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Abstract

Non-exemplar class-incremental learning aims to rec-
ognize both the old and new classes without access to
old class samples. The conflict between old and new
class optimization is exacerbated since the shared neural
pathways can only be differentiated by the incremental
samples. To address this problem, we propose a novel
self-organizing pathway expansion scheme. Our scheme
consists of a class-specific pathway organization strategy
that reduces the coupling of optimization pathway among
different classes to enhance the independence of the feature
representation, and a pathway-guided feature optimization
mechanism to mitigate the update interference between the
old and new classes. Extensive experiments on four datasets
demonstrate significant performance gains, outperforming
the state-of-the-art methods by a margin of 1%, 3%, 2% and
2%, respectively.

1. Introduction
Since deep neural networks have achieved good perfor-

mance in fully supervised scenarios, how to extend this
learning capability to open environment has attracted great
attention. Particularly, it is essential to ensure that the
network can continuously learn new knowledge while main-
taining the abilities to identify old tasks (i.e., incremental
learning [8, 18]). Fine-tuning the network directly with
new data can lead to a serious bias of the representation
and classifier, which is often referred to as catastrophic
forgetting. Due to privacy and hardware limits, old samples
are usually unavailable for joint training, making it more
difficult to maintain the old class performance in the sub-
sequent optimization process. In this paper, we focus on
this ability to continuously learn new tasks without any old

∗Co-first Author. †Corresponding Author.

samples or exemplars, which is called non-exemplar class-
incremental learning (NECIL) [25, 27, 30, 31, 33].

Most methods maintain the feature representation of
old classes by means of various distillation loss functions
[8, 10]. Although catastrophic forgetting is somewhat
mitigated, incremental performance still suffers from the
confusion between the old and new class in the feature
space. Furthermore, in the absence of old class samples,
the degree of forgetting is only related to the initial model
and incremental samples [31]. Existing NECIL works
[25,30] mainly focus on enhancing the overall performance
by improving the discrimination and generalization of the
initial model, which brings a significant improvement on
the incremental performance.

Instead, we focus on the impact of incremental samples
on the optimization process. Intuitively, since different
incremental classes cause disparate feature confusion, the
interference on the old class performance is also different
even if initialized from the same model [31, 33]. To
further explore the association, we estimate the inter-class
confusion by measuring the status of feature activation [29]
in existing incremental model. As shown in Fig. 1 (b), we
filter out the positions of strongly activated modules as the
class-specific pathways [19], and find that the pathway of
incremental class is commonly confused with the previous
ones in the baseline. Furthermore, it can be seen in Fig.
1 (a) that the degree of pathway overlap (i.e., similarity)
between the old class and incremental class is positively
correlated with the forgetting degree, which motivates us
to address the interference problem from the perspective of
pathway optimization.

Based on the above observation, we propose a self-
organizing pathway expansion scheme to learn a pathway-
aware representation, mitigating the feature interference
during the subsequent incremental process. The scheme is
mainly manifested in two aspect. Firstly, during the initial
phase, we adopt the class-specific pathway organization
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(a) Correlation statistics. (b) The t-SNE visualization of filtered pathways.

Figure 1. Motivation of our method. (a) The accuracy degradation of old classes (i.e. forgetting rates in the horizontal coordinate) is
positively correlated to the corresponding pathway similarity with incremental classes. The concept of pathway [19] is formed from
the aggregation of important modules, which are filtered out by the contribution to the final recognition performance. (b) In standard
classification method (i.e., baseline in Sec. 3.2), the direct adoption of an activation-like rule [33] makes it hard to measure inter-class
overlap as the distribution implicitly optimized for classes is haphazard. In contrast, the discriminative pathway in our method brings out
lower inter-class overlap, which benefits the mitigation of feature confusion. All above experiments are conduct on ImageNet-Full dataset.

strategy to enhance the independence of feature represen-
tation by forcing the optimization pathways specific to
different classes. A global pathway planner is utilized to
explicitly select the most relevant modules, facilitating the
pathway identification. It is noted that we do not modify
the network structure, but only divide the output channels
of each convolution module to match the output of the
pathway planner. Secondly, during the incremental phases,
we introduce a pathway-guided feature update mechanism
to promote the effectiveness of new classes involved in
incremental optimization by adjusting the classification
weight with the pathway similarity. Since the pathway value
is either 0 or 1, we calculate the intersection of union (i.e.,
IoU) value to better measure the class relevance, reducing
the interference of vector normalization. Furthermore,
an incremental pathway update mechanism is proposed to
ensure the long-term effect by alternating the optimization
of the pathway planner and feature representation. To
summarize, our main contributions are as follows:

1) A self-organizing pathway expansion scheme is pro-
posed for non-exemplar incremental learning, in which a
progressive decoupling optimization is accomplished by a
class-specific pathway organization strategy, resulting in a
pathway-aware representation.

