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Abstract

This paper proposes a new method to infer keypoints
from arbitrary object categories in practical scenarios
where point cloud data (PCD) are noisy, down-sampled
and arbitrarily rotated. Our proposed model adheres
to the following principles: i) keypoints inference is
fully unsupervised (no annotation given), ii) keypoints
position error should be low and resilient to PCD per-
turbations (robustness), iii) keypoints should not change
their indexes for the intra-class objects (semantic coher-
ence), iv) keypoints should be close to or proximal to
PCD surface (compactness). We achieve these desider-
ata by proposing a new self-supervised training strategy
for keypoints estimation that does not assume any a
priori knowledge of the object class, and a model ar-
chitecture with coupled auxiliary losses that promotes
the desired keypoints properties. We compare the key-
points estimated by the proposed approach with those
of the state-of-the-art unsupervised approaches. The
experiments show that our approach outperforms by es-
timating keypoints with improved coverage (+9.41%)
while being semantically consistent (+4.66%) that best
characterize the object’s 3D shape for downstream tasks.
Code and data are available at: https://github.com/IIT-
PAVIS/SC3K

1. Introduction

Representing 3D objects using a set of keypoints [2,
10, 28] is a common and fundamental step for several
geometrical reasoning tasks, including pose estimation,
action recognition, object tracking, shape registration,
deformation, retrieval and reconstruction [23, 35, 30,
42, 9]. As being a first processing step, it is crucial that
the keypoints (see Fig. 1) are extracted reliably from
point cloud data (PCD) of object shapes, as any error
may negatively impact further higher-level tasks.

Figure 1: Self/un-supervised keypoints estimation from
PCD has to be robust to perturbations such as rotations,
intra-class shape variations, noisy data and an arbitrary
number of input 3D points. The keypoint localization
needs to be not only accurate and pertain to the object
surface, but also preserve semantic coherence, as the
green keypoint is always associated with a specific object
region despite arbitrary variations in the PCD.

The solution to this problem was initially cast as
a supervised learning task: given a dataset of manu-
ally annotated PCDs with keypoints, a computational
model infers the keypoints position given a PCD as in-
put [32, 45, 44, 13, 8, 36]. While these methods provided
impressive results on the dataset they were trained on,
they also highlighted the limitations of supervised ap-
proaches. The basic issue is the requirement of having
large enough datasets containing well-defined ground
truth annotations for every object. Annotating such
datasets is difficult as finding 3D keypoints manually
is a hard and time consuming activity. Similarly, noise
or missing data on the PCD can compromise quality,
and highly symmetric/smooth objects might confuse
the annotator in finding the correct keypoints.

Considering such limitations, recent methods have fo-
cused on not-supervised approaches to bypass the need
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for human annotations. Self-supervision methods define
proxy tasks for which a large number of annotations
can be obtained during training [31, 18, 35, 1, 39], e.g.,
geometrical transformations, canonical mapping, recon-
struction to learn the prototype of intra-class object,
etc. [22, 41, 21, 25, 27]. Unsupervised approaches dif-
ferently promotes keypoints that are implicitly given by
reasoning on the object geometry, e.g. point-level clus-
tering, object’s skeleton, consistency between object’s
symmetry, part contrasting, etc. [15, 33, 24, 9, 37].

The shift towards these learning paradigms clearly
allows generalizing keypoint extraction but not without
drawbacks. Without human annotations, it is difficult
to identify a specific keypoint in a particular seman-
tic 3D region when intra-class variations are present
(airplane example in Fig. 1). Moreover, for several ap-
plications such as shape registration, it is paramount
to maintain the semantic consistency of keypoints, i.e.,
their vector ordering. Despite these considerations, key-
points extraction has to be robust against common
perturbations of PCDs, and the accuracy in localizing
the keypoints should be preserved even if PCDs are
rotated, noisy and decimated as shown in Fig. 1.

To this end, we propose an approach that reduces
the requirement of ground truth labels by utilizing the
input PCDs to learn to produce 3D keypoints on the
object’s surface. It generates two versions of an object
by applying a random rotation (as done on images in
the methods presented in [7, 14]) and estimates the
corresponding keypoints set.

