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Abstract

Many virtual reality applications require massive 3D
content, which impels the need for low-cost and efficient
modeling tools in terms of quality and quantity. In this pa-
per, we present a Diffusion-augmented Generative model
to generate high-fidelity 3D textured meshes that can be
directly used in modern graphics engines. Challenges
in directly generating textured mesh arise from the insta-
bility and texture incompleteness of a hybrid framework
which contains conversion between 2D features and 3D
space. To alleviate these difficulties, DG3D incorporates
a diffusion-based augmentation module into the min-max
game between the 3D tetrahedral mesh generator and 2D
renderings discriminators, which stabilizes network opti-
mization and prevents mode collapse in vanilla GANs. We
also suggest using multi-modal renderings in discrimina-
tion to further increase the aesthetics and completeness of
generated textures. Extensive experiments on the public
benchmark and real scans show that our proposed DG3D
outperforms existing state-of-the-art methods by a large
margin, i.e., 5% ∼ 40% in FID-3D score and 5% ∼
10% in geometry-related metrics. Code is available at
https://github.com/seakforzq/DG3D.

1. Introduction

The production of 3D content plays a crucial role in
the film, gaming, simulation, and social industries. As
the demand continues to grow, manually made 3D mod-
els could not keep up with the expansion of the industries.
Researchers have made substantial progress in generating
geometry for 3D models [9, 10, 22, 27, 35, 2, 28], but the
corresponding textures received less attention. While some
methods have considered texture generation [3, 25, 41, 36],
most of them infer textures based on fixed geometric inputs,
which means that they are not fully generative models and

do not take into account the interdependent relationship be-
tween geometry and texture.

3D-aware image generation [4, 24, 34, 3], a related re-
search field with textured mesh generation, aims to syn-
thesize images from all viewpoints. These methods en-
sure consistency between different views by incorporating
the priority constraint of volume rendering. They can pro-
duce high-resolution images with a super-resolution net-
work. However, though the shapes can always be extracted
from the density field by setting specific levels-set values,
the quality of the extracted shapes is often much lower than
the quality of the synthetic novel views. Since conver-
sion from implicit representations to explicit meshes sig-
nificantly degrades fidelity, methods that directly optimize
explicit meshes are urgently needed.

Recently, differentiable mesh reconstruction [11, 33,
12] has shed light on the generation of textured mesh.
DefTet [11] utilizes a neural network to deform an ini-
tial tetrahedral mesh’s vertices and predict the occupancy
for each tetrahedron. DMTet [33] instead reconstructs the
shapes by predicting the SDF defined on a deformable tetra-
hedral grid. Then it converts the SDF to a surface mesh by a
novel differential Marching Tetrahedral layer. GET3D [12]
further incorporates DMTet [33] in StyleGAN2 [18] and
uses a hybrid tri-plane representation for transformation
from 2D feature space to 3D tetrahedral space. It extracts
textured meshes by the differentiable Marching Tetrahedron
layer and adopts DiffRast [20] to render the textured meshes
as RGB images and silhouettes for discrimination. Though
GET3D [12] achieves an impressive performance, a poten-
tial deficiency that causes instability in training with ren-
dered images is the inadequate 3D supervision that discrim-
inators can receive. As a result, we often observe mode col-
lapse in such a paradigm that combines a 3D generator and
multiple 2D discriminators [12]. Moreover, we find that di-
rect discrimination on the entire image results in texture in-
completeness, significantly degrading the quality of shapes.
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Figure 1: We export the generated shapes in .fbx format and render them with a transparent background. We add sunlight in
the scene so the shadow effect can be observed. DG3D can generate a fine texture with arbitrary topology.

Luckily, the latest achievements in 2D image generation
and texture generation have motivated us. To facilitate high-
resolution image data generation, Wang et al. [38] propose
a method that combines the diffusion model with GANs and
successfully generates more realistic images with higher
stability. Furthermore, for the quality of shapes, Textu-
rify [36] suggests taking a union of normals, curvature, and
patches as the input of discriminators.