2) A pathway-guided feature update mechanism is pro-
posed, which utilizes the similarity of pathways to guide the
optimization of incremental samples.

3) Extensive experiments are performed on benchmark
including CIFAR-100, TinyImageNet, ImageNet-Subset
and ImageNet-Full datasets, and the results demonstrate the
superiority of our method over the state-of-the-art.

2. Related Work
2.1. Incremental Learning

As deep learning research advances, there is a growing
demand for continual learning [1, 5, 11, 28, 32], which

requires the network to learn new tasks without forgetting
the old knowledge to achieve the stability-plasticity trade-
off. Class-incremental learning (CIL [8, 9, 18, 23, 24]),
a difficult type in continual learning, has attracted much
attention due to the agnosticism to task identity [21, 22].

Recently, some works [25,27,30,31] focus on a challeng-
ing but practical NECIL problem, where no past data can
be stored due to equipment limits or privacy security. [27]
estimates the semantic drift of the initial model inherited
from the base phase, and compensates the prototypes in
each test phase. [25] inverts the old samples from the initial
model for the joint distillation. [30, 31] consider to enhance
the generalization of the representation to learn more trans-
ferable features for future tasks. We follow their NECIL
settings. However, different from their work focusing on
the utilization and enhancement of the initial model, we
mainly consider the rectification of the incremental samples
on joint classification and distillation process.

2.2. Neural Pathways

To enhance the adaptation of the network to new tasks,
several continual learning methods [4, 17] have been pro-
posed to decouple the learning process from the perspective
of pathway. However, the targeted models are continuously
expanded with the update of pathway, which is difficult to
adapt to the standard classification network. The expansion
direction of pathway tends to be selected randomly, making
it hard to search for an explanation. In this paper, we
target on the pathway learning on the standard network
without changing the structure, and guiding the incremental
optimization based on the pathway relationship.

3. Method
3.1. Problem Description

The NECIL problem is defined as follows. Here we
denote Dt as the training set at the current phase t, which
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(Eq. 16)(Eq. 7)

Eq. 3

Eq. 17

Figure 2. Overall pipeline of our proposed self-organized pathway expansion scheme for NECIL. Our scheme consists of a class-specific
pathway organization strategy that reduces the coupling of optimization pathway among different classes, and a pathway-guided feature
update mechanism to mitigate the update interference between the old and new classes.

consists of the sample set Xt and label set Yt. Our task
is to train the model from a continuous data stream, i.e.,
training sets D0, D1, · · ·DT , where labels of a set Xi (0 ≤
i ≤ T ) are from the set Yi, and T represents the number
of incremental phases. It should be mentioned that all the
incremental classes are disjoint, that is, Yi∩Yj = ∅(i ̸= j).
At the current phase t, there are no old training sets (i.e.,
D0:t−1) in memory, but incremental samples (i.e., Dt) for
the current phase. To measure the performance of models
at current phase t, we calculate the classification accuracy
on the test set Zt, in which the classes are from all the seen
label sets Y0 ∪ Y1 · · · ∪ Yt.

3.2. Baseline for NECIL

Following the paradigm of existing NECIL work [25,
30, 31, 33], we adapt distillation-based CIL methods [18]
to the NECIL setting as the baseline. Specifically, at the
incremental phase (i.e., t > 0), a standard classification
model that consists of the feature extractor fθt

and classifier
gϕt

should be optimized under full supervision (i.e., D0:t),

min
θt,ϕt

Lt = Lcls(θt,ϕt;D0:t−1) + Lcls(θt,ϕt;Dt), (1)