Initially, the network optimizes the keypoints of the
individual objects to promote non-overlapping, proxi-
mal to the input PCD, and covering the complete object.
To ensure consistency in the semantic coherence (order)
and positions of the estimated keypoints, the network
compares the keypoints of both versions of the input
PCD. First, both sets are transformed to the canonical
pose and are compared one-to-one between the corre-
sponding keypoints of the sets. Second, as a proxy task,
the relative pose between the two sets of keypoints is
estimated and minimized against the known relative
pose of the PCDs pair. Such learning strategy and
network architecture promote the inference of keypoints
that are semantically coherent, robust to perturbations,
and with better accuracy.

The main contributions of this work are as follows:

• The proposed approach estimates 3D keypoints
(from a single PCD), without the need to pre-align
a PCD to a canonical pose;

• The presented mutual learning procedure allows to
estimate keypoints that are semantically consistent
for intra-class objects regardless of perturbations,
such as rotation, noise, or down-sampling;

• On an average, the presented approach outperforms
the state-of-the-art (SOTA) approaches (coverage:
+9.41%, semantic consistency: +4.66%) and is able
to generalize to novel object poses.

The rest of the paper is organized as follows; Section 2
presents recent keypoints estimation approaches along
with their positive features and limitations, Section 3
describes the proposed approach which is evaluated
in Section 4, Section 5 reports the ablations, finally
conclusions are given in Section 6.

2. Related works

Several methods have been proposed to estimate 3D
keypoints in a supervised way using human-annotated
keypoints [32, 6, 40, 12, 45, 11, 36]. As our approach is
unsupervised, here we review in more detail the methods
that do not use supervision.

Chen et al. [2] present an approach that learns to
identify semantically consistent points in the same cat-
egory in an unsupervised way from an object’s PCD.
Their network is based on PointNet++ [20] that assigns
a probability (of being a keypoint) to each element of
the PCD. The final keypoints are computed using a
convex combination of the points weighted by the prob-
abilities. Yuan et al. [37] present an approach that uses
two different objects of the same category to estimate
semantically ordered 3D keypoints. Another similar
approach that finds correspondences between different
objects of the same category is presented in [3]. Li et
al. [10] present a similar approach that first generates
another variant of the PCD by random transformation
and then utilizes both PCDs for estimating the key-
points. Their network first generates clusters from the
input point clouds and then it estimates a keypoint for
every cluster. A similar approach is presented by Sun
et al. [25]. Their network takes two randomly rotated
versions of a PCD and computes K capsules containing
the attention mask for every point in the input PCD
and the corresponding features. Based on the attention
masks, points are arranged to K parts of the object.
Fernandez et al. [4] present an approach that estimates
symmetric 3D keypoints from PCD. The network es-
timates N nodes and applies nonmax-suppression for
selecting the final keypoints. However, the approach is
very sensitive to object symmetry; thus, its performance
may decrease for irregular shapes, i.e., airplanes or gui-
tars, whose geometries vary consistently within the cate-
gory [23]. The authors in [23] present “Skeleton Merger”
(SM) to detect aligned and semantic keypoints from
PCDs in an unsupervised fashion. It uses the keypoints
to generate a skeleton of the object. Both keypoints
and the skeleton are used to reconstruct the PCD. Xue
et al. present USEEK [34], a teacher-student network
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Figure 2: PCD to 3D keypoints network (light lime block) takes a PCD of N points as input and extracts M global
features using PointNet encoder. The features are passed by two cascaded residual blocks (gray block) followed by
a convolutional and a softmax layer in order to estimate K ×N probabilities that are used to estimate K keypoints.
The light orange block shows the proposed self-supervised learning paradigm. The method first estimates keypoints
for two randomly rotated versions of the same PCD, and then uses them to minimize the individual (volume, shape,
separation and average overlap) and mutual (consistency and pose – as highlighted in navy blue) losses.

