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1. Detailed Comparison with VP-CSV [2]
Our proposed method (CMOTA) focuses on encoding general context (including the character semantic retention), while the VP-CSV

heavily focuses on maintaining the character semantic information over time. Specifically, the VP-CSV is specialized in generating
‘characters’ in each image using a two-stage approach, i.e., one) character token planning for generating characters and two) visual token
completion. Particularly, for the ‘character token planning’, VP-CSV trains an auxiliary classifier model to classify the characters from
given images, which is used for extracting character regions using Grad-CAM [12]. In the first stage (i.e., character generating stage), the
model generates a specific character region given the input sentence while the non-character regions are masked-out. Here, they utilize
the pre-trained character classifier model to obtain character region’s information (refer to the paper [2] for more information). In the
second stage (i.e., visual completion stage), the model completes the image created in the first stage. This two-stage process is beneficial in
generating accurate characters that matches with each sentence in a story paragraph, but it shows marginal improvement in the image quality
(i.e., relative improvement of FID −1.05 between vanilla and full version of VP-CSV) Tab. 1 of [2].

In contrast, we observe relatively larger improvement in image quality with our CMOTA (i.e., relative improvement of FID −11.75
between vanilla and full version of CMOTA) along with the higher global semantic matching scores (i.e., R-precision and BLEU score) as
shown in Tab.[2]. In other words, state-of-the-art VP-CSV [2] performs on par with our CMOTA in character-related metrics (i.e., Char.F1,
Frm. Acc.), while our CMOTA outperforms in all other metrics (i.e., FID, BLEU, R-precision). VP-CSV shows higher performance in
Char.F1 and Frm. Acc. compared to our CMOTA due to the character-centric module, but our method generates high quality image sequence
that maintains global semantic matching with story paragraph compared to VP-CSV.

2. More Discussions on Relevant Literature of Text-to-Image Generation
Again, text-to-image generation can be considered as a sub-problem of the story visualization task. Most literature focus on enhancing

the semantic relevance of the generated image for the input text description and on resolution improvements. MC-GAN [7] models
both background and foreground information to generate photo-realistic foreground objects for a background. StackGAN [15] uses a
two-stage process to enhance the resolution of the image conditioned on an input text description. Subsequent works focus on architectural
enhancements over StackGAN [3, 14, 16, 17]; adding attention networks for improved semantic relevance [14], extending the two-stage
process [3, 16], or adding memory networks to improve the resolution of generated images and others [17].

Recently, text-based image synthesis has been greatly improved with the help of a vast amount of training data with a hyper-scale model.
DALL-E [32] and CogView [5] concurrently propose an auto-regressive transformer to model the text and image as a single data stream.
Recent studies use a diffusion model for this task. Its benefits include no need of adversarial learning and better scalability compared to
GAN’s, making diffusion models attractive in the literature [2]. As the research matures, hyper-scale diffusion models [31,34] generate
state-of-the-art quality images in zero-shot fashion. But due to its persisting high computational cost, LDM [11] generates image in latent
space, thereby decreasing the computational complexity. More recently, Make-A-Scene [7] to generate images that follow human’s prior
with a simple sketch is proposed.



S1

S2

S3

The parade started with the local jrotc team.

Then, there were clowns on funny bikes.
After that there were soldiers marching down the street.
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It was a beautiful day for trip to the beach.

When I had first arrived there are only a couple of people.
After a few hours of playing in the ocean and building

sandcastles at the beach, the sea started to fill up.
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Figure 1. A preliminary study to generate images from a text using a large scale pre-trained text-to-image model DALL-E2 [31]. The
‘context’ in the second and last row refers to historical contexts, which we provide as concatenated previous sentences.

Although text-to-image generation models work well with high-quality visualization abilities, it lacks an understanding of context in
abstract, metaphoric sentences, i.e. story. In addition, naively using state-of-the-art text-to-image generation models is computationally
prohibited. For example, diffusion-based models [31,34] have hyper-scale model size, (e.g., Imagen [34] parameter count of 2-B, DALL-
E2 [31] parameter count of 3.5-B) making it non-trivial for applying it in a wide range of inference scenarios that may not have the sufficient
computing resource. Here, we consider relatively light architectures as our base model for computational efficiency.

