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Abstract

Multi-label image classification refers to assigning a set
of labels for an image. One of the main challenges of this
task is how to effectively capture the correlation among la-
bels. Existing studies on this issue mostly rely on the sta-
tistical label co-occurrence or semantic similarity of la-
bels. However, an important fact is ignored that the co-
occurrence of labels is closely related with image scenes
(indoor, outdoor, etc.), which is a vital characteristic in
multi-label image classification. In this paper, a novel
scene-aware label graph learning framework is proposed,
which is capable of learning visual representations for la-
bels while fully perceiving their co-occurrence relationships
under variable scenes. Specifically, our framework is able
to detect scene categories of images without relying on
manual annotations, and keeps track of the co-occurring
labels by maintaining a global co-occurrence matrix for
each scene category throughout the whole training phase.
These scene-independent co-occurrence matrices are fur-
ther employed to guide the interactions among label repre-
sentations in a graph propagation manner towards accurate
label prediction. Extensive experiments on public bench-
marks demonstrate the superiority of our framework.

1. Introduction

Multi-label image classification is a fundamental task in
computer vision, which requires to recognize multiple la-
bels for an image. A main issue for this task is how to fully
mine the correlation among these labels. Implicit meth-
ods [23, 5] resort to sequential models or graph models to
exploit the latent co-occurrence relationship among labels.
Instead, explicit methods directly model a co-occurrence
probability matrix among labels from data, such as dataset-
level label co-occurrence [3] and instance-level label co-
occurrence [31]. However, the former is obtained statisti-
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Figure 1. A brief illustration of the proposed scene-aware label
graph learning framework. The semantic attention module maps
the label embeddings into visual representations, and the label co-
occurrence module detects the scene category of the input image
and updates the co-occurrence frequency matrix accordingly. The
semantic interaction module constructs a label graph for the in-
teraction of label representations under the guidance of the scene-
aware co-occurrence matrix for final prediction.

cally on the entire data, which is coarse and may lead to
wrong interactions between labels. As for the latter, it is
difficult to learn an accurate co-occurrence matrix for each
image, which limits its utility in guiding label interactions.

In this work, we consider an important fact that the la-
bel co-occurrence heavily relies on the scene categories
of images. For example, we expect chairs or tables co-
occurring with persons in an indoor scene, while cars or
buildings instead in an outdoor scene. Therefore, a nat-
ural idea is to divide the training images into several in-
dependent groups according to their scene categories and
count the label co-occurrence matrix for each group sepa-
rately. Then the images in each group share the same co-
occurrence matrix for subsequent feature interactions. Ob-
viously, the obtained group-level label co-occurrence can
provide more accurate guidance for feature interaction be-
tween labels than the dataset-level one [3] and the instance-
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level one [31], However, the scene category of images is
unknown and human-expensive to annotate. It is crucial to
accurately partition training data into groups with the same
scene category without relying on annotations.

To address the aforementioned issue, we propose an ef-
fective scene-aware label co-occurrence module that main-
tains a label co-occurrence frequency matrix for each scene
category. Each matrix element represents the number of oc-
currences of the label pair for the corresponding row and
column. They are firstly initialized with zero at the be-
ginning of training, and then continuously counts the co-
occurring labels of images by detecting their scene cate-
gories throughout the whole training phase. However, due
to the lack of scene annotations, we observe the collapse
of the scene detection component and the predicted scene
distribution is always dominated by a specific scene cate-
gory in practice, which is known as the winner-take-all phe-
nomenon [21]. To overcome this, we propose an entropy-
based loss, which encourages a sharp distribution of scene
categories for a single sample but a smoother average dis-
tribution over a batch of samples. With this supervision, the
scene detection component can not only clearly identify the
scene category for an input image, but also provide a diverse
prediction on scene categories for the whole dataset.