that estimates an equivariant set of 3D keypoints from
point clouds. Their teacher module is the same as [23]
which is based on the PointNet++, whereas the student
module uses a SPRIN/Vector Neuron SE(3)-invariant
backbone. Their network first generates pseudo labels
that are required later to train the student module.
Tang et al. propose “LAKe-Net” [26] that uses the key-
points for the shape completion task. It localizes the
aligned keypoints, generates surface-skeleton using the
keypoints, and uses them to refine the object’s shape.
Suwajanakorn et al. present an approach [29] to es-
timate 3D keypoints in the form of 2D positions and
depth from a pair of images. Their approach forces 2D
keypoints to be estimated within the object silhouette
and uses known camera projections. They use their
keypoints to estimate the relative pose between objects.

Considering the limitations of the above-reported
literature, this work presents an end-to-end ar-
chitecture that does not require ground truth la-
bels/silhouettes; rather, it utilizes mutual consistency
(relative pose/order) between two versions of the same
object as a proxy task to improve the 3D position and
semantic coherence of the estimated keypoints. Fur-
thermore, our design and selection of the loss functions
allow the keypoints to be estimated proximal to the
object’s surface.

3. Proposed approach - SC3K

Given a PCD of an object, the goal of the proposed
approach, named SC3K, is to estimate keypoints that
are semantically coherent and accurate despite arbitrar-
ily rotated PCDs and perturbations without requiring
ground truth annotations. The architecture of the SC3K
is illustrated in Fig. 2. In the following subsections, we
describe the network to estimate 3D keypoints from the
PCDs, and our self-supervised learning paradigm.

3.1. PCD to 3D keypoints network ( )

The PCD to 3D keypoints network (light lime block
in Fig. 2) uses a PointNet [19] backbone to extract M
features for every point in the input PCD. The extracted
features pass through two consecutive residual blocks
that reduce the features from M to 256. Each residual
block (gray block ( ) in Fig. 2) contains a pair of
Conv1D layers with batch normalization connected via
ReLU, and a skip connection with a single Conv1D
layer. The refined features are later projected to a
conv1D and a softmax layer to estimate K×N features,
where K represents the total number of keypoints and
N represents the weight/probability for every point in
the input point cloud to be selected as the keypoint.
The weights of every keypoint (N×1 ) are multiplied
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to the input PCD (3 × N) in order to estimate the
final keypoint (3 × 1). The final keypoint represents
a weighted average point of the PCD. We repeat this
process K times to estimate all the keypoints (3×K).

3.2. Self-supervised learning paradigm ( )

The proposed learning paradigm (as shown in the
light orange block in Fig. 2) accepts as input an object
PCD that is then randomly rotated twice to obtain two
PCDs. These PCDs are then processed by the PCD to
3D keypoints network that outputs two sets of keypoints.
This pairwise set will be used as a self-supervised signal
to enforce keypoints semantic consistency. For each set
of keypoints a loss with four components is computed,
based on how well the keypoints fit the shape of the
input PCD. We call this loss “individual loss”. Then,
the two sets of keypoints from the two randomly ro-
tated PCDs are used to compute “mutual dependency
loss” that contains two components. In the first com-
ponent, both the keypoints sets are transformed to the
(known) canonical pose to compute the one-to-one con-
sistency between the corresponding keypoints. In the
second component, the relative pose of the keypoints
are compared with those of the input PCDs to refine
the keypoints position and the semantic coherence. The
network is trained to minimize both loss functions. In
the following, we present these two losses in detail.

3.3. Individual loss

The individual loss is computed for a single shape
PCD = [p1, p2, ..., pN ] ∈ R3×N and it outputs a set
of K keypoints KP = {k1, k2, ..., kK},∈ R3×K with
K ≪ N . The desired properties of the keypoints are
that they should be relatively separated, covering as
much as possible the whole object’s volume while still
being close to the PCD, and not overlapping with each
other. These properties are described next.

Separation loss: This loss (Lsep) maximizes the
distance of every keypoint (ki) from its neighbouring
keypoint (kNN (ki,KP)) in KP thus promoting more
spread out configurations of points. It is defined as:

Lsep =
1

max

(
1
K

K∑
i=1

∥∥ki − kNN (ki,KP)
∥∥
2
, 0.01

) ,

(1)
where the term 0.01 is used to avoid the infinite loss
value, which can occur if all the keypoints are estimated
at the same position.

