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Abstract

With the emergence of powerful deep learning tools,
more and more effective deep denoisers have advanced the
field of image denoising. However, the huge progress made
by these learning-based methods severely relies on large-
scale and high-quality noisy/clean training pairs, which
limits the practicality in real-world scenarios. To overcome
this, researchers have been exploring self-supervised ap-
proaches that can denoise without paired data. However,
the unavailable noise prior and inefficient feature extrac-
tion take these methods away from high practicality and
precision. In this paper, we propose a Denoise-Corrupt-
Denoise pipeline (DCD-Net) for self-supervised image de-
noising. Specifically, we design an iterative training strat-
egy, which iteratively optimizes the denoiser and noise es-
timator, and gradually approaches high denoising perfor-
mances using only single noisy images without any noise
prior. The proposed self-supervised image denoising frame-
work provides very competitive results compared with state-
of-the-art methods on widely used synthetic and real-world
image denoising benchmarks.

1. Introduction

Image denoising is a significant research problem in the
field of image processing, which aims to remove noise
while preserving the details and structures of the original
image. Image denoising benefits not only visual quality
perceived by the human eye but also downstream imaging
problems, including remote sensing [23,39], medical imag-
ing [24], microscopy [22], and low-light imaging [6,40,44].

Numerous studies have been proposed for image denois-
ing. Traditionally, researchers utilize hand-crafted priors
to remove noise. Among them, wavelet [35], total varia-
tion [33], and self-similarity [3,7] based methods are widely
used. More recently, with the rapid development of com-
putational resources, deep learning, specially convolutional
neural network (CNN) based methods [12, 32, 34, 47, 48]
have gained increasing attention due to their strong rep-
resentation and spatial feature extraction ability. Since
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Figure 1: Performance overview of our self-supervised
denoising method from a single noisy image. Our
performance surpasses baseline self-supervised method
N2V [18], and has competitive results with a strong base-
line N2N [21], which is trained on paired noisy observa-
tions. The PSNR/SSIM results are shown in the brackets.

DnCNN [47], which is the earliest exploration of deep de-
noiser, a large number of related works emerged within a
few years [12, 32, 34, 48]. Although CNN-based denois-
ers achieve very promising results compared to traditional
methods, the severe dependence on high-quality noisy/clean
training pairs limits their application in real scenes.

To address the challenge of collecting paired real data,
there are two common technical approaches. The first ap-
proach involves synthetic noisy/clean image pairs instead
of real ones. To achieve this, modeling noise distribu-
tion becomes crucial to reduce the domain gap between
the synthetic training data and real evaluation data. Early
methods model noise distribution using simple statistical
models [9,25,46]. In recent years, more accurate genera-
tive models [1, 5, 15,43] and sophisticated statistical mod-
els [40,49,50] are proposed, which can better describe real
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sensor noise distribution. Precise noise modeling is verified
to be a good alternative for paired real data [40], but such
methods still need camera-specific training/calibration data,
which limits its application.

The other approach is to design unsupervised and self-
supervised training strategies. These methods relieve the
network from noisy/clean training pairs. Instead, their de-
noising model can be trained by unpaired [4] or weakly
paired images. For example, Noise2Noise (N2N) [21]
needs a clean image’s two noisy observations for network
learning. To further improve the practicality, in recent
years, more methods [16, 18,20, 30, 37, 38] intend to re-
cover clean images from single noisy images. Among these
methods, some of them [16,29,30,42] generate noisy/noisy
pairs from a single noisy image, which free the learning of
Noise2Noise from two noisy observations, but a prerequi-
site for these methods is knowing the noise models in ad-
vance. Others [18, 20, 38] propose customized blind-spot
networks that are designed to avoid identity mapping, which
discard important pixel information.