Figure 1 illustrates a basic pipeline of the Scene-Aware
Label Graph Learning (SALGL) framework. Concretely,
for an input image and a candidate label set, label embed-
dings and visual feature maps are first extracted via a lan-
guage model and a vision backbone, respectively. They are
subsequently fed into the semantic attention module to build
alignments with each other, producing semantically related
visual representations for each label. Meanwhile, the global
pooling feature of the input image is input into the scene-
aware label co-occurrence module to detect its scene cate-
gory and update the label co-occurrence matrix accordingly.
Then, in the semantic interaction module, a label graph is
constructed with labels as nodes and the co-occurrent re-
lationships as edges. The visual representations of labels
are fed into the graph to explore their interactions under the
guidance of the scene-aware label co-occurrence. Finally,
we train a separate classifier for each label with its visual
representation to determine whether the current label exists
in the image. Overall, the main contributions of this paper
are summarized as follows:

• We are the first to explore the correlation between la-
bel co-occurrence and scene categories, and propose
an effective approach to dynamically model the label
co-occurrence for adapting the variable image scenes.

• We propose an advanced entropy-based auxiliary loss
that enables unsupervised learning of scene informa-
tion of images from dataset and prevents the scene de-
tection component from collapsing.

• We frame an end-to-end label graph learning frame-
work capable of perceiving image scenes and enrich-
ing label representations, which achieves state-of-the-
art performance on public benchmarks.

2. Related Work

Multi-label image classification task has attracted in-
creasing interest for many years. Early works [26, 29] resort
to object detection to generate a set of region proposals for
label prediction. Subsequent region-based works focus on
spatial dependency among object regions. Wang et al. [25]
localized object regions through a spatial transformer layer
and utilized a LSTM (Long Short-Term Memory) [13] unit
to capture the dependencies among these regions, which are
finally employed to predict label confidences sequentially.
Chen et al. [2] proposed a recurrent attention based rein-
forcement learning framework to iteratively discover a se-
quence of informative regions and explicitly modeled long-
term dependency among them for label recognition. Chen
et al. [3] explored the semantic interactions between the
visual representations of labels under the guidance of sta-
tistical label co-occurrence. Wu et al. [27] resorted to the
graph matching method to simultaneously explore instance
spatial correlation, label semantic dependency and instance-
label matching possibility. However, these region-based ap-
proaches suffer from the time penalty of object detection,
and only provide limited performance in label prediction.

Recently, many studies have been explored to capture the
label correlation. Sequence-based methods [23, 30, 1] ex-
plored the semantic correlation among label vector repre-
sentations by RNN. Graph networks also have been used
to capture label dependency. Chen et al. [5] constructed
a directed label graph and utilized GCN to map the graph
into a set of independent label classifiers. Wang et al. [24]
and Chen et al. [3] built a label graph with the statisti-
cal co-occurrence information from data for label represen-
tation learning. With the rise of vision transformer [11],
transformer-based architectures have been the primary con-
siderations for multi-label classification. Lanchantin et al.
[15] proposed a transformer encoder based framework to
capture the complex dependencies among visual features
and labels. Liu et al. [18] proposed to query the existence of
a label on the visual features with label embeddings by the
transformer decoder. Zhu et al. [34] proposed a two-stream
transformer network for exploring label correlations and
cross-modal textual-visual interactions jointly. TSFormer
[34] proposed a two-stream transformer framework to ex-
plore the label dependencies and cross-modal correlations
as well as spatial correlations simultaneously for robust la-
bel prediction. Despite their success, these methods lack
fine-grained mining of label associations, ignoring the key
factor affecting label co-occurrence, namely scene.
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Figure 2. The detailed illustration of the proposed scene-aware label graph learning framework. To build the label graph, the semantic
attention module generates visual representations for labels to initialize nodes’ features, and the scene-aware label co-occurrence module
counts the co-occurrence matrix for each scene category and assigns the weights for edges. The semantic interaction module propagates
messages in the graph and produces interacted representations of labels for prediction.

3. Scene-Aware Label Graph Learning

3.1. Overview

Our SALGL framework takes an image and a candidate
label set as inputs, and maps them into semantic embed-
dings and visual feature maps by a language model and
a vision backbone, respectively. Next, a semantic atten-
tion module is introduced to build alignments between two
modalities, producing semantically related visual represen-
tations for each label. Meanwhile, the scene-aware label
co-occurrence module takes feature maps as input to detect
scene category of the input image, and updates correspond-
ing label co-occurrence matrix with its co-occurring labels.
Then, in the semantic interaction module, a label graph is
constructed to explore the interactions between label repre-
sentations under the guidance of the scene-aware label co-
occurrence. Finally, we train a separate classifier for each
label with its visual representation to determine whether the
current label exists in the input image. Figure 2 illustrates
the detailed pipeline of the proposed SALGL framework.