3. A Preliminary Study Using the DALL-E 2 (a popular large image generation model) for the Story
Visualization

As the large-scale pre-trained model can be trivially used as a story visualizer, we conduct a preliminary study using the pre-trained
text-to-image generation model, i.e., DALL-E 21 [31], for generating image sequence on the real-world story visualization benchmark
dataset [5]2. First, we use it as a single text-to-image generation task, i.e., by using each sentence in a story paragraph, we produce images.
As shown in the second row of Fig. 1, i.e., DALL-E2 w/o context, it generates semantically well-aligned images for each sentence. But we
observe drastic changes of background in second image of both examples in Fig. 1, showing inconsistent sequence of images compared to
ground truth. In the second row of the first example (left), first image shows ‘parade’, but second image only shows ‘clown’ not related to
‘parade’ or ‘jrotc team’ of the first image. Moreover, in second row of the second example (right), first image shows ‘beach’, but second
image only shows ‘a couple’ not related to ‘beach’ of the first image.

To address the problem of abrupt scene changes, we feed the DALL-E2 with historical contexts by concatenating the past sentences
as input. Third row in Fig. 1, i.e., ‘DALL-E2 w/ context’, shows the result that is more temporally cohesive compared to the second row
in Fig. 1. In the first example (left), second image in the third row shows ‘clown’ on the road (i.e., visually relevant to ‘parade’ and the
previously generated image), thereby showing that the contextual information is better encoded for generating temporally coherent images.
Also, in the second example (right), a picture that a couple sitting there is illustrated, which is temporally coherent. These results imply the
effectiveness of the context information for generating temporally coherent images. But, the third image in the third row in the first example
(left) shows that is less relevant to ‘soldiers’ which is in need to be generated in a third image, rather than showing parade on the funny bikes.

1https://labs.openai.com/
2In this experiment, we use a real-world benchmark dataset because the pre-trained generation model was trained for the real images not cartoons [31].
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Figure 2. Detailed input configuration for the proposed transformer. As an input, we concatenate text and image tokens with two
embeddings, i.e., ‘SOS’ (start of sentence token) and ‘SOI’ (start of image token), and then add positional and segment embedding. As we
described in the main paper, we use memory-attention (memory attn.) mask to selectively determine which information to be propagated as a
memory represented as a blue-colored box. Here, we illustrate using the ‘text’ information as memory content.

We believe that the reason the generated image does not semantically matches with the paired sentence is because the information spreads
over multiple sentences thus requiring the generative model to discover the attentive words in the large set of words in the paragraph.

We observe that even the large model does not effectively encode the long term contexts when generating images. To this end, we propose
to use memory transformer which adaptively utilizes historical contexts in a paragraph, with attentively weighted memory (Sec. 3.1). As
these large-scale models are based on transformer architecture, our method may improve the large model’s story visualization performance.
But the computational complexity prevents us from using the large-scale models as our base model. As a promising future work, we eagerly
want to incorporate our new memory module to the large models.

4. Memory-Attention Mask for Selective Modality Propagation
The memory update scheme from Mt−1 to Mt is as follows. (1) l-th intermediate layer of transformer is modified for receiving previous

memory from previous state, and (2) current state, Ht, and previous memory, Mt−1 is passed to the memory updater shown in Fig. 2 purple
box. To obtain a holistic understanding of current and memory state, we apply cross attention between the current and the past memory
state by using the hidden state as a key/value and the past memory state as a query, respectively. Then, we choose which modality of input
(e.g., text, image or text-image) to be propagated as memory content by using memory-attention mask, as mentioned in Sec. 3.1, which is
illustrated in the cyan colored region of Figures 3 and 2. By applying the memory-attention mask onto attention score matrix, which is
calculated from query (Mt−1) and key (Ht), we can choose which information to be propagated as a memory.

Here, we empirically investigate which modality (i.e., text or image or both) of historical contexts needs to be propagated into the future
memory for generating temporally coherent image sequences. Table 1 shows comparative results using different modality as a memory.
Interestingly, when we use the ‘text’ as a memory (third row in Tab. 1), it performs the best. In contrast, when we use the ‘image’ as a
memory, we observe degradation in overall performance (first and second row in Tab. 1). We believe that because the story visualization
task requires generating image frames arbitrarily distant in time (i.e., so-called ‘key-frames’) corresponding to different sentences, the
‘image’ information as a memory could be a strong constraint to the distant future, thereby hindering generation process at current time and
degrading the overall performance.