Based on the above, we propose DG3D, a novel 3D
GAN-based paradigm augmented by an adaptive diffusion-
augmented module, to properly deal with mode collapse
and enhance the robustness of both generation and dis-
crimination. To further improve the texture completeness
of the generated shapes, we set up different discriminators
for multi-modal renderings. In the forward stage, DG3D
first generates 2D features and aligns the features to the
3D tetrahedral space by a hybrid tri-plane representation.
Then DG3D utilizes the differentiable Marching Tetrahe-
dron layer [33] to extract the underlying geometry. Mean-
while, the corresponding texture is generated by another

tri-plane and aligned to the geometry by 3D coordinates.
The textured mesh is further rendered as RGB, alpha trans-
parency, and patch images. The multi-modal renderings
will be fed through the adaptive diffusion-augmented mod-
ule and corresponding discriminators sequentially. DG3D
is end-to-end trainable and outperforms the baseline [12]
by a large margin. As depicted in Fig. 1, DG3D faithfully
generates feasible shapes with high-fidelity textures. Note,
despite that DG3D introduces extra parameters of discrim-
inators and operations on renderings, it maintains the same
inference speed as [12] as they share a common generator.

Our main contributions include: 1) We propose a hy-
brid generative model which combines a generative adver-
sarial network with a novel adaptive diffusion-augmented
module, achieving better performance in 3D textured mesh
generation. 2) We design multiple 2D discriminators for
multi-modal diffusion-renderings from the textured mesh,
which provide more supervision information and signifi-
cantly boost the generated quality. 3) We conduct extensive
experiments and ablations to demonstrate the superiority of
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DG3D, analyze the limitations, and discuss applications and
feasible improvements in future work.

2. Related Work
3D-Aware Image Generation. The success of neural vol-
ume rendering [23] have motivated recent work [4, 24, 34,
3] in 3D-aware image generation. A base consumption of
these methods is that RGB and the alpha transparency of
volume depend on the angle of view, which makes it 3D-
aware and also a non-trivial endeavor to extract explicit sur-
faces. Despite falling short in producing feasible explicit
surfaces, the paradigm combining a generative model and
an efficient 3D representation has provided afflatus to re-
cent advanced 3D generative models.
3D Generative Models. Recent 3D approaches have pri-
marily focused on geometry generation using various rep-
resentations, such as mesh [11, 33], point cloud [39], and
occupancy [22, 28]. PointFlow [39] leverages normalizing
flow for sampling in the latent space of PointNet [30], lead-
ing to superior point cloud generation performance. Con-
vONet [28] provides detailed experimental results on im-
plicit occupancy prediction with different encoded dimen-
sions. It is further developed into the tri-plane geometry
hybrid representation, which is first proposed by EG3D [3]
for 3D-aware image generation.

The first method which is capable of generating explicit
free-topology textured meshes is GET3D [12]. It leverages
a GAN-based, differentiable paradigm and a tri-plane hy-
brid representation [3] to bridge the gap between 3D gen-
eration and 2D discrimination. GET3D generates feature
maps like vanilla GANs and reformulates feature maps as
a tri-plane, which is further sampled and mapped as signed
distance function values and offsets of a predefined standard
tetrahedron template [33]. Then a differentiable marching
tetrahedron layer is adopted for extracting raw meshes, and
texture will be aligned to meshes by interpolation in 3D
space. Finally, DiffRast [20] is adopted for rendering RGB
and mask images from the generated shapes for discrimi-
nation. Even though GET3D adopts an imaginative design
and an efficient hybrid representation, it still needs improve-
ments in certain aspects. As highlighted by DecorGAN [8],
traditional GAN with CNN architectures tends to perform
inadequately on binary images due to the discriminator’s in-
ability to distinguish between authentic and inauthentic pix-
els. Furthermore, we experimentally find that global-style
discrimination often results in texture incompleteness. In
contrast, DG3D is optimized stably and produces complete
texture most time.
3D Generation By Lifting 2D. Due to the lack of 3D as-
sets, researchers [29, 21, 7] also seek to utilize 2D im-
age generation models and differentiable rendering to opti-
mize a 3D representation according to certain text prompts.
Despite failure under some prompts and long optimization