In this work, we propose a novel Denoise-Corrupt-
Denoise training pipeline (DCD-Net) for self-supervised
image denoising. By carefully analyzing the mainstream
self-supervised denoising methods, we devise a solution
that can simultaneously make up for the deficiencies of both
the impractical and less accurate problems of existing self-
supervised methods. Specifically, we present an iterative
deep denoising pipeline that takes only single noisy images
to approach the performance with additional training infor-
mation (e.g., paired noisy observations for N2N [21]). We
repeatedly follow the pipeline of denoising for clean predic-
tion, estimating noise level, corrupting for N2N pairs, and
performing N2N learning. Then, by iteratively training the
denoiser and noise estimation model, the denoising perfor-
mance gradually reaches a strong baseline, i.e., N2N, even
though we have only single noisy observations. The pro-
posed DCD-Net achieves promising results on widely used
synthetic and real-world image denoising benchmarks.

The main contributions can be summarized as follows:

1. We carefully analyze the pros and cons of exist-
ing denoising methods and propose a novel Denoise-
Corrupt-Denoise learning pipeline for self-supervised
image denoising.

2. We propose to iteratively train the denoiser with a
noise estimation model, which makes the denoising
network gradually approach a strong weakly super-
vised baseline, i.e., N2N.

3. We apply our denoising framework on both synthetic
and real image denoising benchmarks, and the results
verify our superiority over leading self-supervised
methods.

2. Related Work

In this work, we review the most related work with this
paper, including supervised and self-supervised image de-
noising methods.

2.1. Supervised Image Denoising

In the early years, deep image denoising methods are fed
with paired noisy/clean images. In 2017, DnCNN [47] first
introduces CNN architecture to the field of image denois-
ing, which consists of multiple convolutional layers with
residual connections. Later, RED [27], FFDNet [48] and
MemNet [34] further improve the denoising performances
by introducing finer network structure, including densely
connected layers and cascading architecture. CBDNet [12]
further introduces to predict and feed a noise map to deep
networks, in order to remove noise for images with un-
known noise level. Recently, more and more researchers
directly utilize the U-Net [32] architecture that is first intro-
duced in medical image segmentation problem, and verify
that it can be effectively used for image denoising prob-
lems. On synthetic noise removal, we can synthesize ac-
curate noisy/clean pairs with known noise levels, making
deep learning-based methods easily surpass traditional de-
noisers to a great deal. However, when it comes to denois-
ing tasks in real scenarios [2, 31] where we do not know
the noise distribution in advance, such methods suffer from
severe domain gap and perform poorly on real scenes. Ap-
proaches including paired real data capture and noise mod-
eling can mitigate this problem, but additional labor and
data are required and further limit the applications for su-
pervised methods.

2.2. Unsupervised and Self-supervised Image De-
noising

Although traditional methods, including NLM [3] and
BM3D [7] can directly remove noise from a single image,
they heavily rely on hand-crafted prior and suffer from un-
bearable inference time. In recent years, self-supervised
deep denoisers have been widely explored, and such meth-
ods can be roughly divided into two technical lines.

Noise2Noise (N2N) [21] is the pioneer in deep denois-
ing models that attempts to weaken paired training data
requirements. It theoretically proves that a CNN can di-
rectly estimate the true image by learning from two noisy
observations, which have the same underlying clean im-
age. Considering that such methods. Since the two noisy
observations required by N2N still cannot meet most real
scenarios, some methods [16, 29, 30, 42] attempt to gener-
ate noisy/noisy pairs from a single noisy image, and apply
them to N2N learning. Noisy-As-Clean (NAC) [42] and
Noisier2Noise [29] recorrupt the noisy image and directly
train the model on a noisier input. Recorrupted-to-corrupted
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Figure 2: The overview of iterative Denoise-Corrupt-Denoise pipeline for self-supervised image denoising.

(R2R) [30] design a data augmentation technique to gen-
erate noisy pairs from a single noisy image. Nevertheless,
these methods suffer from inconvenience when noise model
and level are not available in advance. Neighbor2Neighbor
(NBR2NBR) [16] generates noisy pairs from subimages. It
is indeed free from noise prior, but the underlying clean im-
ages differ.