Lcls(θt,ϕt;Dt) =
∑
x∈Xt

∑
y∈Yt

y · log(gϕt
(fθt

(x))), (2)

where Lt represents the overall loss function for feature
optimization. However in the NECIL setting, since the
previous training sets are unavailable, the corresponding
loss Lcls(θt,ϕt;D0:t−1) for both the feature extractor and
classifier is missing, leading to a serious bias to current

classes. To solve the problem, existing methods [8, 9]
replace the old classification supervision with the feature
distillation and classifier correction. Specifically, the pa-
rameters θt−1 of the old feature extractor from previous
phase t − 1 is frozen and saved during each incremental
phase t. To maintain the old informative feature, the
knowledge distillation Lkd is used to ensure the similarity
between the current representation fθt

(x) and the previous
one fθt−1

(x):

min
θt

Lkd(θt;θt−1, Dt) =
∑
x∈Xt

∥∥fθt
(x)− fθt−1

(x)
∥∥
2
,

(3)
where ∥·∥2 denotes Euclidean Norm. As there are no
exemplars for balanced classifier optimization in NECIL,
we turn to consider the class-representative prototypes
P0:t−1 [31] in the deep feature space. Specifically, we
compute and memorize one prototype pc ∈ P0:t−1 for each
class c as:

pc = E(x,y)∼D0:t−1
[fθt(x) | y = c] . (4)

In each training iteration, we choose to oversample [3]
memorized prototypes P0:t−1 as training prototypes P̃0:t−1

by the ratio of batch size. Training prototypes are directly
involved in the standard classification optimization, achiev-
ing the augmentation of the classifier, which is consistent
with the baseline in PASS [31] and IL2A [30]:

min
ϕt

Laug(ϕt; P̃0:t−1) =
∑

pc∈P̃0:t−1

∑
y∈Y0:t−1

y·log(gϕt
(pc)).

(5)
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Eq. 7

Eq. 11

Eq. 8

Eq. 15

Figure 3. (A) During the base phase, a CPO strategy is proposed to mitigate the incremental interference, in which the pathway feature
extracted by a pathway planner is utilized to organize the class-specific learning in feature extractor (e.g., ResNet18). (B) During the
incremental phase, the similarity scores between the pathway feature and saved pathway prototypes are assigned to the optimization
process as loss weights, facilitating the pathway-guided feature update (PFU).

In conclusion, the overall feature optimization problem for
the baseline method can be written as follows,

min
θt,ϕt

Lt = Lcls(θt,ϕt;Dt) + Lkd(θt;θt−1, Dt)

+Laug(ϕt; P̃0:t−1).
(6)

3.3. Self-Organizing Pathway Expansion

Our proposed self-organizing pathway expansion
scheme consists of a class-specific pathway organization
strategy that reduces the pathway overlap during the base
phase to mitigate the overall feature confusion, and a
pathway-guided feature optimization mechanism to refine
the incremental optimization guided by the inter-class
pathway correlation. The main procedures are summarized
in Algorithms 1 and 2 respectively, and the specific
implementation is described below.

Class-Specific Pathway Organization. To mitigate the
interference during the feature optimization process, we
perform a structural decomposition on the feature extractor
and organize the class-specific pathway adaptively. As
shown in Fig. 2, each standard convolution module consists
of a 3×3 convolution layer and a BatchNorm layer. We
firstly reorganize K convolution modules, each of which is
equally divided into L groups along the output channels.
We define θk

t ∈ RCin×Cout as the parameters of kth
convolution module Convθk

t
of the feature extractor fθt

,

in which θk,l
t ∈ RCin×Cout/L denotes the parameters of

lth group Convθk,l
t

. Cin and Cout represent the number of

input and output channels. Let zk−1
t be the input feature of

Convθk
t

, the convolution operation is organized as follows,

zk
t = Convθk

t
(zk−1

t ) = Concat[Convθk,1
t

(zk−1
t ),

. . .Convθk,L
t

(zk−1
t )], (1 < k ≤ K),

(7)

where Concat denotes the concatenation along the output
channels. The output feature zk

t is the same as the that of
standard convolution module before reorganization.