5. A Discussion for Memory Connection Scheme
The conventional memory module [4,15] connects all the levels’ intermediate layers as shown in Fig. 4-(a). But, it is not immediately

clear how to connect the levels of memory modules in the multi-level transformer architecture for better contextual encoding. Inspired by
prior studies, i.e., knowledge distillation [1, 4, 10], which mentions that structured and abstract representation can be extracted from deeper
(high-level) layer [8, 9, 13], we propose to apply a partial same high-level connection path as shown in Figures 3-(a) and 4-(b). Although a
partial-same level connection is a subset of the all-same level connection, we believe that rather many of connection paths would make it
difficult to convey the necessary information as a memory.

To empirically validate our design for memory propagation, we compare with various design choices as shown in Fig. 3; (1) partial



Propagated modality in a memory FID↓ Char. F1↑ Frm. Acc.↑ BLEU-2/3↑ R-Prec.↑
Text-Image 61.49 47.62 21.04 3.92 / 1.63 6.12
Image 63.25 46.56 18.36 3.72 / 1.53 5.77
Text 59.05 49.72 21.79 4.41 / 1.77 6.28

Table 1. Story visualization performance by differently masked modality. When we use ‘text’ as a propagated memory, we perform
the best. In contrast, the ‘image’ as a memory degrade the performance. We conjecture that the SV task need to generate image frames
arbitrarily distant in time, the ‘image’ information could be a strong constraint for the generating image at the current time.
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(Conventional memory connection)

Figure 3. Comparison to other possible memory connection schemes. For propagating historical contexts using memory transformer, we
investigate various memory connection path configurations between adjacent transformers, inspired by knowledge distillation [8, 9, 13].
Same as the main paper, we use red arrow and black arrow to indicate the direction of memory propagation and layers’ feature propagation,
respectively. (a) Connection between partial same high-level intermediate layers, (b) Connection between partial same low-level intermediate
layers (c) Connection between all same level intermediate layers which connect all layers (Conventional memory connection [15] in Fig. 4-(a)
of the main paper), (d) Connection between all different levels intermediate layers known as knowledge review that is similar to the human’s
learning strategy [10].

connection on same level with high-level feature (2) partial connection on same level with low-level feature, (3) all same level connection
(conventional memory module) [15] and (4) all different level connection [10]. We can observe the effectiveness of the partial same level
connection with high-level feature propagation in terms of performance and computational efficiency, thereby determining it as default
design. Same as the main paper, we use red arrow and black arrow to indicate the direction of memory propagation and layers’ feature
propagation, respectively.

Connetcion Type # Param. FID↓ Char. F1↑ Frm. Acc.↑ BLEU-2/3↑ R-Prec.↑
w/o memory 93.7M 63.88 45.48 18.44 4.18 / 1.69 5.67

Partial same high-level (Fig. 3-(a)) 95.8M 59.05 49.72 21.79 4.41 / 1.77 6.28
Partial same low-level (Fig. 3-(b)) 95.8M 62.78 47.09 20.08 4.18 / 1.71 6.18
All same level (Fig. 3-(c)) 118M 61.23 47.21 19.21 4.21 / 1.70 6.08
All diff. level (Fig. 3-(d)) 115M 63.63 46.98 19.22 4.19 / 1.71 6.12

Table 2. Story visualization performance for the considered memory connection schemes illustrated in the Fig. 3. On Pororo-SV Test
set. Fig. 3-(a) and (b) shows connection between partial same level intermediate layers (high or low-level connection), Fig. 3-(c) shows
connection between all same level intermediate layers which connect all layers, Fig. 3-(c) shows connection between all different levels’
intermediate layers.

6. Detailed Training Procedure
Here we explain the procedure of the proposed bi-directional training in detail with the proposed online text augmentation. The

bi-directional generation, i.e., text-to-image and image-to-text generation, is known to be effective in encoding multi-modal informa-
tion [14,30,33]. To exploit the benefit, we use bi-directional training scheme to generate sequential data, i.e., story paragraph to image
sequence and image sequence to story paragraph generation simultaneously, with the aid of context memory (Sec. 3.1).