Noise2Void (N2V) [18] is an improvement over N2N
since it only needs a single noisy image for training. The
main idea behind N2V is to use a part of the noisy image
as input and predict the missing part of the same noisy im-
age. The proposed network, i.e., the blind-spot network is
trained to predict the missing pixels from the surrounding
context. Starting from N2V [18], a lot of methods design
more powerful blind-spot network. DBSN [41] introduces a
dilated blind-spot networks. AP-BSN [20] devises a blind-
spot network based on asymmetric pixel-shuffle downsam-
pling. Blind2Unblind (B2U) [38] proposes a global mask
mapper, which is still a blind-spot network. With blind-spot
architecture, such methods inevitably suffer from informa-
tion loss at the pixels which are chosen as blind spots.

In this work, we focus on iteratively learning denoiser
with noise estimator from single noisy images, leading to
higher practicality than N2N data generation-based meth-
ods, and better performance than blind-spot methods.

3. Method

In this section, we first revisit the two foundations of re-
cent self-supervised denoising methods. Then, we illustrate
our observation and motivation for this work. Next, the de-
tails of our Denoise-Corrupt-Denoise self-supervised train-
ing pipeline are illustrated. Finally, the learning details are
introduced. The overview framework of this work is illus-
trated in Fig. 2.

3.1. Revisit of Previous Works

N2N [21] and N2V [18] represent two mainstream tech-
nical lines for recent self-supervised denoising works [16,
18,20,29,30,38,42]. Assuming we have a set of noisy obser-
vations y1,¥2, - - ,Yn, which have the same underlying
true image x and are corrupted by noise 11,19, , s
distributed from the same zero-mean distribution, i.e.,
S {1’27 )M})

Yi =z +n;, ey

N2N [21] theoretically derives that the optimization prob-
lem of deep denoiser f(-;8), which minimizes the Ly Loss
between the prediction and ground truth image, equals di-
rectly minimizing between two independently distributed
noisy observations

argmin B[] f(y; 0) — 3] = argmin B[] f(y;; 0) —yx /3],
2
where j,k € {1,2,--- M} and j # k.

Different from N2N that needs paired noisy images,
N2V [18] proposes to train the network on a single noisy
image y

argmin B[ f(yrr(); 0) — y(p)13]; 3)
where p denotes the pixel coordinate, Yrr(,) represents a
specific receptive field centered around pixel p, excluding
the pixel itself. Such network design is termed as blind-spot
network, and can well avoid learning identity mapping.

Based on the above two self-supervised denoising foun-
dations, successive works either dedicate in generating N2N
pairs from a single noisy image, or designing more elabo-
rate blind-spot networks.

3.2. Observations and Motivations

Implied by the evaluation of existing works [40] and our
empirical study (Section 4), the denoising performance of
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Figure 3: The overview of our noise level estimation and N2N pair generation model.

N2N in real datasets like SIDD [2] and ELD [40] still lags
behind that of supervised learning (Noise2Clean, N2C).
However, in other synthetic denoising situations, plenty of
works [16, 38] indicate that when N2N is fed with suffi-
cient training samples, it can reach the same precision as
N2C, and better than state-of-the-art self-supervised denois-
ing methods. This phenomenon can be attributed to the fact
that N2N’s training in the latter case is supplemented with
a wide variety of random noise samples, which is not pos-
sible in real-world settings where the same noisy samples
are presented in every training epoch. In addition, accord-
ing to the results of existing works [16, 38], we observe
that N2N data generation based methods [16, 29, 30, 42]
basically depend on inaccessible real noise distribution, or
affected by unpaired ground truth. Although blind-spot
networks [18, 20, 38, 41] relax the training conditions for
N2N, the image denoising accuracy is compromised due to
the ignorance of information at blind spots. As a result,
such methods cannot compete with sufficiently trained N2N
models. The above observations can be concluded as fol-
lows: Given sufficient training samples,

1. N2N can achieve nearly the same performance as su-
pervised learning (N2C)

2. N2N surpasses existing self-supervised methods, in-
cluding N2N data generation based methods and blind-
spot networks.

In a word, a sufficiently trained N2N model can serve
as a strong baseline for self-supervised learning. Hence,
we are inspired to optimize denoising networks to gradually
approach the performance of N2N.