Shape loss: Since Lsep moves away keypoints from
their neighbours without any maximum distance limit,
keypoints might move easily far from the object and
even further. Therefore, we use the shape loss (Lshape)

that enforces keypoints being closer to the object’s
shape. The loss minimizes the distance of every keypoint
ki in KP from its nearest neighbour point in the input
PCD. The loss can be defined as:

Lshape =
1

K

K∑
i=1

∥∥ki − kNN (ki,PCD)
∥∥
2
. (2)

Volume loss: The Lsep and Lshape losses do not con-
sider how the keypoints are distributed over the whole
shape of the object. Therefore to estimate keypoints
that cover the entire object, we propose the volume loss
as Lvolume. The loss computes the difference between
the 3D volume of the estimated keypoints with that of
the input PCD as:

Lvolume =
∥∥vol(KP)− vol(PCD)

∥∥, (3)

where vol() is a function that computes a volume from
a set of points in terms of a 3D bounding box enclosing
the points [4]. To find the difference in volume, we use
smooth L1 loss as this loss is less sensitive to outliers
compared to the MSE loss [5].

Average overlap: To avoid multiple keypoints be-
ing estimated at the same 3D position, we compute the
average overlap Aoverlap among the keypoints as:

Aoverlap =
1

K2

K∑
i=1

K∑
j=1

[∥∥ki − kj
∥∥
2
< τ1

]
, i ̸= j

[∥∥ki − kj
∥∥
2
< τ1

]
=

{
1 if true

0 otherwise

(4)

where [.] is the Iverson bracket. Two keypoints are
considered as overlapping if the Euclidean distance
between them is less than the threshold τ1, which is
0.05. We add this number to the overall individual loss.

The total individual loss can be summarized as a
weighted sum of the above loss components;

Lindividual = wsep · Lsep + wsh · Lshape+

wvol · Lvolume + wovr · Aoverlap,
(5)

where, {wsep, wsh, wvol, wovr} are not optimised hy-
perparameters fixed to {0.5,6,1,0.07} respectively.

3.4. Mutual dependency loss

In order to refine the positions of the keypoints and
to make them semantically coherent across different ro-
tations, we use the mutual dependency loss. Differently
from the individual loss, here we consider the pair of
keypoints obtained from the randomly rotated shapes.
The loss is given by two components as described below.
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Suppose that the two randomly rotated versions of
the input PCD are PCDA = [a1, a2, ..., aN ] ∈ R3×N and
PCDB = [b1, b2, ..., bN ] ∈ R3×N while the K keypoints
estimated by the proposed approach for each PCD
version can be represented as KPA = [ka1 , k

a
2 , ..., k

a
K ] ∈

R3×K and KPB = [kb1, k
b
2, ..., k

b
K ] ∈ R3×K , respectively.

Then the loss functions can be described as given below.
Keypoints consistency loss: Consider that Ra ∈

R3×3 and Rb ∈ R3×3 are the rotations associated to
PCDA and PCDB, respectively. We use these rotation
matrices and transform the keypoints (KPA and KPB)
back to their canonical pose. The keypoints are said to
be coherent if they overlap in this common reference
system and if their indexes exactly match. To intro-
duce these desiderata, we compute the consistency loss
(Lconsist) between the corresponding keypoints in both
the transformed sets as:

Lconsist =
1

K

K∑
i=1

∥∥R−1
a kai −R−1

b kbi
∥∥2
2
. (6)

In this way, we penalize keypoints with the wrong or-
dering and 3D position errors.

