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A. Pseudocode Algorithm
The pseudocode for integrating CLIPTER into a recog-

nizer is presented in Algorithm 1. This algorithm outlines
the key components of our method, including image encod-
ing, pooling, fusion mechanism, and integration point that
divides the recognizer into encoder and decoder. In partic-
ular, the algorithm highlights that the image encoding op-
eration is performed only once per image, regardless of its
word count, and can be executed in parallel with the detec-
tion operation.

Algorithm 1: CLIPTER PyTorch-like pseudocode

"""
img: scene image
text_crops: all text images cropped from image
img_encoder: frozen VL image encoder
k: kernel of average pooling
fusion_ca: nn.MultiHeadAttention()
alpha: gated parameter (init as 0)
recog_encdoer, recog_decoder: the recognition

modules before and after the integation point
"""

# image encoding (in parallel to detection)
with torch.no_grad():

img_f = img_encoder(img) # (1 + HW, d)
img_f = [img_f[0], avg_pool2d(img_f[1:], k)]

preds = []
for crop in text_crops:

# recognizer encoding
crop_f = recog_encoder(crop)

# fusion by gated cross attention
merged_f = fusion_ca(query=crop_f, key=img_f,

value=img_f)
c = torch.tanh(alpha)
fused_f = (1 - c) * crop_f + c * merged_f

# recognizer decoding
preds.append(recog_decoder(fused_f))

B. Datasets
Our work utilizes a highly-diverse collection of 13 public

benchmarks, depicted in Fig. 1 and Fig. 2. Since CLIPTER
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relies on the whole image together with the cropped words,
we use datasets that have recognition and detection annota-
tions, usually intended for the task of end-to-end text spot-
ting. Therefore, we could not utilize some public test sets
which contain only full images without localization annota-
tions or cropped words without the full images. To mitigate
this, we evaluate our method in these cases on the valida-
tion set or part of the training set. Nevertheless, we needed
to omit IIIT-5k [16] which contains only cropped text im-
ages and CUTE-80 [18] which does not contain end-to-end
annotations. Below, we describe our data pre-processing
and then, provide details on each dataset.

B.1. Data Pre-Processing

Our work applies the same data filters on all datasets. In
particular, we filter out words with the flag of illegible
and words that have ignore labels, i.e., “#”, “##”, “###”,
“####” in general, “.” in TextOCR, and “*” in Uber. From
the training data, we follow [5] and also exclude text that
consists of non-alphanumeric characters, long words that
contain more than 25 characters, and vertical text by filter-
ing words with more than two characters that their image
height is greater than their image width.

B.2. Dataset Details

Below, we provide general details on each dataset and
describe our data split into train, validation, and evaluation
sets. A summary of these splits appears in Tab. 1, containing
also data sizes. As we work on entire images as well as
crops, we perform the splits at the entire image level.
ArT[8] is a dataset of arbitrary-shaped text, collected from
the train set of Task 31. The train set is divided into 80% for
training, 10% for validation, and 10% for evaluation.
COCO-Text[23] is based on COCO dataset 2, containing
text in natural images3. We consider the training and valida-
tion sets that are published with bounding boxes, and split

1https://rrc.cvc.uab.es
2https://cocodataset.org
3https://vision.cornell.edu/se3/coco-text-2
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Figure 1: Datasets Part 1. We provide examples from each of the datasets used in this work.
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Figure 2: Datasets Part 2. We provide examples from each of the datasets used in this work.
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Figure 3: Low Data Regime – TRBA & ViT-STR. We evaluate the effect of CLIPTER with limited training data on
TRBA [4] (left) and ViTSTR [3] (right). Roughly speaking, adding CLIPTER to these architectures has more impact than
doubling the training data amount in terms of reducing the error rate.

the training set into 90% for training and 10% for evalua-
tion.
HierText[15] features hierarchical annotations of text in
natural scenes and documents4. We consider the training
and validation sets which have available bounding boxes,
and split the training set into 90% for training and 10% for
evaluation. In this dataset, we filtered words that are anno-
tated as vertical.
IC13[14] contains images that are focused around the text
content1. Since only the training set is provided with full
annotations, we use it all for evaluation.
IC15[13] contains incidental scene text and therefore is
more challenging1. The test set here is the official one,
while the training set is divided into 90% for training and
10% for validation.
LSVT[22] contains scene text in street view images1. Here,
only the training set has full annotations. Therefore, we
divide it into 80% for training 10% for validation, and 10%
for evaluation.
MLT19[17] is a multilingual dataset1. The training set is
divided into language subsets, from which we consider En-
glish, French, German, and Italian. We split these data into
80% for training, 10% for validation, and 10% for evalua-
tion.
OOV[10] is a new dataset containing out-of-vocabulary
scene text1. Since this dataset is based on other datasets,
we did not use its training set, but use its validation set for
evaluation. In this dataset, we filter words that are annotated
as non-English or vertical.