3.2. Semantic Attention Module

Given a candidate label set L = {l0, l1, · · · , ln−1} with
n being the number of labels, we use a language model
to obtain label embeddings, denoting as {ti}n−1

i=0 , where
ti ∈ RdL and dL is the dimension of label embeddings.
Note that label embeddings are fixed and do not require
end-to-end training with the whole framework. For an in-
put image I , a vision backbone is used to extract its feature

maps, denoting as {vj}m−1
j=0 , where vj ∈ RdI is the fea-

ture vector at the j-th spatial region of the input image I
and m is the number of spatial regions. Then, we resort to
the low-rank bilinear pooling model [14] to build alignment
matrix between visual feature maps and label embeddings.
Concretely, it first maps the regional feature vj and label
embedding ti into a joint embedding space:

xij = PT
(
tanh

((
UTvj

)
⊙ (VT ti)

))
+ b, (1)

where tanh(·) is the hyperbolic tangent function, U ∈
RdI×d1 , V ∈ RdL×d1 , P ∈ Rd1×d2 and b ∈ Rd2 are all
learnable parameters. ⊙ is the element-wise multiplication
operation. d1 and d2 are the dimensions of the joint em-
bedding space and the output features, respectively. Then a
normalized attention score is calculated as:

αij =
exp(Φa(xij))∑m−1

j′=0 exp(Φa(xij′))
, (2)

where Φa(·) is a learnable feed-forward network that maps
input vector to a logit. As a result, the visual representation
of label li is acquired by the weighted sum of all regional
features of the input image I , formulated as:

fi =

m−1∑
j=0

αijvj . (3)

3.3. Scene-Aware Label Co-occurrence Module

In this section, we introduce an effective approach to
model the label co-occurrence relations under the variable
scenes without relying on manual annotations.

1475



Scene category detection. Assuming a total of K scene
categories in the training data, we detect the scene category
of the input image I based on its contextual feature, which
is obtained by a global average pooling operation along the
spatial dimension, formulated as:

v =

m−1∑
j=0

vj/m. (4)

Then, the probability that the input image I belongs to the
k-th scene category is calculated as follows:

πk =
exp(wT

k v)∑K−1
k′=0 exp(w

T
k′v)

, (5)

where wk for k ∈ {0, 1, ...,K − 1} is a parameter vector to
be learned and wk ∈ RdI . It acts as a prototype for the k-th
scene category and clusters related images together. With
the obtained probability distribution of image scenes, the
category with the highest probability is determined as the
scene category that the image I belongs to, formulated as:

s = argmax
k∈{0,1,··· ,K−1}

πk. (6)

In this way, the s-th scene category is assigned to the input
image I , whose labels are subsequently used to update the
s-th co-occurrence matrix accordingly.

Label co-occurrence modeling. In this work, we aim
to mine the label co-occurrence relations under variable
scenes. To this end, a label co-occurrence frequency ma-
trix is maintained for each scene category, which tracks co-
occurring labels of the input image according to its scene
category during the training phase. Specifically, the la-
bels of image I are paired with each other, which are con-
sidered as the co-occurrent labels of the s-th scene cate-
gory. For convenience, they are denoted as a multi-hot
vector y = [y0, y1, · · · , yn−1]

T , where yi ∈ {0, 1} for
i ∈ {0, 1, · · · , n − 1} is a binary indicator. yi = 1 if the
label li presents in the image I and 0 otherwise. Then the
label co-occurrence frequency matrix is updated:

Cs = Cs + yyT , (7)

where Cs ∈ Rn×n is a globally maintained frequency ma-
trix of the s-th scene category throughout the whole train-
ing phase and initialized with zero. Note that its diagonal
element csii counts the number of occurrences of the label
li, and off-diagonal element csij counts the number of co-
occurrences of the label pair li and lj . Hence, the probabil-
ity that the label lj appears in an image in the presence of
the label li in the s-th scene category is computed as:

psij =
csij
csii

. (8)

In this way, the co-occurrence probability matrix Ps of the
s-th scene category is obtained. As the training procedure
goes, each co-occurrence frequency matrix continuously
counts the co-occurring labels for the corresponding scene
category, and the co-occurrence probability matrix eventu-
ally converges to a steady distribution.