Pose loss: Our approach also learns to solve an aux-
iliary and self-supervised keypoints registration task by
estimating the rotation matrix that aligns the two sets
of keypoints against the (known) rotations in the input
PCDs. Suppose Rest is the relative pose between KPA
and KPB, computed by using orthogonal Procrustes
Analysis. Then the pose loss (Lpose) can be computed
using the Frobenius norm between the Rest and relative
pose of the PCDs (Rba = Ra ·RT

b ) as:

Lpose = 2 arcsin

(
1

2
√
2
||Rest −Rba||F

)
. (7)

It can be observed that if the keypoints in the canon-
ical pose are not aligned/overlapped, the Rest will be
erroneous, and hence the loss will be high. In other
words, the lower pose loss validates the accuracy of the
correspondences in both sets of keypoints.

The mutual dependency loss can be defined as the
weighted sum of the above two losses:

Lmutual dependency = wcon · Lconsist +wpose · Lpos, (8)

where {wcon, wpose} are defined as {1, 0.05}. The
overall training loss is the sum of the position and the
mutual dependency loss;

Loverall = Lindividual + Lmutual dependency. (9)

3.5. Implementation details

During inference, the proposed approach takes a sin-
gle PCD as input and estimates a semantically ordered

list of K keypoints. The rotation of the input PCD can
be arbitrary and we do not need any pre-processing step.
The network is implemented in PyTorch and trained
using the Adam optimizer with the learning rate 1e−3.
We do not freeze any part of the network. In all the
experiments, the batch size is set to 32 and trained on
a 12GB GPU. We train [4], [23] and our network for
200 epochs and evaluate them using the best-trained
model (with the minimum validation loss).

4. Experiments and evaluation

This section presents the dataset, the evaluation
metrics, a comparison between our method SC3K and
the SOTA approaches, and ablation studies.

4.1. Dataset

We use KeypointNet dataset [36] in our experiments,
considering that this is the standard and most recent
dataset used for keypoints estimation. It contains 8329
objects and 83231 keypoints of 16 object categories. We
do not use the ground truth keypoints. Whereas, we
rotate every object in 24 random poses since during
training we need to feed two rotated versions of the same
object to the proposed SC3K. We use the same rotation
matrices that are used in ONet [16] with a validation
and testing split that differs from the training set. For
a fair comparison, we use the original (not-rotated)
dataset to evaluate SC3K and the SOTA approaches.

4.2. Metrics for unsupervised keypoints estimation

To compare the performance of the proposed ap-
proach, we use three different standard metrics. The
first metric, inclusivity metric [4] computes the per-
centage of the keypoints (KP), which are estimated
close to the PCD. The keypoint (ki) whose distance
(di) to the nearest neighbour point in PCD is below
the predefined threshold (τ2) is considered as a close
keypoint. The metric is defined as:

di =
∥∥ki − kNN (ki,PCD)

∥∥
2

Inclusivity = 100× 1

K

K∑
i=1

[di < τ2] ,
(10)

where [.] is the Iverson bracket (as described in Eq. 4).
Although the inclusivity loss computes how close the
KP are estimated from the input PCD, it does not
evaluate the accuracy of the keypoints in covering the
whole object. Therefore, evaluation is further supported
by the second metric, coverage metric [4], which
compares the intersection over union of the 3D bounding
boxes containing the KP with that of the PCD. The
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metric is defined as:

Cov = 100×
[
1− |vol(PCD)− vol(KP)|

vol(PCD)

]
Coverage =

{
Cov if vol(KP) ≤ 2× vol(PCD)

0 otherwise,

(11)
where vol(.) is the function that accepts a set of points
(KP or PCD), identifies a maximum and a minimum
point from the accepted set, and returns their difference
(i.e., the diagonal distance of the object’s bounding
box). The coverage will be 100% if both bounding
boxes fully overlap and it will decrease if the bounding
box of the KP is either smaller or greater than the one
of PCD. The third metric, Dual Alignment Score
(DAS) evaluates the semantic consistency between the
keypoints estimated for different objects of the same
category. By following the same procedure as given
in [23], we define the ratio of a set of reference keypoints
for each category that are semantically aligned w.r.t.
the corresponding human annotated keypoints.