time(about one hour), they can generate high-fidelity tex-
tured shapes across classes. We acknowledge that these
methods are nonnegligible and take equal importance with
3D Generative Models in the development of 3D Genera-
tion.
Hybrid Generative Models. The design of a single genera-
tive model often has certain limitations. VAEs, for instance,
struggle to balance the latent priority and reconstruction ac-
curacy. Meanwhile, GANs are difficult to optimize and
prone to mode collapse. Normalizing flows and diffusion
models are much slower during the inference stage, de-
spite the exploration of faster sampling methods. Conse-
quently, hybrid generative models have been increasingly
used in real-world applications. For example, Stable Dif-
fusion [31] relieves the limitations of VAE architectures by
incorporating a diffusion model to broaden the acceptable
distribution field of the latent priority, which enables VAEs
to achieve both high reconstruction precision and a Gaus-
sian latent space assumption. DS-Fusion [37] combines
pre-trained stylized diffusion models with discriminators on
real letters and shows visually favorable results of stylized
font generation. LION [42] incorporates a point diffusion
module and a latent diffusion module to augment a point
cloud VAE, achieving state-of-the-art performance in point
cloud generation and voxel-based completion. Whether in
2D or 3D research domains, hybrid generative models have
shown more excellent capabilities in diverse tasks, which
also motivates our design.

3. Method
The framework is illustrated in Fig. 2. It comprises three

parts: Textured Mesh Generator, Diffusion-Augmented
Module, and Multi-Modal Discriminators. The textured
mesh generator will be first discussed in Sec. 3.1. Fur-
ther, we will introduce the specific design of our diffusion-
augmented module in Sec. 3.2 and the multi-modal discrim-
inators in Sec. 3.3.

3.1. Textured Mesh Generator

Following the practice in Gao et al. [12], we adopt an
improved generator as the baseline. We will briefly describe
the improved generator and refer the reader to the original
paper for further details.
Network Architecture. The network mainly preserves the
design of the generator in StyleGAN2 [18], mapping the
geometry latent code zG ∈ R512, the texture latent code
zT ∈ R512 to the feature maps which is then reformulated
as the tri-plane [3, 28] of both texture and geometry. The
geometry part of the tri-plane is converted to the signed dis-
tance function value si and deformation di at each tetrahe-
dron vertex vi by grid sample. A differentiable Marching
Tetrahedron layer [33] is used to extract shapes from the
SDF values and offsets of vertices. The texture part of the
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Figure 2: The framework comprises three parts: Textured Mesh Generator, Diffusion-Augmented Module, and Multi-modal
Discriminators. The textured mesh generator follows the basic design of the improved G in [12] and it can produce textured
meshes given specific geometry and texture latent codes. Then the Diffusion-Augmented Module takes the rendered images
from textured meshes as input and randomly samples the images by t forward diffusion steps. Multi-Modal Discriminators
take the diffused RGB, alpha transparency, and patch images as input and take the time t, the angle of rendering as conditions,
and finally output the probability that a sample is treated as real. The whole framework can be optimized end-to-end with a
vanilla objective proposed in 2D GANs. We refer the reader to Appendix for further structural details of the textured mesh
generator and the multi-modal discriminators.

tri-plane is further converted to the color ci ∈ R3 of each
vertex vi to align with the extracted shapes by interpolation.