4https://github.com/google-research-datasets/
hiertext

Public E2E Annotations Number of Words
Train. Valid. Eval. Train. Valid. Eval.

ArT ✓ ✗ ✗ 25K 2,701 3,667
COCO-Text ✓ ✓ ✗ 51K 13K 5,716
HierText ✓ ✓ ✗ 711K 163K 76K
IC13 ✓ ✗ ✗ – – 757
IC15 ✓ ✗ ✓ 3,741 349 2,077
LSVT ✓ ✗ ✗ 32K 3,937 3,911
MLT19 ✓ ✗ ✗ 34K 3,970 4,100
RCTW ✓ ✗ ✗ 7,837 1,017 962
ReCTS ✓ ✗ ✗ 18K 2,331 2,219
SVT ✓ ✗ ✓ 232 24 647
TextOCR ✓ ✓ ✗ 566K 96K 71K
Uber ✓ ✓ ✓ 75K 30K 50K

All 1,516K 316K 220K

Table 1: Dataset Partition. Number of cropped word im-
ages after pre-processing and splitting into training, valida-
tion, and evaluation sets.

RCTW[20] is a dataset for reading Chinese text in images5.
We split the published training set in 80% for training, 10%
for validation and 10% for evaluation.
ReCTS[25] contains Chinese text on signboard1. We split
the published training set in 80% for training, 10% for val-
idation and 10% for evaluation. In this dataset, we ignore
words that are annotated with the flag of ignore.
SVT[24] contains street view text in images from Google
Street View6. Here, we use the official test set and divide the

5https://rctw.vlrlab.net
6https://tc11.cvc.uab.es/datasets/SVT_1
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CA Model
# Attention # Hidden Hidden Intermediate

# Parameters
Heads Layers Size Size

Gated-Attention – – – – 328K
MH-CA Tiny 2 2 128 512 923K
MH-CA Mini 4 4 256 1,024 5.3M
MH-CA Small 8 4 512 2,048 18.1M

Table 2: Cross-Attention Model Size.

training set into 90% for training and 10% for validation.
TextOCR[21] contains high quality images from OpenIm-
ages7 with an average of 30 words per image8. Here, we use
the published validation set and divide the training set into
90% for training and 10% for evaluation.
Uber[26] contains street-level images collected from car
mounted sensors9. We keep the original split of training,
validation, and evaluation sets.

C. Implementation Details
Multi-head Cross-Attention fusion mechanism. Our
implementation of the Multi-Head Cross-Attention (MH-
CA) mechanism is based on the implementation of BERT
[9, 7] proposed by HuggingFace. Table 2 presents further
architectural details.

Training details. Baseline STR models are trained
with the hyperparameters published by respective au-
thors. CLIPTER is trained for 20 epochs with a learn-
ing rate varying from 1× 10−5 to 3× 10−5. Specifically,
gated-attention, MH-CA tiny, mini and small are trained
with learning rates of 2× 10−5, 3× 10−5, 3× 10−5 and
1× 10−5 respectively.

D. Low Data Regime
Similarly to analysis performed in the main paper over

PARSeq, we evaluate the effect of our method in the low
data regimes on TRBA and ViTSTR architectures. As
shown in Fig. 3, utilizing CLIPTER on these schemes
achieves better results than the baseline model with doubled
amount of training data.

E. Latency Analysis
To evaluate the impact of our solution on recognition

latency, we conduct end-to-end (E2E) experiments on the
ICDAR-15 and Total-Text datasets, and calculate the frames
per second (FPS). To this end, we use the ResNet50-based
detection model from GLASS [19]10 and exclude their

7https://storage.googleapis.com/openimages/web/
index.html

8https://textvqa.org/textocr
9https://s3-us-west-2.amazonaws.com/

uber-common-public/ubertext/index.html
10https://github.com/amazon-science/

glass-text-spotting

recognition components. Our experiments are conducted
on a single V100 NVidia GPU and a simple PyTorch im-
plementation, without any optimizations, such as TensorRT,
that could improve the latency results. We calculate the la-
tency using PyTorch benchmarking code11, with FPS cal-
culated as the average of the median run-time per image.
Evaluation metrics are in accordance with the protocol of
[19].

