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1. Experimental Setup

We assessed the performance of our proposed SSDA on
three widely used visual benchmarks commonly used for
evaluating domain adaptation methods. These benchmarks
are listed below.

Office: Office [7] is a small-scale benchmark composed
of 31 object categories gathered from real-world scenarios,
with three distinct domains: Amazon (2,817), DSLR (498),
and Webcam (795). In total, the dataset comprises 4,110
images.

Office-Home dataset: Office-Home [8] dataset is a chal-
lenging benchmark composed of four visually distinct do-
mains: Artistic images, Clipart images, Product images, and
Real-world images. It comprises 15,500 images distributed
across 65 object categories and includes a total of 12 trans-
fer tasks.

VisDA-2017 dataset: VisDA-2017 [6] dataset is a large-
scale synthetic-to-real benchmark with 12 object categories
shared between the source and target domains. The syn-
thetic domain contains 150,000 images generated from ren-
dered 3D models under different lighting and pose condi-
tions. The corresponding real domain comprises approxi-
mately 55,000 real-world images.

Implementation details: We evaluated our proposed
SSDA with three recent and well-known attack methods:
BadNets [2], Blended Backdoor Attack [1], and WaNet [5].
For BadNets, we used an 8 x 8 trigger. For the Blended
attack, we blended the ‘hello kitty pattern’ with the input
image using o« = 0.3. For WaNet, we set k¥ = 224 and
s = 1. For source model training, we used p = 0.2 for
both Office-Home and Office datasets and used p = 0.4 for
VisDA-C dataset.

2. Results

Table 3 compares the performance of our proposed
SSDA with the existing SFDA [4] on the remaining tasks
in the Office-Home benchmark dataset. Table 1 presents
the comparison of our proposed SSDA with SFDA [4] on
the VisDA-C benchmark dataset. The results again confirm

that our proposed SSDA consistently outperforms SFDA [4]
in terms of ASR on all tasks in the Office-Home benchmark
dataset and the VisDA-C dataset, providing a secure source-
free domain adaptation solution.

Table 1: Performance comparison of SFDA and SSDA on
VisDA-C [6] dataset

Syn — Real

Attack Method ACC | ASR
SFDA [4] 80.93 | 95.84

BadNets [2] SSDA (Ours) | 80.44 | 6.00
SFDA [4] 82.48 | 31.81

WaNet [5] SSDA (Ours) | 82.35 | 4.28

Table 2: Effect of A on performance of SSDA on Office-
Home dataset

\ Ar — Cl Cl— Ar
ACC | ASR | ACC | ASR
0 | 56.54 | 34.78 | 67.66 | 47.55
50 | 56.70 | 26.25 | 68.03 | 39.93
100 | 56.75 | 4.31 | 68.03 | 14.34
200 | 20.57 | 4.79 8.45 4.82

3. Ablation Study

Table 2 presents the effect of A in our proposed approach,
revealing a consistent trend of defense performance im-
provement with increasing A. However, the final result in
the table demonstrates that beyond a certain value of A, the
benign performance deteriorates, justifying our selection of
A = 100.

4. Evaluation with other attacks

Here, we evaluate our proposed SSDA against various
backdoor attacks, as detailed in Table 4. Experimental out-
comes reiterate that the SFDA approach [4], remains vul-
nerable. And our SSDA remains efficacious in mitigating
the attacks while ensuring successful SFDA.



Table 3: Evaluation of SFDA (Baseline) [4] and SSDA on rest of the domains of Office-Home dataset [S] for three different

attacks.
Attack Method Pr — Ar Pr— Cl Pr — Rw Rw — Ar Rw — Cl Rw — Pr

ACC ASR | ACC | ASR | ACC | ASR | ACC | ASR | ACC | ASR | ACC | ASR

BadNets [2] SFDA [4] 66.83 | 94.23 | 54.30 | 91.52 | 81.50 | 70.39 | 74.21 | 99.59 | 58.44 | 99.31 | 83.19 | 98.90
SSDA (Ours) | 66.71 3.05 | 5430 | 1.15 | 81.46 | 1.93 | 74.17 | 3.05 | 5828 | 1.31 | 83.10 | 1.78

Blended [1] SFDA [4] 67.37 | 91.72 | 53.95 | 97.75 | 82.17 | 45.12 | 74.04 | 98.06 | 57.96 | 99.04 | 83.85 | 95.88
SSDA (Ours) | 67.49 | 4.53 53.88 | 2.84 | 8198 | 2.02 | 74.17 | 4.82 | 5792 | 1.67 | 83.87 | 1.80

WaNet [5] SFDA [4] 67.41 | 100.00 | 54.82 | 98.99 | 81.82 | 87.56 | 74.21 | 99.88 | 58.72 | 97.27 | 84.01 | 93.58

SSDA (Ours) | 67.61 | 39.76 | 5478 | 829 | 81.82 | 1.90 | 74.17 | 10.34 | 58.74 | 3.62 | 8392 | 1.78

Table 4: Performance comparison between SFDA [4] and
SSDA against other attacks

(2]

(3]

Ar = Cl Cl = Ar
Attack Method ACC T ASR | ACC T ASR
SFDA [1] | 5544 | 43.94 | 67.90 | 99.92
BppAttack 91 | gopna (ours) | 55.01 | 10.52 | 68.31 | 19.28
1SSBA 1] SFDA[1] | 57.00 | 9333 | 67.49 | 96.79
SSDA (Ours) | 56.49 | 10.42 | 67.41 | 10.88

(4]

5. Evaluation with diverse model architectures

Here, we evaluate the robustness of our proposed SSDA
across a range of model architectures. The quantitative re-
sults, tabulated in Table 5, indicate that susceptibility to
backdoor attacks in SFDA remains a pervasive issue, inde-
pendent of the choice of model architecture. Nevertheless,
SSDA consistently demonstrates efficacy in defending the
attacks across the diverse set of model architectures.

Table 5: Peformance with different model architectures

(5]

(6]

(7]

[8

—

(9]

Ar = Cl Cl— Ar
Model Attack Method ACC T ASR | ACC | ASR
o SEDA [4] | 43.89 | 95.12 | 57.85 | 99.09
VGGG BadNets [ gspa (Ours) | 43.14 | 1.33 | 57.11 | 3.42
Blended [1] | SFDATT [ 4305 [9301 [ 5847 | 6053
SSDA (Ours) | 42.29 | 10.81 | 57.77 | 4.90
SEDA [4] | 53.93 | 99.54 | 64.24 | 99.09
DenseNet121 BadNets [°1 | oA (ours) | 53.81 | 149 | 64.15 | 3.09
Blended [1] | SFPATYT [ /5471 [ 9139 | 6485 | 64.44
ende SSDA (Ours) | 54.52 | 1.53 | 64.94 | 3.71
SEDA [4] | 58.21 | 99.82 | 71.69 | 99.59
DenseNet 61 BadNets [°1 | gonA (ours) | 58.26 | 2.15 | 71.78 | 3.09
enseiNe Blended [1] | SFPATIT |[5824 [9757 [ 71.20 | 8253
SSDA (Ours) | 58.28 | 2.15 | 71.24 | 3.91
o SEDA [4] | 56.75 | 96.63 | 70.13 | 99.96
IncentionV3 BadNets [21 1 gopa (ours) | 56.66 | 1.37 | 7005 | 3.26
ceptio Blended [1] | _SFPATIT [/5743 [ 971476869 | 96.54
SSDA (Ours) | 57.41 | 3.23 | 68.56 | 15.33
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