Auxiliary loss function. In practice, due to the lack of
effective annotations of scene categories as supervision in-
formation, the scene detection component is prone to col-
lapse and dominated by a specific scene category, which is
known as the winner-take-all phenomenon [21]. To address
this issue, we propose an entropy-based loss to assist the
learning of the scene detection component. Concretely, for
a batch of samples with {πb0, πb1, · · · , πb(K−1)} being the
scene distribution of the b-th sample, the sample-level en-
tropy loss is denoted as:

L1 = − 1

B

B−1∑
b=0

K−1∑
k=0

πbk log πbk, (9)

where B is the batch size. Notably, the smaller the L1,
the sharper the scene distribution. For the batch-level en-
tropy loss, we first compute the average distribution along
the batch dimension, denoting as {π0, π1, · · · , πK−1} with
πk = 1

B

∑B−1
b=0 πbk, then the loss is formulated as follows:

L2 =

K−1∑
k=0

πk log πk − log
1

K
, (10)

where the left item is the negative entropy of the average
distribution and the right item is the negative entropy of the
uniform distribution on K scene categories. Obviously, the
smaller the L2, the more balanced the average distribution.
Finally, auxiliary loss function is defined as:

Len = L1 + L2. (11)

As the loss Len decreases, the scene detection component
can not only clearly identify the scene category for an im-
age, but also avoid collapsing into a single scene model.

3.4. Semantic Interaction Module

In this module, the visual representations of labels inter-
act with each other in a graph propagation mechanism under
the guidance of the scene-aware label co-occurrence prob-
ability matrix. Firstly, with the maintained co-occurrence
probability matrices {P0,P1, · · · ,PK−1} and the pre-
dicted scene probability distribution of the input image I , its
co-occurrence probability matrix is calculated in the form of
weighted summation:

PI =

K−1∑
k=0

πkP
k. (12)
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Then, we construct a directed label graph G = {V,E} with
the node set V being labels and the edge set E being the
co-occurrence relations of the neighboring nodes. Natu-
rally, the weights of edges can be initialized by the label co-
occurrence probability matrix PI . Afterwards, messages
are propagated among nodes through the graph G to learn
contextual representations for all nodes. Specifically, the
feature vector of node vi at the t-th time step is denoted as
ht
i and initialized with the visual representation of label li,

i.e., h0
i = fi. Then the message gathered by node vi from its

neighboring nodes at t-th time step is formulated as follows:

mt
i =

n−1∑
j=0,j ̸=i

pIjih
t−1
j . (13)

In this way, graph G encourages message propagation if the
node vi has a high co-occurrent probability with the node
vj , while suppresses message propagation otherwise.

After that, we update node vectors via a gated recurrent
update mechanism [16, 3], which is known as an effective
approach for graph propagation. We denote it as Φg(·) and
the update process is formulated as:

ht
i = Φg(h

t−1
i ,mt

i; Θ), (14)

where Θ denotes learnable parameters of Φg(·). The pro-
cess repeats T times to fully exploit the interactions among
label representations with the guidance of the scene-aware
label co-occurrence matrix. In this way, labels with higher
co-occurring probability in the current scene distribution
have more interactions, thus enabling to refine their visual
representations. Consequentially, the final vector hT

i of the
node vi encodes both the features of label li and the contex-
tual message from other labels.