Then, we introduce a pathway planner fαt
, which

consists of several standard convolution blocks. It receives
the image x as input, and output a probability score S ∈
RK×L = fαt , representing the pathway importance of K
modules and L groups in the feature extractor. According
to the obtained score, a gradually decreasing sparse rate is
adopted to filter the most adequate components of the global
pathway to guide the feature optimization. Specifically,
given a target sparse rate ζ, we solve the minimum pathway
threshold ε from the equation as follows (See A.7 in
supplementary materials for examples),

1− ζ =

∣∣{sk,l | sk,l > ε, sk,l ∈ S
}∣∣

|{sk,l, sk,l ∈ S}|
, (8)

where |·| means the element number. The pathway score
can be filtered by the calculated threshold:

Ŝ = Filter(S, ζ) = S ∗ Bool(S − ε > 0), (9)

where ∗ represents the element-wise multiplication, and
Bool denotes the element-wise boolean operation. As the
threshold ε is not a given hard value [6] but a filtered soft
one in Eq. 8, no special gradient correction is required.
To stabilize the optimization process with the threshold,
we use a three-step strategy to jointly optimize features
and pathways in which different values of sparse rate are
adopted at different epoch e:

ζ =


0, e < e1

e−e1
e2−e1

ζmax, e1 ≤ e < e2
ζmax, e ≥ e2,

(10)
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where e1 and e2 are two hyper-parameters. ζmax is another
hyper-parameter that defines the maximum value of sparse
rate. According to the filtered scores Ŝ, we reorganize the
pathway of the network, and Eq. 7 can be rewritten as
follows,

zk
t = Convθk

t
(zk−1

t , Ŝ) = Concat[ŝk,1∗

Convθk,0
t

(zk−1
t ), . . . ŝk,L ∗ Convθk,L

t
(zk−1

t )],
(11)

zK
t = fθt

(z0
t , Ŝ) = fθt

(x; Ŝ)

= fθt
(x; fαt

(x)) =fθt,αt
(x), x ∈ Xt,

(12)

where ŝk,l denotes the element in Ŝ at the (k, l) position.
Eq. 2 can be be rewritten as follows,

Lcls(θt,ϕt,αt;Dt) =
∑
x∈Xt

∑
y∈Yt

y · log(gϕt(fθt,αt(x))).

(13)
Finally, we binarize the filtered pathway and improve inter-
class discriminability with a learnable pathway classifier
gβt

:

min
αt,βt

Lpath
cls (αt,βt;Dt) =

∑
x∈Xt

∑
y∈Yt

y·log(gβt(δ(fαt(x))),

(14)
where δ, αt and Lpath

cls denotes the gate function [20], the
learnable parameters in the pathway planner fαt

and the
overall pathway classification loss, respectively.

Pathway-Guided Feature Update. To promote the
efficiency of incremental learning, we adopt a pathway-
guided feature update mechanism in the incremental phase.
Specifically, as shown in Fig. 3, we involve new samples
into the classification process according to the pathway
overlap with old ones. We preserve the class-specific
pathway prototype ac ∈ A0:t−1 for class c at the phase
end,

ac = Filter(E(x,y)∼D0:t−1
[fαt(x) | y = c] , ζ), (15)

where Filter is the same as that in Eq. 9. The binarized
pathway score δ(fαt

(x)) is compared to the saved pathway
prototype with intersection over union (IoU [14]), thus
measuring the relevance λ of the corresponding samples to
the previous parameter space:

λ(x) =
1

C

C∑
c=1

(IoU(δ(fαt
(x)),ac)), (16)

where C represents the number of pathway prototypes.
To ensure the stability of the incremental representation
optimization, we freeze the parameters of the pathway
planner (i.e., αt). More relevant samples are assigned
smaller weights to reduce the optimization confusion of

Algorithm 1 Class-Specific Pathway Organization

1: Input: Feature extractor fθt , pathway planner fαt , base set D0

and maximum sparse rate ζmax,
2: Initialize: Reorganize the structure fθt by Eq. 7;
3: for all (x, y) ∈ D0 do
4: Extract the pathway score S = fαt(x);
5: Compute the epoch-specific sparse rate ζ (≤ ζmax)by Eq. 10;
6: Confirm the position (l, k) of filtered pathway with the soft

threshold ε by Eq. 8;
Ŝ ←

{
sl,k | sl,k > ε, sl,k ∈ S

}
7: Guide the feature optimization with filtered pathway by Eq. 11;
8: Update θt and αt by taking a SGD step on the image and

pathway loss (Eq. 13 14);
9: end for

10: Output: Calculated feature prototypes P0 and pathway proto-
types A0 by Eq. 4 15.

