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A. Proof of Theorem 1
Lemma 1. Given the monotonically increasing function I : R → R+, the mean of a sequence is always less than or equal
to the mean weighted by I , as follows:

1

n

n∑
i=1

xi ≤
1∑n

i=1 I(xi)

n∑
i=1

I(xi) · xi.

Proof. This can be trivially proved by mathematical induction on the length of the given sequence.

Corollary 1. In the case where the function, h, which maps the robust loss value to label confidence is a monotonically
decreasing function, the weighted loss function with negative label confidence incorporation has the following lower bound:∑

(x,y)∈D

(1− P((x, y) ∈ Dce))L(f(x; θ), y) =
∑

(x,y)∈D

(1− h(L(f(x; θ), y))L(f(x; θ), y)

≥
∑

(x,y)∈D(1− P((x, y) ∈ Dce))

|D|
·

∑
(x,y)∈D

L(f(x; θ), y).

The negative label confidence is denoted as 1− P ((x, y) ∈ Dce). Since the negative label confidence is a monotonically
increasing function, based on Lemma 1, the mean loss function can serve as the lower bound for the weighted loss function.

Lemma 2. Let’s suppose that the loss function of the classification problem is defined as a function of the prediction prob-
ability for the corresponding label as follows: L(f(x; θ), y) := g(f(x; θ)y). For α > 0 which satisfies limp→1 ∇p(g(p) +
α log p) < 0, there exists τ < 1 that satisfies the following proposition:

h(g(p)) = 0, for p < τ ⇒
∑

(x,y)∈D

P((x, y) ∈ Dce) · L(f(x; θ), y) ≥
∑

(x,y)∈D

α · P((x, y) ∈ Dce) · CE(f(x; θ), y).

Proof. Without loss of generality, the noise-robust loss function has a minimum value 0 when the prediction probability of the
corresponding label is 1. For simplicity, let’s use an auxiliary variable p to represent the difference between the noise-robust
loss and the cross-entropy loss as follows:

L(f(x; θ), y)− α · CE(f(x; θ), y) = g(p) + α log(p) := r(p),

where p = f(x; θ)y . The difference function r(·) satisfies the following propositions based on our assumptions: r(1) = 0,
and limp→1 r

′(p) < 0. This implies that there exists τ < 1 satisfying r(p) ≥ 0 for p ∈ [τ, 1]. Assume that P((x, y) ∈ Dce) =
h(g(f(x; θ)y)) = 0 for f(x; θ)y < τ , then the following inequality holds:∑

(x,y)∈D

P((x, y) ∈ Dce) · (L(f(x; θ), y)− α · CE(f(x; θ), y))

=
∑

(x,y)∈D

I(f(x; θ)y ≥ τ) · P((x, y) ∈ Dce) · (L(f(x; θ), y)− α · CE(f(x; θ), y)) ≥ 0

where I is an indicator function.
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Lemma 2 becomes meaningless if τ is close to 1, but τ may not be close to 1. For example, in the case of a generalized
cross entropy loss [2] with a hyper-parameter of 0.5 (g(p) = (1 − p0.5)/0.5), τ ≈ 0.2128 for α = 0.5. The gradient of the
cross-entropy loss increases rapidly as the predictive probability value for the corresponding label is closer to 0. Therefore,
the cross-entropy loss cannot always be smaller than the noise-robust loss containing underfitting issue. This is why the
threshold condition exists in the proposed label confidence. Actually, Lemma 2 assumes τ forcing the cross-entropy loss to
be smaller than the noise-robust loss in the range of consideration. Consequently, using Corollary 1 and Lemma 2, we can
prove our theorem in the paper as follows:

Theorem 1. Let us assume that L(f(x; θ), y) := g(f(x; θ)y), where g : [0, 1] → R+. Given α > 0 such that limp→1 ∇p(g(p)+
α log p) < 0, there exists a value of τ < 1 that satisfies the following inequality:

RL(θ;D) ≥ n− |Dce|
n

RL(θ;D) + α
|Dce|
n

RCE(θ;Dce),

where n is the number of samples in D and h(·) is a monotonically decreasing function which satisfies h(l) = 0 for l > g(τ).