The improved generator can produce textured mesh with
arbitrary topology. However, in a min-max game, it is harm-
ful if one side is much stronger than the other. A typical
phenomenon we observe is that the discriminators often col-
lapse and regard all samples as real. The reason behind it,
as we find, is the unequal ability acquired respectively by
the generator and the discriminator. We visualize typical
mode collapse cases in Fig. 3. To this end, we design a
diffusion-augmented module and use multi-modal render-
ings from the textured mesh for discrimination.

3.2. Diffusion-Augmented Module

We propose to use diffusion sampling to inject gaus-
sian noise into the renderings from the textured mesh and
adaptively adjust the magnitude of deviation based on the
discriminator’s output. The output rendering image xg ∈
RH×W×4 will be sampled by t ∈ [0, T ] steps using a for-
ward diffusion process. T is adaptively adjusted as:

T = T + sign(rd − dtarget) ∗ C, (1)

where rd is the mean output probability of the discrimina-
tors for real samples, dtarget is the probability we expect
the discriminators to output for real samples, C is a constant
that controls the speed of adjusting. The equation encour-
ages larger T when the discriminators could output proba-
bility higher than the target for real samples and vice versa.
The motivation behind this is to gradually increase the dif-
ficulty for discrimination since larger T represents possible
larger noise injection. Here we follow the same symbol as
Karras et al. [16] since we modify rd from their version for

5000kimgs 10000kimgs 20000kimgs

Car

Chair

Mbike

Figure 3: We visualize the generated RGB and mask im-
ages of Car, Chair, and Motorbike of ShapeNet [5] af-
ter training for 5000, 10000, and 20000 thousand images
respectively. As depicted, the mode collapse phenomenon
often occurs in the training process of [12](also in NeRF-
based GAN framework [3] as we observed), which we at-
tribute to the unequal ability acquired by the generator and
the discriminator.

multi-modal discrimination:

rd =
1

3

∑
ϕ∈ϕc,ϕα,ϕp

Ey,t∼p(y,t)[sign(Dϕ(y, θ, t)− 0.5)],

(2)
where Dϕc

, Dϕα
, Dϕp

denote RGB, alpha transparency,
patches images discriminator respectively, y denotes real
samples. θ denotes the angle of rendering, and t denotes
the steps of sampling. We adopt a priority distribution pπ

14578



from Wang et al. [38] to sample t from [0, T ]:

t ∼ pπ = Discrete(
1∑T
t=1 t

,
2∑T
t=1 t

, · · · , T∑T
t=1 t

), (3)

where n∑T
t=1 t

denotes the probability of t = n sampling
steps. The priority favors larger t to encourage the discrimi-
nators to see more new samples from the new steps when T
increases, which makes the discriminators focus on harder
samples that it has never met. For each forward iteration,
rendering images xg ∼ pg(x) and the corresponding real
images x ∼ p(x) will be sampled by t steps [15] as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1−

√
ᾱt)σ

2I), (4)

where αt := 1− βt with βt the deviation of noise of t sam-
pling steps, ᾱt :=

∏t
s=1 αs, q denotes the forward sampling

process, and N denotes the standard Gaussian distribution.
We use a linear scheduler βt = β0 + t

T (βT − β0), where
β0 = 1e − 4 and βT = 1e − 3 for all experiments. Since
we apply the same sampling to the generated image xg and
real image x in one loop, we unify the symbol in Eq. (4).
In each iteration, the deviation is dynamically changed with
T according to Eq. (1), so we modify all discriminators to
be time-dependent to accept t as a condition, and following
Gao et al. [12], we also add the rendering camera pose θ as
another condition.

Trained with binary images, the discriminator will treat
pixels with any value other than 0 or 1 as fake, thus pre-
venting continuous optimization. A simple approach is
to apply a gaussian filter with a fixed deviation to the
binary image [8]. However, in our experiments, it also
causes mode collapse to fix the deviation since the discrim-
inator can not handle complex samples at the beginning
of the training stage. Based on this, we design a novel
diffusion-augmented module that can adjust the deviation
by assigning different maximum timesteps T , thus gradu-
ally strengthening the ability of discriminators. Compared
with the baseline [12], we have not observed mode collapse
anymore, and the model can stably converge to a better
minimum. For a theoretical proof of the equivalence be-
tween optimization on the original generated image and the
diffusion-augmented images, we refer the reader to the sup-
plementary material of [38].