Thanks to this bi-directional generation, we can naturally integrate the procedure of generating pseudo-texts in an online-manner to



the process of learning image-to-text and the text-to-image generation model as depicted in Fig. 5. However, at initial stage of training,
online text-augmentation produces inappropriate pseudo-texts as the image-to-text generation model is not trained well yet. This could be
harmful to the training of text-to-image generation. To address this issue, we propose a method to filter-out the inappropriate pseudo-texts by
comparing the co-occurrence of character’s name (e.g., Pororo, Eddy, Poby, etc) between gold-label (i.e., ground-truth caption) and generated
pseudo-texts. For example, if the generated pseudo-text does not contain more than certain ratio of the character’s name corresponding to the
gold label, we reject it and train the model with ground-truth caption, as described in Alg. 1. Here, we set the character-occurrence threshold
for filtering the generated pseudo-text as p = 0.5, depicted in Alg. 1. With the filtering, performance improves; FID (↓): 54.67→ 52.13,
Char.F1 (↑): 48.96→ 53.25, Frm.Acc. (↑): 21.42→ 24.72 in 64×64 resolution Pororo-SV dataset.

Algorithm 1: Online Text Augmentation with Bi-directional Training
Given :Ground truth story with story paragraph and image sequence (Tgt−seq , Igt−seq) in dataset Dstory , Sequential index of

image/text in story j, Story length L, j-th text from story paragraph Tj,gt, j-th text from generated pseudo-texts Tj,ps,
Generated image sequence Igen−seq , Generated text sequence Tgen−seq , Generated pseudo-text sequence Tps−seq ,
Character name detector Detr, Characters in the description Char., Total epoch number Kepoch, CMOTA parameters θ,
Threshold of character occurrence p, Cross-entropy loss CE

1 Function Character−Occurrence(Tgt−seq , Tps−seq):
2 for each (Tj,gt, Tj,ps) in (Tgt−seq, Tps−seq) do
3 Char.gt ← Detr(Tj,gt); ▷ Characters in the ground-truth text
4 Char.ps ← Detr(Tj,ps); ▷ Characters in the pseudo-text
5 if |Char.gt ∩ Char.ps| / |Char.gt| ≤ p then
6 return False;
7 return True;
8 end Function
9 Initialize θ;

10 k ← 0;
11 while k < Kepoch do
12 for each (Tgt−seq, Igt−seq) in Dstory do

// Bi-directional Training
13 Tgen−seq ← CMOTAi2t(Igt−seq; θ); ▷ Image sequence to paragraph generation
14 Igen−seq ← CMOTAt2i(Tgt−seq; θ); ▷ Paragraph to image sequence generation
15 {Lj,t2i,θ}Lj=1 = CE(Igen−seq, Igt−seq); ▷ Top equation of Eq. 1
16 {Lj,i2t,θ}Lj=1 = CE(Tgen−seq, Tgt−seq); ▷ Second row’s equation of Eq. 1

// Online Text Augmentation
17 Tps−seq ← CMOTAi2t(Igt−seq; θ); ▷ Image sequence to pseudo-texts generation
18 if Character−Occurrence(Tgt−seq, Tps−seq) then
19 Igen−seq ← CMOTAt2i(Tps−seq; θ); ▷ Pseudo-texts to image sequence generation
20 {Lj,pt2i,θ}Lj=1 = CE(Igen−seq, Igt−seq); ▷ Top equation of Eq. 3
21 else
22 {Lj,pt2i,θ}Lj=1 = 0
23 {Lj,θ}Lj=1 = {Lj,t2i,θ}Lj=1 + λ1{Lj,i2t,θ}Lj=1 + λ2{Lj,pt2i,θ}Lj=1 ▷ Bottom equation of Eq. 3
24 Lθ ←

∑L
j=1 Lj,θ

25 θ ← Optimizer(∇θLθ) ▷ Update model parameters θ
26 k ← k + 1;
27 end

7. Experimental Details
7.1. Details of Datasets

Following previous works [2,17,22,23,39], we use Pororo-SV dataset proposed in [17], which is a modified version of [6] for story
visualization task. Each story sample consists of 5 images as a sequence with corresponding 5 descriptions. As mentioned in previous
works [22], there is a lot of data overlap between training and test samples in the original dataset split of Pororo-SV dataset [17,39]. To be
more challenging, we follow the dataset split proposed in [22], which contains 10191/2334/2208 samples in training, validation and test
splits, respectively. In this version, there is no data overlap between training and test split.

Furthermore, following the prior work [23], we conduct story visualization task with Flintstones dataset (Flintstones-SV) which was
originally exploited in the text-to-video synthesis task. To construct story visualization dataset with it, five images for story sequence are



sampled from short video clip (i.e., 75 frames) and paired with language descriptions. To be consistent with prior work [22,23], we use
dataset split proposed in [22].