3.3. Denoise-Corrupt-Denoise Pipeline

To explore the potential of N2N, obtaining sufficient &
accurate N2N training pairs is the critical issue that needs
to be addressed. Although several previous works [29, 30]
attempt to generate noisy pairs directly from single noisy

observations, they are affected by accumulated optimiza-
tion errors. Hence, we still desire clean images produced
by perfect denoiser. In addition, to create noisy observation
pairs, we need to know the noise model and noise level.
Luckily, numerous previous works [10, 13, 26] have veri-
fied that the noise produced by real image sensors follows
Poisson-Gaussian model, and can be well approximated by
the heteroscedastic Gaussian model. In other words, real
noise 1 can be modeled by

n=N ~(0,03x + o?), “4)

where o2 and o7 are the signal-dependent and signal-

independent variance. Though Eq. (4) specifies noise
distribution, noise level still remains unknown for self-
supervised methods. Thus we introduce a noise estimation
network to learn it.

To conclude, there are two prerequisites to achieve close
results as N2N, i.e., a powerful denoising network f(-,6),
and an accurate noise estimator £(-). Here, we introduce a
Denoise-Corrupt-Denoise pipeline for self-supervised im-
age denoising, which iteratively optimizes the denoising
network and noise estimator. Our pipeline follows the fol-
lowing steps.

Pre-Denoise. First, we perform deep denoising network
f(-,0) on the given single noisy image y to obtain a pre-
diction &

&= f(y,0). 5)

Corrupt. Then, we predict the noise level from y and the
predicted clean image &, and obtain the pixel-wise noise
level map M,

The noise level map M,,; is used to corrupt the predicted
clean image and obtain two different noisy images that have
the same noise level as the original image y, as shown in
Fig. 3(b). In our experiment, though real noise produced
by image sensor are spatially uncorrelated, we find that in-
corporating spatial feature further facilitate the learning of
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noise levels. Thus, we use resnet blocks [ 14] with 3 x 3 con-
volution kernels, as shown in Fig. 3(a). Directly perform-
ing Gaussian distribution using M,,; would bring a non-
differential problem. Therefore, we use the reparameteriza-
tion trick [17] to make sure that the noise sampling process
can be backward. The process is illustrated in Fig. 3(b), and
can be formulated as

yni:j?+z7;*Mnl, ZiEN(O,I),iG{l,Q} (7)

We propose a patch variance loss Ly, to constrain the noise
estimator £, which can be denoted as

Lpy = Z IVar(P(yni,p)) — Var(P(y,p))ll,  (8)

where P (-, p) means extracting p x p patches from an image.

N2N Denoise. Finally, we obtain two different noisy sam-
ples y,,1 and y,2 under the same truth image, which meets
the requirement for N2N learning. The denoising network
f(-,0) is trained by the N2N learning described in Eq. (2),
and is constrained by minimizing Lo loss

Lyon = [ f(Yn1) — yn2l3- )

By iteratively repeating Eqs. (5)-(9), the denoising per-
formance is approaching the performance of N2N, while the
noise estimation network progressively learns to accurately
reveal the noise level of a given single noisy image.

Blind-Spot Network for Initial Denoising. While the orig-
inal Denoise-Corrupt-Denoise pipeline exhibits potential in
progressively reaching available paired noisy observations,
there remains a requisite for an initial coarse denoised im-
age estimation. Without this, the denoising network might
default to an identity mapping, while the noise estimator
might revert to a zero mapping. To address this, we em-
ploy blind-spot networks that operate independently of any
noise priors. For example, following N2V [18], 10% ran-
dom blind-spots shall be masked and predicted using the
rest of the image. Other blind-spot network [16,38,41] can
also seamlessly integrate into the pipeline, serving as pre-
liminary denoisers. The loss for the blind-spot network is
expressed as

Lpsn = | f(yrr:0) —yl3 (10)
3.4. Iterative Denoising Strategy

During the training of our Denoise-Corrupt-Denoise
pipeline, we iteratively and separately step the optimization
of the denoising network and noise estimator to avoid learn-
ing identity mapping for the denoising network, and zero
mapping for the noise estimator.