F. Additional Experiments
F.1. Synthetic Data

In this part, we aim to analyze the effect of utilizing syn-
thetic data. To this end, we train PARSeq with and without
CLIPTER also on the large synthetic datasets of MJ [12]
and ST [11]. As shown in Tab. 3, adding the large synthetic
data, about 14M images, to the training set only marginally
improves the results, indicating on the low impact of syn-
thetic data when there is a lot of real-world data. That said,
these datasets do lead to significant improvements on IC13
and IC15. This finding, revealed also in [1, 2], indicates
that these datasets mainly represent specific types of natural
scenarios.

F.2. Breaking-Down Results on Uber-Text

We utilize Uber-Text [26] word categories to break down
the results of PARSeq with and without CLIPTER. As
shown in Tab. 4, our method is especially efficient on busi-
ness name (+1.3%) and street numbers (+1.3%). We believe
that these improvements are thanks to the use of a vision-
language model that was pretrained also on the textual de-
scriptions of the images, which often contain such informa-
tion as it is crucial for understanding the scene.

F.3. Dense Documents

We conduct both a quantitative (Figure 5) and qualitative
(Figure 4) analysis on the text-dense HierText dataset. The
results demonstrate that our model consistently improves
accuracy, even in highly text-dense images with over 100
words.

G. Further qualitative analysis
Fig. 6 displays additional examples showcasing benefits

of CLIPTER.

11https://pytorch.org/tutorials/recipes/recipes/
benchmark.html#pytorch-benchmark
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Figure 4: Quantitative Results on Rich-in-Text Images. Images with dense text (>100) that benefit from integrating scene-
level information using CLIPTER. Green boxes highlight words accurately transcribed by PARSeq+CLIPTER but not by
PARSeq, while red boxes indicate the opposite.

Method SVT IC13 IC15 COCO RCTW Uber ArT LSVT RECTS MLT19 TextOCR HierText Average Weighted
647 757 2,077 5,716 962 49,561 3,677 3,911 2,219 4,100 70,597 75,829 220,053 Average

R
ea

l PARSeq [6] 96.1 98.9 85.7 80.5 81.4 83.2 91.2 80.2 91.8 91.5 85.2 87.4 87.8 85.6
+ CLIPTER Vision 96.6 99.1 85.9 81.0 82.1 84.4 91.7 81.8 91.8 91.6 86.0 88.0 88.3 86.4

∆ +0.5 +0.2 +0.2 +0.5 +0.7 +1.2 +0.5 +1.6 0 +0.1 +0.8 +0.6 +0.5 +0.8

+
Sy

nt
h. PARSeq [6] 97.2 99.5 86.4 80.6 82.8 82.1 91.1 80.2 91.9 91.7 85.1 87.5 88.0 85.4

+ CLIPTER Vision 97.8 99.5 86.7 81.4 83.6 83.1 91.4 81.3 92.6 92.0 85.9 88.4 88.6 86.3
∆ +0.6 0 +0.3 +0.8 +0.8 +1.0 +0.3 +1.1 +0.7 +0.3 +0.8 +0.9 +0.6 +0.9

Table 3: Accuracy on Scene Text Benchmarks With and Without using Synthetic Data. Utilizing the large synthetic
datasets of MJ [12] and ST [11] improves performance on the more common benchmarks of SVT, IC13, and IC15. However,
the averaged performance across all datasets is marginally better due to the existence of many real-world images.

Street Business Street None Street Number Secondary Unit Phone Traffic License
Number Name Name Range Designator Number Sign Plate
22,701 14,254 5,885 4,866 1,708 98 32 16 1

Parseq 78.3 85.7 95 82.4 96.3 86.7 50 93.8 0
+ CLIPTER Vision 79.6 87 95.4 83.7 96.5 88.8 46.9 93.8 0

∆ +1.3 +1.3 +0.4 +1.3 +0.2 +2.1 -3.1 0 0

Table 4: Accuracy on Uber-Text per Word Category. The number of words in each category is listed below its name.
CLIPTER is mostly effective on street numbers and business names, often critical information for scene understanding.
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Figure 5: Enhancing Performance in Dense-Text Images.
This figure illustrates the averaged improvement in accu-
racy and the number of accurately transcribed words rel-
ative to the total number of words in the image. Our al-
gorithm demonstrates remarkable success even in densely-
packed text images.
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Figure 6: Positive flips. Examples in which CLIPTER corrected the prediction of PARSeq and matched the GT annotation.
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Figure 7: Negative flips. Examples in which CLIPTER harmed the prediction of PARSeq which previously matched the GT
annotation.
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