Algorithm 2 Pathway-Guided Feature Update

1: Input: Old fθt−1 and new feature extractor fθt , old fαt−1 and
new pathway planner fαt , incremental set Dt(t > 0), feature
prototypes P0:t−1 and pathway prototypes A0:t−1.

2: Initialize: Freeze the parameters of fαt ;
3: for all (x, y) ∈ Dt do
4: Filter the pathway with ζmax by Eq. 9;
5: Compute feature classification and distillation loss weighted

with pathway similarity by Eq. 17;
6: Compute the augmentation loss by Eq. 5;
7: Update θt and αt based on above losses;
8: end for
9: Freeze the parameters of fθt , and unfreeze fαt ;

10: for all (x, y) ∈ Dt do
11: Update incremental pathway planner with pathway update loss
Lpath

t by Eq. 18.
12: end for

novel classes, thus the classification loss in Eq. 6 (i.e., Lt)
can be rewritten as follows,

min
θt,ϕt

Lcls(θt,ϕt;αt, Dt,A0:t−1) =∑
x∈Xt

(1− λ(x))
∑
y∈Yt

y · log(gϕt
(fθt,αt

(x))).
(17)

Incremental Pathway Update. To enhance the effective-
ness of the pathway planner, we then freeze the parameters
of feature extractor θt, and adopt the incremental pathway
update mechanism, which is similar to the optimization
process of incremental feature in Eq. 6,

min
αt,βt

Lpath
t = Lpath

cls (αt,βt;Dt)

+Lpath
kd (αt;αt−1, Dt) + Lpath

aug (βt,A0:t−1).
(18)

The old pathway planner with frozen parameters αt−1 is
utilized to distill with the current planner, and the pathway
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+CPO +PFU +IPU 5 10 20
48.51 46.66 40.29√
51.55 49.87 48.60√ √
52.61 51.97 51.17√ √ √
53.69 52.88 51.94

Table 1. Ablation study of our method on TinyImageNet. CPO,
PFU and IPU represent the proposed components in Sec. 3. 5, 10
and 20 represents the number of incremental phases (i.e., P).

Method 5 10 20
Rps [17] 63.74 62.71 59.06
Hat [20] 59.44 57.69 55.68
Iap [4] 56.00 55.11 52.79

Piggy [16] 55.79 54.36 38.78
Ours 66.64 65.84 61.83

Table 2. The impact of the pathway structure on CIFAR-100. Rps,
Hat, Iap and Piggy are detailed in Sec. 4.3.

prototypes are oversampled to correct the pathway classifier
bias to the old class. Overall, the loss functions Lt and
Lpath
t are utilized sequentially in the incremental phase t.

4. Experiments

4.1. Datasets and Settings

Datasets. Following the setting in [31], we conduct
comprehensive experiments on four datasets CIFAR-100
[12], TinyImageNet [13], ImageNet-Subset and ImageNet-
Full. CIFAR-100 contains 60,000 images of 32 × 32 size
from 100 classes, and each class includes 500 training
images and 100 test images. TinyImageNet contains 200
classes, and each class contains 500 training images, 50
validation images and 50 test images. It provides more in-
cremental phases and classes for the sensitivity analysis on
different methods. ImageNet-Subset is a 100-class subset of
ImageNet-Full [7], which provides a large-scale evaluation
scenery. Except for 40 base classes in 20 incremental phases
setting of CIFAR-100, we train the model on half of classes
for the base phase, and equal classes in the rest incremental
phases. We conduct different incremental settings (5, 10
and 20 phases) for both CIFAR-100 and TinyImageNet, and
10 incremental phases setting for the rest datasets, which is
consistent with [31].

Settings and Metric. For a fair comparison with [31],
we adopt the same backbone network (i.e., ResNet-18),
and maintain the same accuracy at the first phase for all
datasets. We report average incremental accuracy and
average forgetting [31]. Average incremental accuracy AT

is computed as the average accuracy of all incremental
phases at (including the first phase), which compares the

(a) Divided groups (b) Maximum sparse rate
Figure 4. The impact of values of divided groups (i.e., L) and
maximum sparse rate (i.e., ζmax) on the incremental performance.

overall performance of different methods fairly,

AT =
1

T

T∑
t=0

at. (19)

Average forgetting is computed as the average forgetting
throughout the incremental process, which directly mea-
sures the ability of different methods to resist catastrophic
forgetting. The forgetting at phase t (t > 0) is calculated as
Ft = 1

t

∑t−1
j=1 f

t
j , where f t

j denotes the performance drop
of classes:

f t
j = max

i∈{j,···t−1}
ai,j − at,j , (20)

where ai,j represents the accuracy of classes first encoun-
tered in phase j after the model has been incrementally
trained up to phase i (i > j). Other implementation details
on the settings are available in the supplementary material.