4.3. Results and analysis

We compare SC3K with the SOTA approaches
ULCS [4] and SM [23] that estimate the 3D keypoints
in an unsupervised way. We trained and tested them
using KeypointNet [36] dataset, keeping the PCDs in
the canonical pose because they do not deal with the
random rotation. However, considering the nature of
SC3K, we train it for rotated PCDs (i.e., comparatively
a more complex problem). We test SC3K under two
conditions: SC3K rot (PCDs with the random rotation)
and SC3K can (PCDs in the canonical pose). The ran-
dom rotations are used to evaluate the accuracy of SC3K
irrespective of the object’s pose. However, to be con-
sistent with our competitors (ULCS and SM), we also
test our method for the original PCDs in a canonical
pose. Tab. 1 presents a comparison among ULCS, SM
and SC3K based on the three performance metrics as
discussed in Sec. 4.2. Higher values correspond to bet-
ter performance for every metric. The first inclusivity
metric shows that, on average, the proposed approach
(SC3K rot) outperforms the SOTA approaches by es-
timating the keypoints close to the object’s surface.
However, SC3K can achieves results better than those
of ULCS and comparable to those of SM. The metric
depends on the total number of keypoints and the tol-
erance threshold τ2. We show in the supplementary
material that inclusivity is high for fewer keypoints and
it increases with the increase in the τ2. We select τ2 as
0.05 and consider 10 keypoints for all the experiments
and comparison. The second coverage metric shows
that on average the proposed approach is successful in

Figure 3: Shape pose variations vs. semantic correspon-
dence: columns 1,2) keypoints estimated for two rotated
versions of the same object are pose coherent; columns
3-5) keypoints semantically correspond to intra-class
variations, in the same they also correspond to those
estimated for different objects of the same category.

estimating the keypoints whose 3D bounding boxes best
overlap those of the input PCDs. For all the categories,
Ours can achieves better results. The third DAS metric
validates that on average SC3K estimates semantically
consistent keypoints. The DAS for the ULCS and SM
are the same as reported in [37]. A detailed table pre-
senting the comparison with the MR [37] and ISS [43]
is given in the supplementary material.

Unlike the existing approaches, we also evaluate the
coherence property of the keypoints by computing the
Matching Error (ME). This error is a localization er-
ror of the keypoints given PCD perturbations. We
first estimate keypoints for different rotated versions
of the same object PCDs and transform them to the
canonical pose using the known rotations. Since the es-
timated keypoints are in the correct order, we compute
order-wise position error between the corresponding
keypoints on the canonical reference frame. A low er-
ror would indicate that 2D projection of a keypoint is
rather unaffected by variations of the PCD. We repeat
this procedure for all the instances of a category and
calculate the ME in terms of mean error (µ) and the
standard deviation (σ). The quantitative results are
depicted in Tab. 2. The qualitative results of this exper-
iment are illustrated in Fig. 3. Where, columns 1 and
2 (on the left side) show the keypoints estimated for
two transformed versions of the same objects. It can
be seen that the corresponding keypoints are semanti-
cally consistent irrespective of the object’s pose, this
validates the keypoints are coherent. The keypoints on
the right side of the same Fig. 3 (columns 3, 4 and 5)
illustrate the keypoints estimated for different rotated
objects of the same category. It can be observed that
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Category
Inclusivity ↑ Coverage ↑ DAS ↑