The total training loss of our Denoise-Corrupt-Denoise
pipeline are

L= pLlyy, +vLnan + Apsn 1D

In the early training phase, we set small v and large A since
the blind-spot network is trained to provide a coarse de-
noiser. As training processes, -y is getting larger to domi-
nate the training and approach N2N learning. In addition, p
decreases quickly to make the network training more stable.

4. Experiment

In this section, we first introduce the experimental set-
tings, including the metrics, datasets and learning details we
use. Then, we conduct denoising experiments on both syn-
thetic SRGB and real raw-RGB datasets. Finally, ablation
studies are performed to verify our training strategy.

4.1. Experimental Details

Dataset. Following previous self-supervised image denois-
ing methods [16, 38], we assess denoising performance un-
der two noise conditions, i.e., synthetic SRGB and real raw-
RGB. For the synthetic SRGB case, to exploit and evaluate
the performances of denoising methods, we utilize the Im-
ageNet [8] validation dataset for training, comprising 50k
clean sRGB images. Then, the images between resolution
of 256 x 256 and 512 x 512 are used for training. The eval-
uation is conducted on several established denoising bench-
marks, such as Kodak [11], BSD300 [28], and Set14 [45].
During training, all images are cropped to a resolution of
256 x 256. In accordance with [16,38], we explore four typ-
ical noise distributions for the synthetic scenario: (1) Gaus-
sian noise with a fixed level o = 25, (2) Gaussian noise
with varied noise levels o € [5, 50], (3) Poisson noise with
a fixed level A = 30, and (4) Poisson noise with varied noise
levels A € [5,50]. For the real raw-RGB experiments, we
train all methods on the SIDD raw-RGB Medium dataset [2]
and evaluate them on the SIDD raw-RGB validation set.
Given that SIDD is collected using five diverse smartphone
cameras—including Samsung Galaxy S6 Edge, iPhone 7,
Google Pixel, Motorola Nexus 6, and LG G4—this setup
allows a comprehensive assessment of applicability in real-
world denoising scenarios.

Metrics. To evaluate the quality of denoised images, we
utilize two widely used image-quality metrics, including
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity (SSIM) [36] . PSNR measures pixel-wise fidelity, and
SSIM can be used the evaluate the 2D spatial similarity.
Larger PSNR and SSIM suggest better results.

Implementation. Considering that this work focuses on
self-supervised image denoising strategies instead of net-
work architecture, we fix the denoising model as U-Net [38]
for all methods, which guarantees fair comparisons for all
training strategies. During training, the batch size is set to
4, and we use the Adam optimizer initiated with a learning
rate of 107, and is halved per 20 epochs. The total number
of epochs is 100. As for the hyper-parameter, -y, ¢ and A are
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setto 0, 1 and 1 at the beginning of the training and evenly
change to 1, 0 and O as training processes. All experiments
are conducted on a single NVIDIA RTX 3090 GPU.

4.2. Comparison with State-of-The-Arts

Compared Methods. To validate the effectiveness of our
training strategy, we compare our method with several
supervised baselines and state-of-the-art self-supervised
methods. First, as analyzed in Section 3.2, supervised learn-
ing (N2C) and N2N [21] can be served as strong base-
lines for this task, which utilize information more than sin-
gle noisy images in the training stage. Therefore, if suffi-
ciently trained, N2C and N2N are expected to perform bet-
ter than other self-supervised methods that compromise of
them from single noisy observations. In addition, a tradi-
tional denoising method BM3D [7] are evaluated, which
is built based on block matching and self-similarity. We
also compare with state-of-the-art self-supervised image de-
noising methods. R2R [30], NAC [42], Ni2N [29] and
NBR2NBR [16] are representative methods that generate
N2N [21] pairs from a single noisy image. For blind-
spot based networks, we make comparisons with N2V [18],
SSDN [19] and B2U [38]. We carefully re-implement N2C,
N2N, BM3D, N2V, NAC, Ni2N, using the same code base
and training iterations for a fair comparison. We directly
use the reported results of SSDN and R2R by previous
works [16,38], and we use the pretrained models provided
by NBR2NBR and B2U for evaluation.