3.5. Label Prediction Module

For label prediction, the feature vectors h0
i and hT

i of
the label li are firstly concatenated and input into a feed-
forward network to produce a joint representation:

oi = Φc([h
0
i ,h

T
i ]), (15)

where [·] is the concatenation operation and Φc is a learn-
able multi-layer perceptron. Then, a binary classifier is
framed to compute the confidence score of the presence of
label li in the input image I , formulated as:

pi = σ(wT
i oi), (16)

where wi ∈ RdI is a learnable parameter vector. σ(·) is the
sigmoid function that maps the input logit into a probability.
Then following recent works [20, 18], the asymmetric focal
loss is adopted to calculate the loss for the input sample
(I,y), formulated as:

Lcls =
1

n

n−1∑
i=0

{
(1− pi)

γ+

log pi, yi = 1,

pγ
−

i log(1− pi), yi = 0,
(17)

where the γ+ and γ− are hyper-parameters and set as 0 and
2, respectively. Together with the auxiliary loss, the final
loss function is defined as:

L = Lcls + λLen, (18)

where λ is a hyper-parameter to make a trade-off between
the two losses.

4. Experiments
4.1. Implementation Details

In this work, we use pretrained Bert [9] as the language
model to initialize label embeddings, which are fixed during
training. For a fair comparison, the input images are resized
into 448× 448 in both training and testing phases through-
out all experiments. The whole framework is trained for 80
epochs using AdamW [19] optimizer with a batch size of
128 and 1-cycle policy [22] with a maximum learning rate
of 0.0001. Following the previous works [20, 18], we adopt
the RandAugment [7] and Cutout [10] for data augmenta-
tion, and apply exponential moving average to model pa-
rameters with a decay of 0.9997. The graph message prop-
agation times T is empirically set as 3. The hyper-parameter
λ is set as 1.0 throughout all experiments.

4.2. Comparisons with State-of-the-Arts

Results on Pascal VOC 2007. Pascal VOC 2007 [12] is
a most widely used dataset to evaluate the multi-label im-
age classification task. It has 20 label categories in total
and 9,963 images, in which 5,011 images form train-val set
and remaining 4,952 images are taken as test set for eval-
uation. Following common practice, we train the proposed
framework on the train-val set and evaluate it on the test set.
The number of scene categories on this dataset is set as 3
and experimental results are reported in Table 1. Be aware
that the upper part displays the results of methods whose
backbone is pretrained on the ImageNet [8], while the lower
part is those methods that are further pretrained on the Mi-
crosoft COCO dataset [17]. From the table we can see
that our SALGL framework achieves best results on both
kinds of pre-training settings, reaching 95.1% and 96.7% in
mAP, respectively. Particularly, compared with the SSGRL
[3] and ADD-GCN [31] that are based on dataset-level and
instance-level label co-occurrence respectively, our SALGL
framework implements considerable performance gains de-
spite their use of larger input resolution (576×576), arriving
1.7% and 0.7% in mAP respectively, suggesting the superi-
ority of modeling the scene-based label co-occurrence. It is
also worth noting that our SALGL shows significant merits
in recognizing labels like bus, motorbike and sofa.

Results on NUS-WIDE. The NUS-WIDE [6] is a web
dataset with 161,789 images for training and 107,859 for
testing. After further manual annotation with 81 concepts,
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Method plane bike bird boat bottle bus car cat chair cow table dog horsemoto persnplant sheep sofa train tv mAP

SSGRL† [3] 99.5 97.1 97.6 97.8 82.6 94.8 96.7 98.1 78.0 97.0 85.6 97.8 98.3 96.4 98.8 84.9 96.5 79.8 98.4 92.8 93.4
ML-GCN [5] 99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0
TSGCN [28] 98.9 98.5 96.8 97.3 87.5 94.2 97.4 97.7 84.1 92.6 89.3 98.4 98.0 96.1 98.7 84.9 96.6 87.2 98.4 93.7 94.3
ASL [20] - - - - - - - - - - - - - - - - - - - - 94.4
CSRA [33] 99.9 98.4 98.1 98.9 82.2 95.3 97.8 97.9 84.6 94.8 90.8 98.1 97.6 96.2 99.1 86.4 95.9 88.3 98.9 94.4 94.7
SALGL 99.9 98.8 98.3 98.2 81.6 96.5 98.1 97.8 85.2 97.0 89.6 98.5 98.7 97.1 99.2 86.9 96.4 89.9 99.5 95.2 95.1
SSGRL† [3] 99.7 98.4 98.0 97.6 85.7 96.2 98.2 98.8 82.0 98.1 89.7 98.8 98.7 97.0 99.0 86.9 98.1 85.8 99.0 93.7 95.0
ASL [20] - - - - - - - - - - - - - - - - - - - - 94.6
CSRA [33] - - - - - - - - - - - - - - - - - - - - 96.0
ADD-GCN† [31] 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0
SALGL 100.0 99.2 98.8 98.6 87.1 98.1 99.0 99.2 87.9 98.9 92.3 98.8 99.1 98.9 99.4 89.5 99.0 93.7 99.8 97.1 96.7
Table 1. Experiments results on the Pascal VOC 2007 dataset in terms of class-wise precision (AP in %) and mean average precision (mAP
in %). The optimal scores are highlighted in bold. Note that the symbol † denotes using a large input resolution (576×576).