ULCS SM SC3K can SC3K rot ULCS SM SC3K can SC3K rot ULCS SM SC3K can SC3K rot

Airplane 71.02 72.05 87.20 74.30 88.63 92.59 96.34 94.37 61.40 77.70 82.86 81.32
Bed 67.00 71.89 80.00 72.29 94.17 84.28 98.20 92.85 – – 64.87 55.97
Bottle 75.44 72.84 77.36 84.01 80.93 91.44 97.95 94.16 – – 62.73 57.22
Cap 57.50 59.50 56.25 67.14 60.83 85.01 94.64 91.81 – 53.00 59.72 58.10
Car 71.32 71.95 76.05 74.45 83.69 90.69 89.84 90.19 – 79.40 75.19 73.81
Chair 68.54 69.67 56.65 72.33 83.92 85.87 95.31 90.22 64.30 76.80 87.04 86.20
Guitar 50.14 69.29 96.47 69.04 79.83 85.65 97.64 92.17 – 63.10 65.67 64.02
Helmet 64.10 72.41 55.00 74.68 79.87 82.09 90.50 90.44 – – 58.55 52.32
Knife 52.05 92.03 98.33 93.15 76.84 77.39 98.77 88.77 – – 62.98 59.69
Motorbike 78.43 95.28 85.00 87.74 78.87 86.12 94.34 91.33 – – 59.41 54.63
Mug 47.42 65.87 46.25 82.37 89.63 83.15 95.15 91.22 – 67.20 75.25 72.14
Table 60.06 79.13 79.15 73.05 82.97 91.31 97.40 92.32 – 70.00 76.03 71.62
Vessel 76.89 94.24 92.90 95.24 78.79 85.28 97.18 90.03 – – 75.95 72.19
Average 64.61 75.86 75.89 78.44 81.46 86.22 95.63 91.53 62.85 69.60 69.71 66.09

Table 1: Comparison with the SOTA approaches (ULCS [4] and SM [23]) based on KeypointNet dataset. We test
our approach for PCDs in canonical pose (SC3K can) and the PCDs rotated in random poses (SC3K rot). The
results are calculated for 10 keypoints and the τ2 for the inclusivity is selected as 0.1. The DAS of ULCS and SM
are the same as reported in [37], thus we consider only the category available in [37]. For all the metrics, higher
values are best. Bold and underlined numbers represent the first and second best performance, respectively.

ME Airplane Bed Bottle Cap Car Chair Guitar Helmet Knife Bike Mug Table Vessel Mean

µ 0.041 0.072 0.058 0.057 0.061 0.045 0.047 0.071 0.055 0.072 0.039 0.072 0.040 0.056
σ 0.019 0.057 0.056 0.038 0.042 0.021 0.020 0.052 0.034 0.040 0.023 0.051 0.031 0.037

Table 2: Pose coherent test: The keypoints estimated for randomly rotated versions of the same object are first
transformed to the canonical pose. Then ME (µ and σ) is computed between the corresponding keypoints.

the keypoints also maintain the correspondences across
the different intra-class variations of the object class.

5. Ablation studies

This section presents three ablations on: i) Choice
of individual loss, ii) evaluation and performance of
the network with combinations of the different training
losses; iii) effect of varying noise ratio and decimations
of the PCDs. Please refer to the supplementary material
for additional related ablations.

5.1. Chamfer Distance (CD) vs. individual losses

Most of the existing approaches (including our com-
petitors [4, 23]) have used a variant of the CD to train
their networks; instead, we use individual losses. It is
because the individual loss is more controllable, i.e., we
can regulate every component by setting specific weight.
This can be validated from the results presented in
Tab. 1, i.e., SC3K outperforms the [4, 23]. Furthermore,
we also present an ablation to highlight the significance
of our selection. We train our network by replacing
the individual losses with the CD loss. We observed
that the keypoints are not estimated on the object’s
surface, and some are close to each other. Also, the

inclusivity and coverage of the model trained with the
individual loss are +5.02 and +19.83 better than the
model trained with CD, respectively.

5.2. Performance for the selected losses

In order to highlight the significance of every loss, we
train and evaluate the proposed approach by ignoring
each loss one by one. The results are illustrated in
Tab. 3. The conditional formatting green-to-red shows
high-to-low values. It can be observed that approach
performs well overall when all the loss functions are used.
The overlap loss contributes comparatively low and is
required only at the beginning of the training when the
keypoints are estimated randomly. The contribution
of the separation loss is comparatively higher than the
overlap, shape and volume loss since it maintains the
distance between the estimated keypoints, thus enforc-
ing the keypoints to move over the whole object and
toward the surface. Shape loss avoids the estimation of
the keypoints outside the object. The contribution of
the volume loss is comparatively lower than the other
loss functions. The consistency and pose losses allow
the estimation of the corresponding and pose coherent
keypoints. Ignoring both the losses affects the overall
performance of the proposed approach. The qualitative
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Figure 4: Performance of our approach with different combinations of losses. The leftmost figure shows the keypoints
when the network is trained for all the losses. In the remaining figures, the model is trained without a specific loss
which is mentioned at the top of every figure.