Experiments on Synthetic Data. First, we evaluate the de-
noising performances on synthetic datasets under four noise
cases, as described in Section 4.1. The numeric evalua-
tion results are provided in Table 1. It can be inferred that
our Denoise-Corrupt-Denoise training strategy works well
in Gaussian and Poisson distribution, with both fixed and
varied noise levels. Table 1 shows that our method achieves
state-of-the-art results in PSNR and SSIM, especially for
the setting of Gaussian noise. We notice that R2R provides
very promising results in fixed noise level settings. How-
ever, due to the requirement for noise model and noise level
as prior, it inevitably suffered from performance degra-
dation in blind noise removal. In addition, though B2U
reaches similar results with our training pipeline, the train-
ing cost of B2U is 16 times larger than direct U-Net training
(compared to 3 times of ours), which reduces the practi-
cality of B2U. The visual results are shown in Figs. 4 and
5, from which we can conclude that our DCD-Net pipeline
preserves more scene details while maximizing the perfor-
mance of image denoising.

Experiments on Real Data. To evaluate how these de-
noising methods perform in real scenarios, we further con-
duct experiments on a widely used real-world dataset, i.e.,
SIDD [2]. For baseline methods N2C and N2N, we directly
feed the network with noisy/clean or noisy/noisy pairs pro-

Noise Type Method KODAK BSD300 SET14
N2C 32.46/0.884 31.20/0.881 31.43/0.868

N2N [21] 32.48/0.885 31.22/0.882 31.45/0.869

BM3D [7] 29.97/0.808 28.48/0.788 29.63/0.818

N2V [18] 31.81/0.875 30.52/0.870 30.53/0.853

Gaussian SSDN [19] 30.62/0.840 28.62/0.803 29.93/0.830
o — 95 RZR[30] 32.25/0.880 30.91/0.872 31.32/0.865
NAC [42] 25.69/0.521 25.51/0.583 25.67/0.586

Ni2N [29] 30.45/0.811 29.34/0.803 29.75/0.815
NBR2NBR [16] 32.08/0.879 30.79/0.873 31.09/0.864

B2U [38] 32.27/0.880 30.87/0.872 31.27/0.864

Ours 32.27/0.881 31.01/0.876 31.29/0.862

N2C 32.58/0.876 31.27/0.870 31.50/0.864

N2N [21] 32.57/0.876 31.26/0.870 31.46/0.863

BM3D [7] 29.38/0.781 28.83/0.795 30.74/0.834

N2V [18] 31.72/0.863 30.39/0.855 30.24/0.843

Gaussian SSDN [19] 30.52/0.833 28.43/0.794 29.71/0.822
o € [5,50] R2R [30] 31.50/0.850 30.56/0.855 30.84/0.850
NAC [42] 25.40/0.516 24.98/0.560 25.44/0.575

Ni2N [29] 32.17/0.868 30.93/0.862 30.87/0.852
NBR2NBR [16] 32.10/0.870 30.73/0.861 31.05/0.858

B2U [38] 32.34/0.872 30.86/0.861 31.14/0.857

Ours 32.35/0.872 31.09/0.866 31.09/0.855

N2C 31.84/0.877 30.54/0.872 30.63/0.859

N2N [21] 31.84/0.877 30.54/0.872 30.63/0.858

BM3D [7] 27.89/0.738 26.58/0.717 27.11/0.744

N2V [18] 31.18/0.864 29.88/0.858 29.79/0.841

Poisson SSDN [19] 30.19/0.833 28.25/0.794 29.35/0.820
) =30 R2ZR[30] 30.50/0.801 29.47/0.811 29.53/0.801
NAC [42] 24.36/0.486 24.33/0.559 23.93/0.541