Method mAP All Top-3
CF1 OF1 CF1 OF1

CNN-RNN [23] 56.1 - - 34.7 55.2
CMA [32] 61.4 60.5 73.7 55.5 70.0
GM-MLIC [27] 62.2 61.0 74.1 55.3 72.5
ICME [4] 62.8 60.7 74.1 56.3 70.6
ASL [20] 63.9 62.7 74.6 - -
Q2L [18] 65.0 63.1 75.0 - -
SALGL 66.3 64.1 75.4 59.5 71.0
Table 2. Experimental results on the NUS-WIDE dataset under the
settings of all and top-3 labels (mAP in %). The optimal scores are
highlighted in bold.

125,449 images are left as training set and 83,898 images
as test set, respectively. Compared with other benchmarks,
NUS-WIDE is more noisy and challenging. The number of
scene categories on this dataset is set as 2 and experimen-
tal results are reported in Table 2. As shown, our SALGL
framework achieves state-of-the-art performance and im-
proves the mAP from 65.0% to 66.3%, a prominent perfor-
mance gain of 1.3% compared to the sub-optimal method,
namely Q2L [18]. Besides, on other important metrics (CF1
and OF1), our SALGL almost implements the best scores.
The significant performance boost shows the superior abil-
ity of our SALGL in learning from noisy data.

Results on Microsoft COCO. Microsoft COCO (MS-
COCO) [17] contains 82,081 images for the training set
and 40,137 images for the validation set, and covers 80 la-
bel categories with almost 2.9 labels per image. Follow-
ing previous works [3, 20, 18], we report the precision,
recall and F1-measure under the settings of all and top-3
labels. The number of scene categories on this dataset is
set as 6. To better evaluate our SALGL framework, we
choose two widely used backbone networks in computer
vision, namely convolution-based ResNet101 [33] and self-
attention-based Vision Transformer (ViT) [11]. Experi-
mental results are presented in Table 3. As shown in the

upper part, our SALGL framework accomplishes 85.8%
and 87.3% in mAP on the two typical input resolutions
(448×448 and 576×576), exceeding the sub-optimal scores
by 0.8% in mAP, which is a considerable improvement in
terms of multi-label image classification task. Analogously,
pronounced performance advantages are also achieved by
our SALGL on both pre-training settings when using ViT-
L16 [11] as the backbone network, as shown in lower part.
Overall, our SALGL implements best scores on all impor-
tant metrics (mAP, CF1 and OF1), demonstrating its advan-
tageous performance in multi-label classification task.

4.3. Ablation Study

In this section, we investigate the effects of key designs
on the performance of the proposed SALGL framework.

The effect of key modules. We first explore the ef-
fectiveness of the proposed modules. Experimental results
are listed in Table 4. As shown, compared to the back-
bone network, the semantic attention module (SA) raises
the mAP from 83.1% to 84.7% and 63.9% to 64.6% on the
MS-COCO and NUS-WIDE datasets respectively. Besides,
with the equipment of the semantic interaction module (SI),
the performance is further improved, reaching 85.1% and
66.0% in mAP. These remarkable performance improve-
ments demonstrate the effectiveness of these two modules.
Most importantly, by considering the scene-based label co-
occurrence relationships (K=6 and K=2), extra 0.7% and
0.3% gains in mAP are achieved compared to the dataset-
level label co-occurrence (K=1) on the two datasets, sug-
gesting the effectiveness of the proposed scene-aware label
co-occurrence module. Overall, our SALGL achieves re-
markable performance gains compared to the backbone net-
work, reaching 2.7% and 2.4% in mAP on the MS-COCO
and NUS-WIDE datasets respectively, proving its superior-
ity in terms of multi-label image classification task.