3.3. Multi-Modal Discriminators

To further improve the texture generation performance,
we augment the supervision information by feeding multi-
modal renderings to the discriminators. We maintain the
branch of RGB images, make the masks continuous as alpha
transparency images by diffusion sampling, and further, we
clip patches from the RGB images with a criterion to reject
patches with sparse texture pixels. In detail, for a generated

image xg with corresponding alpha transparency image xα,
we reject a patch xp of it if:

Hp∑
i=0

Wp∑
j=0

xα(i+ rp, j + cp) < γHpWp, (5)

where rp and cp represent the coordinate of the left-top cor-
ner of xp in xg , xα(i + rp, j + cp) ∈ [0, 1] represents
the transparency of the pixel with coordinate (i, j) in xp,
Hp and Wp is the height and the width of xp, and γ is a
weight factor which decides the minimum summation of
transparency of xp. We set γ = 0.15, Hp = 256,Wp = 256
for all experiments. Next, we design a patch discrimina-
tor which accepts patches from a single generated image
as input. The Zoom-In rendering method works as a gen-
eral technique to augment the texture quality as also demon-
strated in DreamHuman [19].

We adopt the same non-saturating GAN objective with
R1 regularization from StyleGAN [17]. For an RGB image
or an alpha transparency image, the optimization objective
is defined as follows:

L(Dx, G, t) =

EzG,zT∈N ,θ∈[0,2π][f(Dx(d[R(G(zG, zT ), θ), t], θ, t))]

+EIx∈px,β∈[0,2π][f(−Dx(d[Ix, t], β, t)))

+ξ||∇Dx(d[Ix, t], β, t)||22],
(6)

where d[] is the diffusion function defined in Equ. Eq. (4),
f(u) is defined as f(u) = −log(1 + exp(−u)), px is the
distribution of real images, R denotes rendering process, ξ
is a hyperparameter, and β, θ are camera angles for render-
ing. As for patches of RGB images, the objective is defined
as:

L(Dp, G, t) =

1

N

N∑
i=1

(EzG,zT∈N ,θ∈[0,2π][f(Dp(p
i
fake, θ, t))]

+EIx∈px,β∈[0,2π][f(−Dp(P (d[Ix, t], i), β, t)))

+ξ||∇Dp(P (d[Ix, t], i), β, t)||22]),
(7)

where pifake = P (d[R(G(zG, zT ), θ), t], i). P is the pro-
cess that generates patches according to Eq. (5) and N is
set as 4 in all experiments. The overall objective is defined
as:

L = L(Dc, G, t) + L(Dα, G, t) + λL(Dp, G, t) + µLreg,
(8)

where Lreg is a cross-entropy loss defined between the
signed distance function values of neighboring vertices,
which is used to remove invisible internal faces [33], µ is
the weighted factor of regularization, and λ is the weighted
factor of adversarial objective defined on patches.
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Table 1: Quantitative metrics: IG denotes the improved G
setting of GET3D [12]. Our method outperforms related
works by a large margin on Car, Chair, and Motorbike
classes of ShapeNet [5] in geometry diversity (COV), ge-
ometry similarity (MMD), and texture quality (FID-3D).