7.2. Details of Evaluation Metrics
Due to the task complexity and its generative nature of the story visualization, we use various evaluation metrics for multi-faceted

quantitative analysis. The analysis includes the visual quality of generated images, coherency in the generated image sequence and semantic
matching between descriptions and generated images. We describe each evaluation method in detail as follows.

• Fréchet Inception Distance (FID): Assessing the quality of generated image by calculating the distance of the distribution between
generated and real images, which are used to train the generator as done in prior works [22,39].

• Character Classification (Char. F1, Frm. Acc.): Assessing the presence of character in generated image sequence. Using pre-trained
Inception-v3 with a multi-label classification loss to identify characters in the generated image. In particular, we report micro-averaged
F-score of character classification (Char. F1) and exact matching using frame accuracy (Frame Acc.) as done in prior work [17,22,23].

• Video Captioning Accuracy (BLEU-2/3): Assessing the global semantic matching between generated image sequence and captions.
We report the BLEU2/3 (B-2/3) scores of captions predicted using generated images with pre-trained video captioner to fairly
compare with prior works [2,22,23].

• R-precision (R-Prec.): Assessing the global semantic matching quality between text paragraph and images in the story visualization
task. We report retrieval-based metric R-precision following the prior work of [23] by quantifying the semantic aignment between the
input text and generated image. With R relevant text as query, the top R-ranked retrieval results of a system are examined. With r
relevant, R-precision would be r/R. Encodings for image retrieval tasks are based on Deep Attention-based Multimodal Similarity
Model (DAMSM) and we train a new version Hierarchical DAMSM (H-DAMSM) following [22].

• Human Evaluation: Conducting human evaluation with the criterion listed in prior works [2,17,22,23,39].

8. A More Discussion on the Comparison with a Large-Scale SV Model (StoryDALL-E [24])
Despite the unfairness of model size and pretraining data, it is interesting to compare with the large-scale model StoryDALL-E (finetune)

[24]. As the StoryDALL-E is proposed in the story continuation set-up, which uses first image as a condition to visualize the story, we
evaluate our method in the same task set-up. We present the quantitative comparison in Tab. 5 and the qualitative comparison in Figures 4
and 5.

In Fig. 4, we observe that our CMOTA shows more temporally coherent image sequence compared to StoryDALL-E [24] on the both
examples. In the first example (left) of Fig. 4, the second row shows ‘Pororo’ in ‘house’ in first image, and sudden background change
occurs in the second image. Moreover, the second example (right) in the second row also shows ‘Pororo’ and ‘Crong’ outside in the third
image as there’s no background information in the paired-sentence. However, our CMOTA generates temporally coherent images in the
both examples of Fig. 4 as we use a novel memory architecture to adaptively understand the historical contexts (Sec. 3.1).
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Crong is sitting down on the couch and reading a book.
Crong is sitting on the couch and say something to Pororo.

Pororo brings to mind something. Pororo runs to somewhere with joy. 
Pororo ransack drawer beside the door. Pororo find something.

Figure 4. Qualitative comparison with StoryDALL-E (finetune) in the story continuation set-up [24]. Compared to the StoryDALL-E,
our CMOTA generates temporally more coherent image sequence though our model does not include any special module for the story
continuation task.

In Fig. 5, we observe that our CMOTA generates more semantically relevant image sequence with given story paragraph compared to
the StoryDALL-E [24]. Second row in the first example (left) of Fig. 5 shows ‘Petty’ in the first image, not matching with the first sentence
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On the bookshelf Petty take out a book about cooking.
Petty reads a book and finds a new way.

Petty put an egg in her mix while reading a book.
Petty sprinkles some salt. Petty is reading a recipe.

Figure 5. Qualitative comparison with StoryDALL-E (finetune) in the story continuation set-up [24]. Compared to the StoryDALL-E,
our CMOTA generates semantically more relevant image sequence though our model does not include any special module for the story
continuation task.

in a story paragraph. Also, the second row in the second example (right) shows ‘Pororo’ and ‘Loopy’ in the first and third images, even
though the sentences only mention ‘Petty’. However, our CMOTA shows semantically relevant images throughout the story paragraph.

Note that the qualitative result is aligned with the quantitative result in Tab. 5 in the Char. F1 score and Frm. Acc.; our CMOTA preserves
the character semantics over the multiple sentences better than the StoryDALL-E by the novel memory architecture.