The effect of auxiliary loss. To explore the effect of
auxiliary loss, we remove it from the final loss function
and observe the change in the performance of the proposed
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Method Backbone Resolution mAP
All Top-3

CP CR CF1 OP OR OF1 CP CR CF1 OP OR OF1

ML-GCN [5] ResNet101 448×448 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7
CMA [32] ResNet101 448×448 83.4 82.1 73.1 77.3 83.7 76.3 79.9 87.2 64.6 74.2 89.1 66.7 76.3
TSGCN [28] ResNet101 448×448 83.5 81.5 72.3 76.7 84.9 75.3 79.8 84.1 67.1 74.6 89.5 69.3 69.3
CSRA [33] ResNet101 448×448 83.5 84.1 72.5 77.9 85.6 75.7 80.3 88.5 64.2 74.4 90.4 66.4 76.5
ASL [20] ResNet101 448×448 85.0 - - 80.3 - - 82.3 - - - - - -
Q2L-R101 [18] ResNet101 448×448 84.9 84.8 74.5 79.3 86.6 76.9 81.5 78.0 69.1 73.3 80.7 70.6 75.4
SALGL ResNet101 448×448 85.8 87.2 74.5 80.4 87.8 77.6 82.4 90.4 65.7 76.1 91.9 67.9 78.1
SSGRL [3] ResNet101 576×576 83.6 89.5 68.3 76.9 91.2 70.7 79.3 91.9 62.1 73.0 93.6 64.2 76.0
C-Tran [15] ResNet101 576×576 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6
ADD-GCN [31] ResNet101 576×576 85.2 84.7 75.9 80.1 84.9 79.4 82.0 88.8 66.2 75.8 90.3 68.5 77.9
Q2L-R101 [18] ResNet101 576×576 86.5 85.8 76.7 81.0 87.0 78.9 82.8 90.4 66.3 76.5 92.4 67.9 78.3
SALGL ResNet101 576×576 87.3 87.8 76.8 81.9 88.1 79.5 83.6 91.1 66.9 77.2 92.4 69.0 79.0
ViT-L16 [11] ViT-L16 448×448 80.4 83.8 67.0 74.5 86.6 72.0 78.6 86.8 60.0 70.1 90.3 64.7 75.4
CSRA [33] ViT-L16 448×448 86.9 89.1 74.2 81.0 89.6 77.1 82.9 92.5 65.8 76.9 93.4 68.1 78.8
SALGL ViT-L16 448×448 87.6 88.4 77.6 82.6 88.3 80.3 84.1 92.1 67.6 78.0 92.6 69.9 79.7
ViT-L16 [11] ViT-L16(22k) 448×448 89.4 88.4 81.4 84.8 88.5 83.4 85.9 92.5 70.4 79.9 93.4 71.5 81.0
SALGL ViT-L16(22k) 448×448 90.1 90.4 80.8 85.3 89.9 83.0 86.3 93.8 69.8 80.0 94.0 71.5 81.2
Table 3. Experimental results on the Microsoft COCO dataset under the settings of all and top-3 labels (mAP in %). The optimal scores
are highlighted in bold. The backbones noted with 22k are pretrained on the ImageNet 22k dataset.

Method MS-COCO NUS-WIDE
K=1 K=6 K=1 K=2

ResNet-101 83.1 - 63.9 -
ResNet-101 + SA 84.7 - 64.6 -

ResNet-101 + SA + SI 85.1 85.8 66.0 66.3
Table 4. The effect of key modules on the performance of the pro-
posed SALGL framework (mAP in %). “SA” and “SI” are the
abbreviations of semantic attention module and semantic interac-
tion module, respectively. K is the number of scene categories.

Method MS-COCO NUS-WIDE
Entropy mAP Entropy mAP

SALGL w/o Len 0.001 85.3 0.037 66.1
SALGL 1.759 85.8 0.686 66.3

Table 5. The effect of auxiliary loss on the performance of the
proposed SALGL framework (mAP in %).