Proof. For the τ defined in Lemma 2, the following inequalities hold:

n · LHS = n · RL(θ;D) =
∑

(x,y)∈D

L(f(x; θ), y)

=
∑

(x,y)∈D

P((x, y) ∈ Dce) · L(f(x; θ), y) + (1− P((x, y) ∈ Dce)) · L(f(x; θ), y)

≥
∑

(x,y)∈D

P((x, y) ∈ Dce) · L(f(x; θ), y) +
∑

(x,y)∈D 1− P((x, y) ∈ Dce)

n
·

∑
(x,y)∈D

L(f(x; θ), y)

≥
∑

(x,y)∈D

α · P((x, y) ∈ Dce) · CE(f(x; θ), y) + (n− |Dce|) ·
1

n
·

∑
(x,y)∈D

L(f(x; θ), y)

= α · |Dce| · RCE(θ;Dce) + (n− |Dce|) · RL(θ;D) = n · RHS.

The third line of the proof has validity by Corollary 1 and the fourth line holds by Lemma 2.

τ can be simply calculated when the base noise-robust loss and α are determined. In addition, theoretically the proposed
method requires satisfying the strict thresholding based on the τ , but the soft-thresholding which makes the algorithm simple
works strongly in our experiments.

B. Detailed loss function
In our paper, we describe the final loss as a combination of robust loss, weighted cross-entropy loss with label confidence

incorporation, penalty loss for the distance between two models and augmentation-invariant regularizer. Specifically, we can
formulate the final loss function as follows:∑

(x,y)∈D

[
1

n
L(f(x; θ), y) + α

h(f(x; θ)y)

n− |Dce|
CE(f(x; θ∗), ỹ) + ρ · JSD(f(x′; θ∗), f(x′′; θ∗))

]
+ λ||θ − θ∗||2F ,

s.t. h(f(x; θ)y) = σ(0.5 · (−L(f(x; θ), y) + µ+m)),

where JSD represents Jensen-Shannon Divergence between two predictions which is the augmentation-invariant regularizer,
|| · ||2F denotes the Frobenius norm, x′ and x′′ are two different images generated by applying random transformation to the
input image x, and ỹ is the label which combines the ground-truth label and the label expected by the noise-robust model.
While the paper presents a milestone to combine the noise-robust loss and the cross-entropy loss, the proposed framework
includes four hyper-parameters (α, ρ, λ, and m).

To simplify the application of our algorithm, we fix two hyperparameters which do not significantly affect performance.
According to the findings in the paper (Section 4.1), the proposed framework shows consistent performance even when
the influence of cross-entropy loss changes. Based on this observation, we fix two hyperparameters that contribute to the
influence of the cross-entropy loss: α and m. Considering α and threshold τ independently, as α increases, the effect of



cross-entropy also increases. Similarly, as m increases, more samples are trained by cross-entropy and the effect of cross-
entropy increases. Since m is a variable that directly controls the criteria in our soft-thresholding, it is required to verify
whether it can be determined freely from α. Fortunately, we can replace α with 1 when α and a certain threshold satisfy the
theoretical conditions, because the following inequality holds: L(f(x; θ), y) + αW · CE(f(x; θ∗), y) ≥ α · (L(f(x; θ), y) +
W ·CE(f(x; θ∗), y)). However, note that, as the threshold increases, the approximation of the proposed framework becomes
inaccurate, increasing the gap between the upper and lower bounds. It was experimentally confirmed in the paper that the
variable m that affects the threshold size does not have significant effect on the overall performance, and we fix the value at
0.05 which is the central value of the effective settings in the experiments (Section 4.1).