9. Details about Human Preference Study
We conduct human evaluations by comparing ours (CMOTA) with VLC-StoryGAN [22] as it shows the best performance among all

reproducible3 prior arts we have compared. Specifically, we compare them on three criterions; i.e., visual quality, temporal consistency
and semantic relevancy, following prior works of StoryGAN [17], CP-CSV [39], DuCo-StoryGAN [23] and VLC-StoryGAN [22]. We
recruit 100 annotators using Amazon Mechanical Turk platform. We ask them to blindly determine their preference for image sequences
generated by VLC-StoryGAN [22] and CMOTA in Pororo-SV test split. They are asked to decide which image sequence is better in
three perspectives. Here, we also consider ‘Tie’ that means ‘can not determine’ by their preference. Fig. 6 shows a screenshot of our an-
notation task. As shown in Tab. 6, we observe that the our model (CMOTA) shows better preference with a significant gap in all three criteria.

In the following pages, we present more qualitative results for further analyses of the proposed method.

3Note that the VP-CSV exhibits better performance but there is a reproducibility issue as the authors’ implementation is not publicly available at the time
of this submission.



Figure 6. The Mechanical-Turk evaluation page used in our human preference study. We evaluate the results in three metrics; (1)
temporal consistency, (2) semantic relevancy and (3) visual quality.



10. More Qualitative Results
We showcase more qualitative results compared to the prior art (i.e., VLC-StoryGAN [22]) for Pororo-SV dataset on test split, as shown

in Figures 7 and 8. We also showcase more qualitative results compared to the prior art (i.e., DuCo-StoryGAN [23) for Flintstones-SV
dataset on test split, as shown in Figures 9 and 10.
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Pororo and Crong are muttering and surprised.

S1
S2
S3
S4
S5

Harry is singing a song. The song is making Poby painful. 
Harry finds Poby grabbing his head.

Harry and Poby is in room together. Harry is stamping his foot.
Poby is talking to Harry with making his point finger stand.

Harry is singing a song in a dark place.

S1
S2
S3
S4
S5

Petty is tired. There are cookies on the table.
Petty grabs a cookie and tastes it.

Petty smiles. Petty is satisfied with the cookie.
Eddy and Rody visit Pororo's house.

Petty say hi to Eddy and Rody.
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There is a house underneath a snowy cliff.
Harry and Poby is in a house.

Harry is singing a song. The song is making Poby painful.
Poby is grabbing his head because of the pain.

Poby is getting down to talk to Harry.

S1
S2
S3
S4
S5

Crong's face turns brown and red.
Pororo is looking at Crong worrying about Crong.

Pororo suggests Crong to go to the restroom.
Crong pretends to be okay smiling at Pororo.

Crong looking at Pororo lies on the bed.
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Loopy is angry about messy table.
Crong is reading a book. Pororo is thinking about next help.

Loopy says finished in Loopy’s house.
Loopy is finished with cleaning. Petty dusts off Loopy’s hands.

Loopy is wondering who made cookies.
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Figure 7. Additional Qualitative Results on Pororo-SV Dataset. Comparing our CMOTA’s qualitative results with prior state-of-the-art
model [22] and ground-truth. Our CMOTA on the third row shows a more semantically relevant image sequence compared to VLC-
StoryGAN [22]. Compared to ground-truth, our CMOTA shows semantically well-aligned images with backgrounds, but [22] shows
semantically less aligned images.
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S2
S3
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S5

Eddy, Crong and Tutu look down the cliff.
Eddy and Crong are worried.

Rody is running on snow covered field.
Weather is getting better. Rody looks up to sky.

Pororo is pilling up block. Poby is watching.

S1
S2
S3
S4
S5

Poby gathers hands together.
Poby looks at Harry with a surprised look.

Poby opens up red car arms while looking at Harry.
Loopy and Petty are looking at each other.

Petty is talking and Loopy is smiling.

S1
S2
S3
S4
S5

Crong's face turns brown and red.
Pororo is looking at Crong worrying about Crong.

Pororo suggests Crong to go to the restroom.
Crong pretends to be okay smiling at Pororo.

Crong looking at Pororo lies on the bed.

S1
S2
S3
S4
S5

Loopy is angry about messy table.
Crong is reading a book. Pororo is thinking about next help.

Loopy says finished in Loopy’s house.
Loopy is finished with cleaning. Petty dusts off Loopy’s hands.