SALGL. Experimental results are reported in Table 5. The
entropy is calculated from the number distribution of scene
categories on the test set; the higher the entropy, the more
balanced the predicted scene distribution, and vice versa.
The table shows that the entropy of scene distribution in the
absence of the auxiliary loss is very low on both datasets.
This is, the scene distribution is very sharp and dominated
by a specific scene category. In contrast, with the help of
auxiliary loss, the issue is alleviated and the scene distribu-
tion is more balanced, suggesting its effectiveness in assist-
ing the SALGL to detect the scene of the input image.

The effect of graph propagation. We also explore the
effect of graph propagation. Experimental results are dis-
played in Figure 3. As shown, the performance of SALGL

0 1 2 3 4 5
Propagation Time

84.6
84.8
85.0
85.2
85.4
85.6
85.8

m
AP

 (%
)

Figure 3. The effect of graph propagation time T on the perfor-
mance of the proposed SALGL framework.

rises rapidly at the initial propagation stage, and reaches a
maximum score in mAP when T=3. After that, the curve
shows a downward trend due to the over-smoothing prob-
lem. Notably, SALGL benefits a lot from the graph propa-
gation, reaching a gain of 1.9% in mAP, showing the effec-
tiveness of the introduced graph propagation mechanism.

4.4. Visualization and Analysis

In this section, we first look at the six scene categories
detected by the scene detection component on the Microsoft
COCO dataset to investigate whether it works as expected.
Note that the diagonal elements of the label co-occurrence
frequency matrices {C0,C1, · · · ,CK−1} count the num-
ber of labels whose images are classified into the correspond
scene category during the whole training phase. Therefore,
we create word cloud figures based on these diagonal el-
ements to better understand the label preferences of these
scene categories. As shown in Figure 5, it is clear that
the six scene categories are traffic, animals, furniture, food,
sports and transport. Their distinct contrasts demonstrate
the efficacy of the scene detection component.
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Figure 4. Visualization of label co-occurrence probabilities of two scene categories and their images with top confidence scores. Some
labels in heat maps have been shortened, such as mcycle for motorcycle, tlight for traffic light, ssign for stop sign, pmeter for parking meter,
pplant for potted plant, dtable for dining table and kboard for keyboard.
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Figure 5. The word cloud visualization on the frequency distribu-
tion of labels under different scene categories.

Then, we visualize the label co-occurrence probabilities
of two typical scene categories as well as their images with
top confidence scores. As shown in Figure 4, we can see
from the images exhibited on the left part that two scene
categories favors outdoor images of traffic and indoor im-
ages of furniture, respectively. With this observation, we
carefully choose 10 related labels from the candidate set and
visualize their co-occurrence probabilities with each other.
As shown in the heat maps on the right, label co-occurrence
probabilities between the two scene categories have a large
difference, proving the capacity of our SALGL in modeling
scene-aware label co-occurrence relationships.

Furthermore, by focusing on the rows of person on the
heat maps (highlighted in dashed boxes), we investigate
how scene category affects the probabilities that other la-
bels appear in the presence of person. In the middle column,
the traffic-related labels (car, bus and traffic light, etc.) are
more likely to co-occur with person in the traffic scene than
in the furniture scene, where the co-occurrence probabilities
are nearly zero. As a comparison, in the right column, the
labels associated to furniture (couch, dining table and chair,
etc.) have higher chances of co-occurring with person in

the furniture scene than in the traffic scene. Notably, our
SALGL is competent to detect the scene categories of im-
ages and further determine reasonable co-occurrence prob-
abilities of their labels, thus providing precise guidance for
subsequent graph-based semantic interaction.

5. Conclusion

In this paper, we propose a novel scene-aware label
graph learning framework for multi-label image classifica-
tion. Concretely, the scene-aware label co-occurrence mod-
ule maintains a label co-occurrence matrix for each scene
category and tracks co-occurring labels during the training
phase, which is used to guide the interactions of label rep-
resentations via graph propagation. An advanced entropy-
based auxiliary loss is proposed to prevent it from collaps-
ing. Experimental results on public benchmarks demon-
strate the superiority of our SALGL framework.
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