w.o. loss Inc. ↑ Cov. ↑ DAS ↑ ME ↓
All loss 78.44 91.53 74.00 0.056
Aoverlap 77.09 90.72 53.80 0.061
Lsep 63.01 85.70 67.38 0.081
Lshape 76.05 90.31 58.45 0.064
Lvolume 77.35 90.90 63.14 0.066
Lconsist 76.52 91.03 42.44 0.103
Lpos 76.76 91.04 53.89 0.095
Lconsist + Lpos 70.15 88.07 41.95 0.103

Table 3: Performance of the proposed approach for
selected losses where, Inc., Cov., and ME represent
inclusivity, coverage and matching error (coherence).
The conditional formatting “green-to-red” represents
the “good-to-bad” performance. The results are the
average values of the test set of the keypointNet dataset.

results of the proposed approach trained without the
selected loss function are illustrated in Fig. 4.

5.3. Robustness to perturbations

This ablation highlights the performance of the pro-
posed approach for noisy and down-sampled PCDs of
the airplane category. Noisy PCDs are generated by
adding Gaussian noise of different variances to the orig-
inal PCDs. For decimating the PCD, we use the Far-
thest Point Sampling (FPS) as used in [17, 38]. Fig. 5a
and 5b show the keypoints estimated for noisy and
down-sampled PCDs, respectively. Our approach suc-
cessfully estimates the consistent keypoints at accurate
positions for the noisy and down-sampled PCDs.

Quantitative results for the noisy and down-sampled
PCDs are illustrated in Fig. 5c and Fig. 5d, respectively
where to fix the DAS in the plots [0 to 1], we show
DAS/100. The results show that the ME increases and
the DAS decrease with the increase in the noise level.
Similarly, DAS decreases if down-sampling ratio is re-
duced to 6 times the original PCD. The ME remains
approximately the same for down-sampled PCDs, vali-
dating that down-sampling does not affect the keypoints.

(a) Visualizations of the noisy PCDs

(b) Visualizations of the down-sampled PCDs
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Figure 5: Performance of the proposed approach for
noisy and decimated PCDs. (a) and (b) represent qual-
itative results, whereas, (c) and (d) illustrates the effect
of the noise scale and down-sampling ratio, respectively.

6. Conclusions

This paper presented a method, SC3K, to estimate
3D keypoints from a single PCD such that they express
the following properties: robust – minimum position
error across different rotated versions of the same PCD;
compact – proximal to the PCD surface, and coherent –
in semantic order for all the intra-class instances. Simi-
larly, the proposed method is repeatable – can estimate
the accurate keypoints irrespective of the noise, down-
sampling or rotation of the PCD; and self-supervised –
can estimate the same keypoints from single PCD with-
out requiring any labels (pseudo or human annotation)
during the inference. We achieved these desiderata by
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training the network with a new self-supervised strat-
egy that does not require human annotations, instead,
it computes the relative pose between the two sets of
keypoints as a proxy task and then minimizes the error
against the known relative pose of the input PCDs pair.
The proposed approach is compared with the SOTA
keypoints estimation approaches using the Keypoint-
Net dataset. The results validated that the proposed
SC3K outperforms the SOTA approaches by estimat-
ing the coherent keypoints close to the object’s surface,
characterizing the object’s shape.

Limitations. SC3K may fail to estimate keypoints
close to the object’s surface for a number of keypoints
higher than 35 and its performance decreases for sym-
metrical shapes. For some categories, such as bikes
or cars, it is challenging to differentiate between the
front and back wheels. In the same way, as it happens
in previous approaches, strong intra-class geometrical
variations negatively affect the performance, i.e., it is
hard to compute semantically coherent keypoints be-
tween a single and a bunk bed. SC3K uses the publicly
available dataset and estimates the keypoints to repre-
sent an object’s shape. So, it does have very limited
negative societal impacts.
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