C. Hyperparameters of our method in the experimental scenarios

Table 1. Hyperparameters of the proposed method in our experimental scenarios. ‘NR’ denotes the symmetric noise ratio.
Hyper-parameter CIFAR-100 (NR ≥ 60 %) CIFAR (others) mini-WebVision Clothing1M

Batch size 128 128 64 64
Learning rate 0.2 0.1 0.1 0.001
Weight decay 2e-5 1e-4 1e-4 1e-4

λ 1e-4 1e-3 1e-4 1e-4
ρ 10 5 5 10

In Table 1, we report the hyperparameters of the proposed method for the experiments represented in the paper. Hyperpa-
rameters include the basic elements of general deep learning model (batch size, learning rate, and weight decay). The specific
hyperparameters of our method include weighting factors for the augmentation-invariant regularization, ρ, and the penalty
of the parameter distance between two models, λ. λ was selected from 1, 5, and 10 times of the weight decay and ρ was
selected from 1, 5, and 10. For the hyperparameter of the baseline noise-robust loss (GCE [2]) used by the proposed method,
we followed the same value in [1] for the CIFAR experiments. For mini-WebVision and Clothing1M experiments, 0.5 was
used for the hyperparameter of GCE.

D. Ablation studies

Table 2. Comparison of classification accuracy (%) on noisy CIFAR-10 and CIFAR-100 datasets. ‘Single model’ refers to the
approach of solving the problem with just one model, while ‘Two model’ represents the approach where we remove the augmentation-
invariant regularization and label correction from the proposed method. Similarly, ‘GJS’ can be interpreted as a method that adds
augmentation-invariant regularization to the JS method. The best performance, excluding shaded cells, is highlighted in bold.

no noise symmetric noise asymmetric noise
Dataset Method 0 20 40 60 80 20 40

CIFAR-10

GCE [2] 95.75 94.24 92.82 89.37 79.19 92.83 87.00
JS [1] 95.89 94.52 93.01 89.64 76.06 92.18 87.99
Single model 94.22 86.56 84.26 80.62 78.10 84.22 90.54
Two models 94.98 93.71 93.10 90.80 81.49 93.38 91.20
GJS [1] 95.91 95.33 93.57 91.64 79.11 93.94 89.65
Ours 96.10 95.78 95.47 94.47 91.13 95.68 93.17

CIFAR-100

GCE [2] 77.65 75.02 71.54 65.21 49.68 72.13 51.50
JS [1] 77.95 75.41 71.12 64.36 45.05 71.70 49.36
Single model 78.07 73.54 68.30 54.52 40.57 73.45 58.34
Two models 78.50 75.14 71.96 65.56 52.22 72.50 62.45
GJS [1] 79.27 78.05 75.71 70.15 44.49 74.60 63.70
Ours 79.40 78.21 75.82 71.28 61.05 77.08 68.05

In the experimental part of the main paper, one of our objectives was to rigorously assess the performance of the pro-
posed learning model on a modular level. In pursuit of this objective, we conducted a thorough performance evaluation of
two distinctive variations: the method which omits the augmentation-invariant regularizer and label correction (‘Two mod-
els’), and the approach that refrains from employing the auxiliary model altogether (‘Single model’). To facilitate a more



comprehensive and insightful analysis, we systematically explored a wide range of noise rates within our experimental frame-
work. Furthermore, we extended our investigation to encompass a comparative assessment involving the GJS method [1], an
augmentation-invariant regularized variant of the Jensen-Shannon loss (JS).

The performance comparison is delineated in Table 2. Notably, the optimization methodology of the proposed approach
exhibits robust performance when confronted with high noise rates or asymmetric noise distributions, as evident from evalu-
ations on both the CIFAR-10 and CIFAR-100 datasets. However, performance degradation are observed in cases where the
single model is adopted. This phenomenon finds correlation with the empirical findings articulated in the paper, emphasizing
that a simple combination of cross-entropy loss and noise-robust loss within a single model does not yield commensurate
outcomes. A pivotal aspect lies in the distinct behavioral patterns exhibited by the two models proposed in our framework;
the noise-free model and the noise-robust model. Despite parallel training dynamics on the training set, nuanced performance
disparities emerge on the test set, as depicted in Figure 3 in the main paper. This nuanced discrepancy offers credence to the
central premise of the paper, advocating that divergent model structures tailored to disparate objectives and characteristics
prove to be more efficacious. Also, it is noteworthy that the divergence in performance between the ‘Two models’ approach
and the proposed method occasionally exceeds the performance contrast between the JS method and the GJS method. This
phenomenon can be interpreted as an efficacious response to the application of a regularizer to the cross-entropy loss, miti-
gating the potential perils of overfitting.
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