Category Method COV↑(%) MMD↓(×10−3) FID-3D↓LFD CD LFD CD

Car

PointFlow [39] 51.91 57.16 1971 0.82 -
OccNet [22] 27.29 42.63 1717 0.61 -
Pi-GAN [4] 0.82 0.55 6626 25.54 104.29
GRAF [32] 1.57 1.57 6012 10.63 52.85
EG3D [3] 60.16 49.52 1527 0.72 21.89

GET3D [12] 66.78 58.39 1491 0.71 10.25
GET3D [12]+subdiv 62.48 55.93 1553 0.72 12.14

GET3D [12](IG) 59.00 47.95 1473 0.81 10.60
Ours(DG3D) 74.63 59.30 1363 0.67 6.09

Chair

PointFlow [39] 49.58 71.87 3755 3.03 -
OccNet [22] 61.10 67.13 3494 3.98 -
Pi-GAN [4] 53.76 39.65 4092 6.65 120.53
GRAF [32] 50.23 39.28 4055 6.80 61.63
EG3D [3] 58.31 50.14 3444 4.72 46.06

GET3D [12] 69.08 69.91 3167 3.72 23.28
GET3D [12]+subdiv 71.59 70.84 3163 3.95 23.17

GET3D [12](IG) 71.96 71.96 3125 3.96 22.41
Ours(DG3D) 74.80 73.65 3024 3.58 18.84

Mbike

PointFlow [39] 50.68 63.01 4023 1.38 -
OccNet [22] 30.14 47.95 4551 2.04 -
Pi-GAN [4] 2.74 6.85 8864 21.08 131.38
GRAF [32] 43.84 50.68 4528 2.40 113.39
EG3D [3] 38.36 34.25 4199 2.21 89.97

GET3D [12] 67.12 67.12 3631 1.72 65.60
GET3D [12]+subdiv 63.01 61.64 3440 1.79 54.12

GET3D [12](IG) 69.86 65.75 3393 1.79 48.90
Ours(DG3D) 75.34 71.23 3032 1.68 46.84

4. Experiments

We conduct experiments on synthetic datasets and real-
world scans in Sec. 4.1 to evaluate our method. We then
ablate the design of DG3D in Sec. 4.2. More experimental
results are provided in Appendix.

4.1. Results on Synthetic and Real Datasets

Datasets. We use ShapeNet [5], Twindom1 and ScanHead2

for evaluation. We use three classes, Car, Chair, and
Motorbike from ShapeNet [5], and follow the same splits
and rendering views for each category as [12]. We collect
991 real human scans from Twindom, which have various
poses and detailed dressings. We use 700 scans for train-
ing, 100 for validation, and 191 for testing. We also collect
265 scans from a head scanner which provides a coarse re-
construction for restoration. We use 24 random views for
Twindom and ScanHead datasets.
Baselines. We compare our model to three groups of meth-
ods: 1) 3D generative models that only generate geometry
without texture: PointFlow [39] and OccNet [22]. 2) 3D-
aware image generation methods: GRAF [32], PiGAN [4],
and EG3D [3]. 3) Methods that simultaneously output ge-

1https://web.twindom.com/
2We collect the scans from a scanner of 28 views and manually fix the

topology holes.

ometry with texture: GET3D [12]. All methods will be in-
cluded for ShapeNet [5] classes, and only GET3D [12] will
be included as a comparison for Twindom and ScanHead
datasets.
Metrics. We adopt the FID-3D [12] metric, which is more
aware of explicit texture quality. Specifically, we render
the generated textured meshes into 2D images and compute
the FID [14] metric between 50k images. As for geom-
etry, we adopt the Chamfer Distance [1] and Light Field
Distance [6] to compute the Coverage score and Minimum
Matching Distance. For methods [32, 4, 3] that do not di-
rectly output meshes, we use Marching Cubes to extract the
underlying geometry of the radiance field.
Experimental results. Qualitative results on ShapeNet [5]
are provided in Tab. 1. We achieve better performance
on both geometry and texture when compared to meth-
ods of 3D-aware image synthesis and simultaneously tex-
tured mesh generation and achieve comparable performance
in generating geometry when compared with methods us-
ing direct 3D supervision. Compared with methods(Pi-
GAN [4], GRAF [32], and EG3D [3]) that focus on the ren-
dering quality and GET3D series [12] which focus on the
quality of the underlying explicit mesh, DG3D achieve sig-
nificantly better performance in geometry diversity (COV),
geometry quality (MMD) and rendering quality (FID-3D)
on all datasets. Compared with PointFlow [39], which sam-
ples 2048 points from a mesh and directly optimizes the
positions of the sampled points, we achieve better perfor-
mance on Car dataset and achieve a suboptimal perfor-
mance on the Chair and Motorbike datasets for the reason
that DG3D uses random views for training which makes it
hard to capture the information of hidden internal structures
in a mesh. For the same reason, DG3D achieves a subopti-
mal performance compared with OccNet [22] on the Car
dataset while achieving better performance in the Chair
and Motorbike datasets.