4.2. Ablation Study

To prove the effectiveness of our proposed method, we
conduct several ablation experiments on TinyImageNet.
The performance of our scheme is mainly attributed to
three prominent components: the class-specific pathway
organization strategy (CPO), the pathway-guided feature
update (PFU) and the incremental pathway update (IPU)
mechanism. Since the three components are sequential,
we add them gradually for comparison. As can be seen in
Tab. 1, CPO bring a 3.04%, 3.21% and 8.31% improvement
in overall performance. It demonstrates that the initial
pathway decoupling plays an important role in mitigating
the interference during the incremental process, especially
in the case of longer phases. IPU and PFU also achieves
average improvement of 1 and 2 points, facilitating the
rectification of features and pathways during the subsequent
incremental processes.

4.3. Analysis

The impact of the pathway optimization strategy. To
explore the impact of pathway optimization strategy on
the incremental representation learning, we compare our
methods to some classical pathway-related ones. Since
most of methods are not designed for class-incremental
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IoU Value Base Class (shared) IC (shared) IC (unshared)

(a) Pathway Similarity (b) T-SNE results of the shared and unshared pathways

Figure 5. Effect of our scheme on the pathway learning. (a) CPO realizes the organization of distinguishable pathways, thus mitigating the
overlap between the incremental classes (i.e., IC) and old ones. (b) PFU promotes the pathway expansion of similar classes. The first two
columns represent the activated features of shared pathways, and the last represents the unshared ones.

learning, we adapt their core strategies in our settings. As
shown in Tab. 2, our method is obviously superior to other
ones in three settings. Piggy [16] simply optimizes the mask
of parameters on the basis of the initial model, which is not
sufficient to handle the complex incremental process. The
hard threshold adopted in Hat [20] and Iap [4] brings great
optimization difficulty. Although the RPS [17] achieves
good results, its complex network structure and random
path search strategy are not efficient.

The impact of the numbers of divided groups (i.e., L).
To explore the sensitivity of divided groups on the incre-
mental performance, we design the following experiments.
We divide the output channels into different channels
equally. If the channels are not divisible, we round down it.
It can be seen in Fig. 4 (a) that the performance fluctuates
little except for exceptionally few divisions, demonstrating
the stability of our pathway learning. When the number
of division is equal to 2, the overall decoupling space for
pathways is too small to promote sparse learning.

The impact of the maximum sparse rate (i.e., ζmax).
To explore the effect of sparse rate on the incremental per-
formance, we conduct multiple experiments with different
sparse rates on CIFAR-100. As shown in Fig. 4 (b), the
performance with high sparse rate is obviously worse than
that with other values. In this case, due to the increase of
difficulty of pathway independence, the initial classification
accuracy is greatly disturbed. When the sparse rate is too
low (e.g., 0.2), the initial accuracy is obviously higher, bring
the overall improvement of the incremental performance.

When the sparsity value is between 0.3 and 0.45, the initial
accuracy is consistent and the incremental performance gets
better with heavier sparsity, demonstrating the effectiveness
of the pathway decoupling.

4.4. Visualization

To better demonstrate the role of CPO and PFU during
optimization, we show the corresponding visualization re-
sults. In Fig. 5 (a), the center of the circle represents
the incremental class, and the surrounding represents the
five different base classes. The middle values represent
the intersection of union (IoU) of pathways between the
new and old classes. It can be seen the pathways are
class-specific, and the similarity is also positively related
to the class relationship. For example, the pathway of
white sharp is closer to the one of tiger sharp. As shown
in Fig. 5 (b), for the incremental class, the features of
shared and unshared pathways are visualized by t-SNE
[15]. For example, the white sharp and tiger sharp are
discriminatory to other classes due to the features of teeth.
To further distinguish between these two ones, the white
shark expands new pathways to learn the texture features
on their bodies. Owing to our PFU, the incremental
pathways are promoted to differentiate from the old ones,
thus improving the separation of novel clusters.

