8
10% labeled data
ISC [25] 65.9 72.5 - -
3s-Colorization [41] 71.7 78.9 - -
MCC-ST-GCN [24] 55.6 59.9 40.7 43.4
MCC-2s-AGCN [24] 60.8 65.8 47.0 51.8
MCC-AS-GCN [24] 59.2 63.1 44.9 47.8
3s-CrosSCLR [10] 74.4 77.8 61.3* 61.1*
3s-AimCLR [6] 78.2 81.6 64.8* 63.7*
3s-RVTCLR+ (Ours) 79.5 83.7 67.3 68.3
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Figure 4. The t-SNE visualization of embeddings on NTU-60 X-
sub. These models are trained for 300 epochs. j, b, and m represent
joint-stream, bone-stream, and motion-stream, respectively.

CLR and our RVTCLR+ on NTU-60 Xsub benchmark. For
a fair comparison, we select the same 11 classes for visual-
ization, where each class is represented by a dot of the same
color. From the Figure 4, we can obviously see that the em-
beddings extracted from our method have better inter-class
separability and intra-class compactness, indicating that our
learned features are more discriminative.
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5. Conclusion
In this paper, we propose a Relative Visual Tempo Con-

trastive Learning framework for skeleton action represen-
tation (RVTCLR). The proposed RVTCLR combines Rel-
ative Visual Tempo Learning (RVTL) and Appearance-
Consistency (AC) into a single-branch to obtain a more
comprehensive spatial-temporal representation. Given the
inherent sparsity of skeleton sequence data compared to
RGB data, we design a new Distribution-Consistency (D-
C) branch aimed at emphasizing high-order semantics and
preventing the network from learning shortcuts. The DC
branch consists of Skeleton-specific Data Augmentation (S-
DA), Fine-grained Skeleton Encoding Module (FSEM), and
Distribution-aware Diversity (DD) Loss. We refer to this
new two-branch structure as RVTCLR+. Experimental re-
sults and visualization analysis verify that RVTCLR+ can
obtain a more discriminative skeleton action representation.
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