Ni2N [29] 29.43/0.775 28.29/0.764 28.63/0.778
NBR2NBR [16] 31.44/0.870 30.10/0.863 30.29/0.853

B2U [38] 31.64/0.871 30.25/0.862 30.46/0.850

Ours 31.60/0.870 30.22/0.865 30.41/0.855

N2C 31.25/0.862 30.17/0.859 30.28/0.848

N2N [21] 31.17/0.861 30.10/0.859 30.19/0.847

BM3D [7] 27.08/0.702 25.85/0.688 26.44/0.724

N2V [18] 30.55/0.844 29.46/0.844 29.44/0.831

Poisson SSDN [19] 29.76/0.820 27.89/0.778 28.94/0.808
A€ [5,50] R2R [30] 29.14/0.732 28.68/0.771 28.77/0.765
NAC [42] 23.12/0.447 23.47/0.534 23.14/0.516

Ni2N [29] 30.31/0.812 29.45/0.821 29.40/0.812

NBR2NBR [16] 30.86/0.855 29.54/0.843 29.79/0.838
B2U [38] 31.07/0.857 29.92/0.852 30.10/0.844
Ours 31.00/0.857 29.99/0.855 29.99/0.843

Table 1: Quantitative comparison on synthetic dataset.

vided by SIDD training set. Since SSDN requires the spe-
cific noise model as a prior, two representative noise dis-
tributions (Gaussian and Poisson) are used to evaluate their
method. The quantitative and qualitative results are pro-
vided in Table 2 and Fig. 6. As shown in Table 2, our
method achieves competitive results with the state-of-the-
art method B2U which is trained with a large computational
cost. Noting that R2R performs well in synthetic setting
(Table 1), but it fails to stay high-level performance in real
noise. This is caused by the unknown noise prior in real
scenarios. Moreover, Ni2N suffers from the unknown noise
prior even more severely, and can hardly eliminate noise
when the noise level is absent. The overall quantitative and
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Noisy N2C N2N

BSD-033 2041044 30.61/0.93  30.65/0.93

BM3D N2v Ni2N B2U Ours
27.51/0.88

29.67/0.92 28.96/0.90 29.76/0.92 30.34/0.93

Noisy N2C N2N

SET-008

20.32/0.32 34.25/0.94 34.26/0.94

- N I { y
BM3D N2v Ni2N B2U Ours
31.89/0.92

33.45/0.93 32.42/0.92 33.96/0.94 34.05/0.94

Figure 4: The denoising results on sSRGB dataset, under Gaussian noise with ¢ = 25. The PSNR/SSIM results are shown

below the figure.

Noisy N2C N2N
20.33/0.38 32.53/0.87 32.56/0.87

BM3D N2V Ni2N B2U Ours
28.93/0.76

31.97/0.86 30.35/0.77 32.36/0.86 32.37/0.86

Noisy N2C N2N

Kodak-010 19.32/0.34  31.44/0.86  31.43/0.86

28.25/0.74

BM3D N2V Ni2N B2U Ours

30.87/0.85 29.04/0.73 31.25/0.85 31.32/0.85

Figure 5: The denoising results on sSRGB dataset, under Poisson noise with A = 30. The PSNR/SSIM results are shown

below the figure.

qualitative results shown in Table 2 and Fig. 6 verify that
our training strategy well facilitates the exploitation of self-
similar features, leading to better application in real image
denoising.

4.3. Ablation Studies

To verify the effectiveness of our training strategy, we
conduct extensive experiments on the major optimizing
components of our pipeline.

Patch Variance Loss for Noise Estimator. First, we ver-
ify the patch size for the proposed patch variance loss. Five
different receptive fields for each patch are used, includ-
ing 4 x 4, 8 x 8, 32 x 32, 64 x 64 and a global receptive
field. The denoising results on Kodak dataset with Gaussian
noise at 0 = 25 are evaluated, and the results are provided
in Table 4. We can see that the patch size of 8 x 8 is the
most suitable for our patch variance loss. This phenomenon
is intuitive, since the variance calculation of smaller patch
size is unstable, while larger patch size includes more high-
frequency scene information that affects the computation
for variance loss. In addition, fewer gradients are backward