4.5. Comparison with SOTA

To better assess the overall performance, we compare it
to the SOTA of NECIL (LwF_MC [18], MUC, SDC, PASS,
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Average Accuracy (↑) Average Forgetting (↓)Methods
P=5 P=10 P=20 P=5 P=10 P=20

iCaRL-CNN∗ 51.07 48.66 44.43 42.13 45.69 43.54
iCaRL-NCM∗ 58.56 54.19 50.51 24.90 28.32 35.53
EEIL∗ [2] 60.37 56.05 52.34 23.36 26.65 32.40
UCIR∗ [9] 63.78 62.39 59.07 21.00 25.12 28.65(1

)E
=

20

PODNet‡ [8] 64.88 63.05 61.62 19.12 22.55 25.64
LwF_MC 45.93 27.43 20.07 44.23 50.47 55.46
MUC [26] 49.42 30.19 21.27 40.28 47.56 52.65
SDC‡ [27] 56.77 57.00 58.90 6.96 7.50 10.77
PASS [31] 63.47 61.84 58.09 25.20 30.25 30.61
IL2A‡ [30] 65.72 62.69 59.90 27.25 37.35 39.27
ABD‡ [25] 63.85 62.46 57.40 23.12 27.34 33.42
SSRE [33] 65.88 65.04 61.70 18.37 19.48 19.00

(2
)E

=
0

Ours 66.64+0.76 65.84+0.80 61.83+0.13 6.50+0.46 3.30+4.20 9.14+1.63

Table 3. Comparisons with other methods on CIFAR-100. P represents the phase number and E represents the exemplar number. Models
with an asterisk ∗ represent the reproduced results in [31]. Models with a marker ‡ represent the reproduced results by this paper. The red
footnotes in the last row represent the relative improvement compared with the results of SOTA.

TinyImageNet ImageNet-Subset ImageNet-FullMethods
P=5 P=10 P=20 P=10 P=10

iCaRL-CNN∗ 34.64 31.15 27.90 50.53 38.43
iCaRL-NCM∗ [18] 45.86 43.29 38.04 60.79 46.72
EEIL∗ [2] 47.12 45.01 40.50 63.34 -

(1
)E

=
20

UCIR∗ [9] 49.15 48.52 42.83 66.16 61.28
LwF_MC [18] 29.12 23.10 17.43 31.18 -
MUC [26] 32.58 26.61 21.95 35.07 -
MAS [1] 18.97 11.82 7.17 19.11 -
EWC [11] 19.64 16.18 17.09 27.32 -
PASS [31] 49.55 47.29 42.07 61.80 55.90‡

SSRE [33] 50.39 48.93 48.17 67.69 58.12‡(2
)E

=
0

Ours 53.69+3.30 52.88+3.95 51.94+3.77 69.22+1.53 60.20+2.08

Table 4. Comparisons of the average incremental accuracy (%) with other methods on TinyImageNet, ImageNet-Subset and ImageNet-
Full. P represents the number of phases and E represents the number of exemplars.

IL2A, ABD and SSRE) and some classical exemplar-based
CIL methods (iCARL [18], EEIL, UCIR and PODNet [8]).

As shown in Tab. 3, compared to the SOTA of non-
exemplar methods (i.e., E=0), our method achieves average
improvement of about 1 point and 2 points on the average
accuracy and average forgetting of CIFAR-100 dataset,
respectively. The performance of our method is comparable
to the classical exemplar-based methods (i.e., E=20), which
shows that our method further mitigate the gap between the
two settings. To provide further insight into the behaviors of
different methods on larger benchmarks, we compare their
average accuracy on TinyImageNet, ImageNet-Subset and
ImageNet-Full. As shown in Tab. 4, our method achieves
average improvement of 3 points. Due to the larger-
scale images in these datasets, the pathway independence
during the feature optimization is clearer, bringing greater
performance improvement.

5. Conclusion
In this paper, a novel self-organized pathway expansion

scheme is presented for the NECIL task. A class-specific
pathway organization strategy is first proposed to mitigate
the feature interference during the optimization of pathway-
aware representation. Based on the learnable pathway
planner, a pathway-guided feature update mechanism is
introduced to adjust the involvement in joint training of
classification and distillation. Experimental results show
that our method is superior in both performance and adapt-
ability to the state-of-the-art methods.
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