For qualitative comparison, we visualize the output of
all methods in Fig. 4. For PointFlow [39], we use the of-
ficial mitsuba renderer3 to visualize the point cloud. For
OccNet [22], GRAF [32], PiGAN [4], and EG3D [3], we
use Marching Cubes and adjust the level-set values to get
a proper extraction. For GET3D [12], we directly visu-
alize the textured mesh generated by pre-trained weights.
PointFlow [39] can not produce reasonable geometries from
sparse point clouds, and OccNet [22] is comparable with
DG3D in geometry but can not produce any texture. 3D-
aware image generation methods fall short in explicit topol-
ogy quality, although they can generate high-quality syn-
thetic views. GET3D [12] generates geometry and texture
simultaneously but suffers from texture incompleteness and
training instability. DG3D generates textures nearly free of
impurities and achieves higher visual quality, which sets it

3https://github.com/zekunhao1995/PointFlowRenderer
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PointFlow OccNet GRAF               PiGAN EG3D            GET3D Ours

Figure 4: Qualitative comparison on ShapeNet [5]. DG3D can generate shapes with higher quality in both texture and
geometry among all categories.

Figure 5: Qualitative comparison on Twindom and Scan-
Head. DG3D also performs better on real-world scans in
geometry(more smooth) and texture(no black artifacts).
Table 2: Quantitative Metrics on Twindom and Scan-
Head. On real scans, DG3D also faithfully outperforms
GET3D [12].

Category Method COV↑(%) MMD↓(×10−3) FID-3D↓LFD CD LFD CD

Twindom GET3D [12](IG) 70.81 67.19 3272 2.34 23.11
Ours(DG3D) 73.39 69.75 3134 2.07 21.37

ScanHead GET3D [12](IG) 69.20 64.31 2286 1.59 43.29
Ours(DG3D) 75.11 72.48 2037 1.32 35.18

apart from related methods.
For real datasets (Twindom and ScanHead), we show

results of qualitative and quantitative comparisons with
GET3D [12]. As seen from Fig. 5, DG3D generates more
visually favorable textures with fewer artifacts. Quantitative
results shown in Tab. 2 again demonstrate the superiority of
DG3D on real scans. Note that the poses and appearance of
body scans in Twindom are more diverse than that of Ren-
derpeople [12], so both GET3D and DG3D do not generate
clear facial texture. We demonstrate the ability to gener-
ate detailed facial textures by training DG3D on ScanHead.
We zoom in on the textured mesh generated by GET3D and
DG3D for a better view in Fig. 6. Compared with GET3D,
DG3D consistently produces 3D shapes with higher quality.

To demonstrate the editing ability explicitly, we inter-
polate between random latent codes and visualize them in
Fig. 7. DG3D can generate meaningful shapes faithfully in
the interpolated space.