Loopy is wondering who made cookies.
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Figure 8. Additional Qualitative Results on Pororo-SV dataset (Cont’d). Comparing our CMOTA’s qualitative results with prior
state-of-the-art model [22] and ground-truth. Our CMOTA on the third row shows a more semantically relevant image sequence compared
to VLC-StoryGAN [22]. Compared to ground-truth, our CMOTA shows semantically well-aligned images with backgrounds, but [22]
shows semantically less aligned images.
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Wilma is in a room.
Wilma and Betty are in the living room.

Wilma and Betty are in a room.

Wilma is standing in the room talking.
Wilma is standing in the liiving room speaking out loud.

S1
S2
S3
S4
S5

Wilma yells at Fred while lying on the couch in the living room.
Fred is in the room and puts on sunglasses.

Wilma is lying on the living room couch.

Dino is in the living room.
Wilma sits at the table in a room.

S1
S2
S3
S4
S5

Fred stands beside Wilma who is a t a table in the dining room.
Wilma is holding a newspaper and sitting at a table.

Fred is walking through a room speaking out loud.

Wilma and Fred are in a room.
Fred rides in the purple car that Barney is driving very fast.

S1
S2
S3
S4
S5

S1
S2
S3
S4
S5

Fred and Barney are talking while driving in a purple car.
Fred and Barney are in a car.

Barney and Fred are riding in a car.

Fred and Barney are riding in a car.
A short man wearing purple top is standing in the middle of a road.

S1
S2
S3
S4
S5

Barney slides towards doorway, and opens door.
Wilma is sitting in the dining room while talking on the phone.

Wilma is in the dining room talking to someone.

Wilma is in the dining room.
Wilma is in the dining room sitting at the table.

Fred talks on a phone in a room.
Fred is in the living room.

Fred is in the living room, talking on the phone.

Fred looks tired while he stands in the room, talking on the phone.
Fred is walking through a room speaking out loud.
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Figure 9. Additional Qualitative Results on Flintstones-SV dataset. Comparing our CMOTA’s qualitative results with prior state-of-
the-art model [23] and ground-truth. Our CMOTA on the third row shows a more semantically relevant image sequence compared to
DuCo-StoryGAN [23] in the second row. Compared to ground-truth, our CMOTA shows semantically well-aligned images with backgrounds,
but [22] shows semantically less aligned images.
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S3
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S5

Wilma is sitting at the table in the dining room while Fred stands.
Fred is in the dining room standing near Wilma watching her eat.

Fred and Wilma are in the dining room.

Wilma is eating at a restaurant while Fred talks.
Wilma, wearing a hard hat, is standing in the room.

S1
S2
S3
S4
S5

Wilma and Betty are in the living room.
Wilma is standing in the room talking.

Wilma is in a room.

Wilma is standing in the living room speaking out loud joyfully.
Wilma is in the living room sprayig on perfume.

S1
S2
S3
S4
S5

Barney and Fred are sitting in the living room.
Fred stands in a room.

Fred speaks with Barney in a room.

Pebbles is in a room wearing an orange outfit with black traingles.
Fred and Barney are sitting on a couch in a room talking.

S1
S2
S3
S4
S5

Wilma is in the dining room.
Wilma is in the dining room sitting at the table talking on the phone.

Wilma is sitting in the dining room at the table talking on the phone.

Fred is in a room.
A man with curly red hair is in the room.
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Figure 10. Additional Qualitative Results on FlintstonesSV dataset (Cont’d). Comparing our CMOTA’s qualitative results with prior
state-of-the-art model [23] and ground-truth. Our CMOTA on the third row shows a more semantically relevant image sequence compared to
DuCo-StoryGAN [23] in the second row. Compared to ground-truth, our CMOTA shows semantically well-aligned images with backgrounds,
but [23] shows semantically less aligned images.



10.1. Qualitative Results for the Efficacy of Memory Module
Figure 11 shows the efficacy of the memory module, i.e., with a memory module, the proposed method (CMOTA) generates more

temporally coherent images compared to the CMT-w/o-Memory, evaluated on Pororo-SV dataset.
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Crong smiles and Pororo is closing his eyes and speaking.
Wilma and Betty are in the living room.

Crong turns his face to Pororo on the ladder.

Wilma is standing in the room talking.
Wilma is standing in the liiving room speaking out loud.