Methods Network Train Cost PSNR SSIM
N2C U-Net x1 51.27 0.983
N2N [21] U-Net x1 51.29 0.991
BM3D [7] - - 48.13 0.983
N2V [18] U-Net x1 50.46 0.990
SSDN [19] (Gaussian) U-Net x4 50.44  0.990
SSDN [19] (Poisson)  U-Net x4 50.89 0.990
R2R [30] U-Net x1 47.20 0.980
NAC [42] U-Net x1 43.24 0.961
Ni2N [29] U-Net x1 33.74 0.752
NBR2NBR [16] U-Net x2 51.06 0.991
B2U [38] U-Net x17 51.36  0.992
Ours U-Net %3 51.40 0.992

Table 2: Quantitative comparisons on SIDD dataset. The
PSNR, SSIM and relative training computational cost for
each method are provided. The computational cost for a
N2C learning is served as the base (x1).

for larger patch sizes. Table 3 explores the weight for the
noise estimation model, which indicates that as the training
goes on, the noise estimator can be reduced at early steps
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Noisy N2C N2N

Clean 37.59/0.899  53.52/0.997  52.78/0.997

Noisy N2C N2N
23.98/0.72 39.49/0.99 39.07/0.99

46.95/0.991

BM3D N2V Ni2N B2U Ours
52.97/.997

52.11/0.996 36.61/0.862 53.74/0.997

BM3D N2V Ni2N B2U Ours
33.87/0.95

38.63/0.98 24.03/0.74 39.42/0.99 39.71/0.99

Noisy N2C N2N

Clean 25.46/0.65 40.46/0.98 40.49/0.98

37.71/0.97

BM3D N2V Ni2N B2U Ours

39.89/0.98 24.63/0.57 40.29/0.98 40.50/0.98

Figure 6: The result on our dataset on SIDD validation dataset. The PSNR/SSIM results are shown below the figure.

Table 3: The ablation study for noise estimation
network on Kodark dataset.

pn=20 p=1 uw=1—0
PSNR 24.21 31.86 32.27
SSIM 0.675 0.872 0.881

since it is more easily to be trained than the denoiser.

N2N Training. The ablation study results for N2N training
are presented in Table 5. We consider three values for the
weight of Lyopn. It can be inferred from Table 5 that by
removing Lyan (7 = 0), the denoising capability degrades
since the pipeline reduces to a simple blind-spot network.

Blind-Spot Training. Here, we assess the impact of the
blind-spot network. As illustrated in Table 6, omitting the
blind-spot training results in significant convergence chal-
lenges during the training phase. This issue arises because
the noise estimator struggles to determine accurate noise
levels when relying on flawed denoisers. Consequently,
our pipeline leverages the blind-spot network for the initial
learning of a coarse denoiser, a process that can be con-
ducted using only single noisy images. We believe that
our approach offers possibilities for collaboration with other
meticulously crafted blind-spot networks [ 16, 38].

5. Conclusion

In this paper, we propose an effective Denoise-Corrupt-
Denoise pipeline (DCD-Net) for self-supervised image de-
noising. Based on careful analysis and observations that
N2N can be served as a strong baseline when training sam-
ples are sufficient, the proposed pipeline is trained in an it-

Table 4: The ablation study in Kodark dataset. We
conduct ablation study on patch size for patch vari-
ance loss.

patch size 4 8 32 64 Global

PSNR 3221 32.27 3223 3224 32.18
SSIM 0.877 0.881 0.880  0.879 0.875

Table 5: The ablation study for blind-spot network
on Kodark dataset.

y=0 y=1 y=0—=1
PSNR 31.81 32.14 32.27
SSIM 0.875 0.873 0.881

Table 6: The ablation study for the regularization
term on Kodark dataset.

A=0 A=1 A=1—-0
PSNR 14.46 31.75 32.27
SSIM 0.5312 0.875 0.881

erative manner and gradually reaches the performance of
a sufficiently trained N2N model. The proposed pipeline
repeats the following training steps: 1) use a deep denois-
ing network to obtain predicted clean images; 2) predict
the noise level to generate new N2N pairs, and optimize
the noise estimator; 3) training through N2N strategy and
optimize the deep denoiser. Our pipeline is verified to
have state-of-the-art performance compared to other self-
supervised image denoising methods under a wide variety
of synthetic and real noise conditions.
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