4.2. Ablation

We conduct ablation experiments in two ways: 1) w/ or
w/o the diffusion-augmented module, 2) w/ or w/o multi-
modal discriminators. As shown in Tab. 3, MD(Multi-
Modal Discriminators) significantly improves the FID-3D
metric, which represents the quality of texture, and slightly
improves COV and MMD metrics represent the quality of
geometry. DAM(Diffusion-Augmented Module) can im-
prove the geometry and texture quality to the same extent.
Both MD and DAM conform to the intention of our de-
sign, i.e., MD for better texture quality and DAM for better
comprehensive quality. The combination of MD and DAM
further shows performance improvement in both geometry-
related and texture-related metrics.

5. Applications

5.1. Multi-View Images Inversion

The inversion of StyleGAN [17] has been demonstrated
as a reliable method for real-world image manipulation. In
3D vision, we consider multi-view images inversion as an
application of our model. For multi-view in-the-wild im-
ages, we first estimate the coarse rotation and elevation an-
gles by a neural network(ResNet18 [13]) trained on our ren-
dering images and corresponding gound-truth poses. Then
we jointly optimize the pose and the generated mesh [40]
until convergence. Fig. 8 shows the multi-view optimiza-
tion result of Car class. Through inversion, DG3D can be
extended to be an image-conditional or multi-view image-
conditional framework.
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Figure 6: For the best view of details, we zoom in on the generated textured shapes of DG3D(Green) and GET3D [12](Red).
DG3D generates shapes with smoother surfaces and more realistic and complete textures.

Figure 7: The geometry and texture latent codes are inter-
polated from left to right. We refer the reader to Appendix
for more interpolation results.

Figure 8: The first five columns show the multi-view images
and the final column shows the inversion result of DG3D.

5.2. Drag Edition

The recent progress in the interactive edition of im-
ages(e.g. DragGAN [26]) motivates us to design 3D ma-
nipulation tools. We incorporate DG3D with a drag-style
edition tool4 and enable 3D manipulation of the gener-
ated textured shapes. Fig. 9 shows manipulation results of
Twindom and Car class. The generated textured shapes
can be seamlessly adjusted according to 2D control points
on the projection space, which provides convenience for 3D
creative design.

6. Conclusion
We propose DG3D, a novel framework that utilizes a

Diffusion-Augmented Module for stabilizing the min-max
game between a 3D generator and multiple 2D discrimi-
nators, and the Multi-Modal Discriminators, which offer
many-sided supervision to improve the texture generation

4https://github.com/ashawkey/Drag3D

Figure 9: Drag-style manipulation on generated textured
shapes.

Table 3: Ablation of MD and DAM. MD denotes the Multi-
Modal Discriminators, and DAM denotes the Diffusion-
Augmented Module.

Category Method COV↑(%) MMD↓(×10−3) FID-3D↓LFD CD LFD CD

Car
DG3D(w/o MD) 71.96 59.21 1378 0.71 9.23

DG3D(w/o DAM) 72.68 59.13 1389 0.68 8.12
DG3D 74.63 59.30 1363 0.67 6.09

Chair
DG3D(w/o MD) 72.03 71.83 3099 3.74 21.07

DG3D(w/o DAM) 72.54 73.21 3078 3.68 20.38
DG3D 74.80 73.65 3024 3.58 18.84

Mbike
DG3D(w/o MD) 70.07 69.03 3086 1.73 48.72

DG3D(w/o DAM) 71.42 67.33 3117 1.70 47.60
DG3D 75.34 71.23 3032 1.68 46.84

performance further. Experiments on synthetic datasets and
real scans demonstrate the superiority of DG3D over cur-
rent state-of-the-art methods. While we take a step closer to
textured mesh generation of free topology, the resolution of
generated meshes is still constrained by memory. The tex-
tured meshes generated by DG3D may lack details in tiny
regions and tend to be watertight. In the future, we will try
to adopt frameworks like the MinkowskiEngine5 to design
a 3D sparse tensor generator which will be memory effi-
cient since only occupied space will consume the memory.
Through this, we hope to produce shapes that still perform
well in detailed tiny regions and serve more challenging ap-
plications.

5https://github.com/NVIDIA/MinkowskiEngine
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