S1
S2
S3
S4
S5

Petty is satisfied with her cookies.
Petty closes her eyes and drops a cookie.

Petty gets her cookies out.

Petty decides to try again.
Petty tries to bake cookies. Petty does not give up.

S1
S2
S3
S4
S5

Pororo successfully avoids snowballs which is threw by Eddy.
Eddy frowns his eyes and Pororo is staring Eddy.

Eddy seems determined to throw snowballs to Pororo. 

Now Pororo is preparing to hit Eddy. 
Eddy looks happy with his eyes wavy shaped.

S1
S2
S3
S4
S5

Harrylooked at Pobywith doubt. 
Poby wiped his brown after Poby finished to fix the table.

Poby told thanks to Pettyhammering on the table.

Petty came to Poby and Harry carrying snacks.
Petty smiled. A pie and two glasses of juice are on the plate.
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Figure 11. Examples showing the efficacy of memory module for better context encoding on Pororo-SV test split dataset. Comparing
our CMOTA’s qualitative results with our CMOTA without a memory module, we observe the background of scenes and the characters are
more properly generated using the proposed memory.



10.2. Examples of the Generated Pseudo-Texts during the Training
As the CMOTA is a single architecture for generating text/image sequence given another modality input, i.e., text-to-image generation

and image-to-text generation, we can immediately use CMOTA to generate multiple sentences from an image sequence, which is a task of
visual storytelling [5]. We apply this feature to generate pseudo-texts for our cyclic data augmentation.

As we argued in the main paper (L418), we showcase the generated pseudo-texts by our method on the Pororo-SV in Fig. 6 and Figures 12
and 13. As shown in the figures, the online generation incurs richer linguistic diversity as the iteration progresses.

Ground Truth
(Gold Label)

Generated
Pseudo-Texts

at each
training
iteration

Pororo and Crong are
walking together on the road.

Pororo and Crong are
on the road.

Pororo and Crong raise
their right hands and say hi.

Loopy and Pororo are
standing on the snow.

There is a tree behind Loopy.
Pororo is holding a

snowball in his hand.

Loopy is tilting her head.

Other friend sare surprised by
what Eddy did, doing fishing.

The sky is blue.

Eddy opens his hands with
fish toward the snow.

Eddy, Crong, Loopy, Pororo
and Poby laughs all together.

Poby says that Poby is lucky
and waves Crong hands.

Crong, Pororo and Loopy are
standing in front of Poby.

Image

Loopy puts her hands on her
sides. Pororo says sorry.

Pororo and Crong are
walking together on the road.

Eddy is explaining to his friends
that Eddy is going to
catch all the fishes

Eddy, Crong, Loopy, Pororo
and Poby laughs all together.

Loopy puts her hands on
her sides. Pororo nods.

Eddy, Crong, Loopy and
Pororo are surprised to see Poby.

Pororo and Crong look in
front of them and sees
snow covered trees.

Eddy prepares his bowl
of fishes.

Eddy is explaining to his friends
that Eddy is going to
catch all the fishes
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Figure 12. Generated pseudo-texts by the proposed method in Pororo-SV dataset during training. As training progresses, various
pseudo-texts are generated that match with the given image on the Pororo-SV dataset.

Fred is standing
in the doorway.

A man in Napoleon
costume is standing in the

doorway of a room.

Fred is wearing a costume
with a blue shirt and

cowboy hat.

Fred sits in a chair
in the room.

Fred is strapped in a chair
in the living room

at night.

Fred is talking as he is
sitting tied at a chair in a room

next to a round window.

An announcer man in purple shirt
and an orange hat is outside

announcing something.

The race announcer with purple,
red cap and sunglasses standing

in box holding microphone.

Fred is outside at
night time.

A man with green clothes
is talking in a room.

The green thing with 
mustache is standing

in the doorway.

Fred looks angry and is
sitting in a room.

Fred is standing
in the doorway.

A man with sunglasses is in
a car talking while standing.

Fred is standing
in the doorway.

Fred is in a room
tied up.

Fred is in the 
doorway. Barney is outside.

An announcer man in purple shirt
and an orange hat is outside

announcing something.

The green thing with
mustache is standing

in the doorway.

Ground Truth
(Gold Label)
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Figure 13. Generated pseudo-texts by the proposed method in Flintstones-SV dataset during training. As training progresses, various
pseudo-texts are generated that match with the given image on the Flintstones-SV dataset.
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