
(Supplementary) Data-Free Class-Incremental Hand Gesture Recognition

Figure 1: The pair plot of the synthetic dataset (6D Gaussian blobs) used for the preliminary proof of concept in Section 3
(BOAT-MI: Our Methodology) of the main paper. Different colors indicate different class indices (labels on the right). For the
DFCIL setup, the first 5 classes (label 0→ 4) are considered the old set CO, and the other 5 (label 5→ 9) new CN .

1

Algorithm: Boundary-Aware Prototypical Model Inversion (Part 1)

1 Function Main(F ,H, c, µ, Σ, m, αf , α, it, ε, n, δ):
2 # F ;H: feature extractor; SVM classifier
3 # c: index of class to invert
4 # µ;Σ: prototypical mean, covariance for class c
5 # m;αf , α: momentum; forward/reverse LR
6 # it; ε: max iterations; tolerance threshold
7 # n, δ: max # of samples per class; margin
8 # Use inverted mean for initialization later
9 xµ ← Invert(F , µ, m, α, iter, ε, NULL)

10 ys← [] # initialize feature list for inversion
11 # Extend the list with support vectors for class c
12 ys += H.support vectors[c]
13 # Get principal directions of prototypical
14 # covariance and their unique linear combinations
15 # as prototypical features for inversion
16 ps← GetProtoDirections(Σ, n)
17 ys += GetProtoFeatures(ps,µ, c, αf , δ)
18 n← len(ys) # Final # of samples to invert
19 xs← [xµ] ∗ n # initialize input list for inversion
20 for i← 1 : n do
21 xs[i]← Invert(F , ys[i], m, α, iter, ε, xµ)
22 end
23 return xs

24 End Function
25 Function GetProtoDirections(Σ, n):
26 # Σ: class prototypical covariance
27 # n: maximum # of samples allowed
28 # Get principal directions retaining 95% variance
29 ps← PCA(Σ, 0.95)
30 ps += (−ps) # extend with negative directions
31 if ClampNumSamples(ps, n) then
32 return ps
33 end
34 n← n− len(ps) # update max # of samples
35 ord = 2 # start from adding 2nd order interactions
36 while TRUE do
37 # add unique linear interactions of order ord
38 # pnew = ps[i] + ps[j] for ord = 2
39 # pnew = ps[i] + ps[j] + ps[k] for ord = 3
40 ps l← LinearInteractions(ps, ord)
41 # normalize to get the unit vectors
42 ps l← Normalize(ps l)
43 if ClampNumSamples(ps l, n) then
44 ps += ps l # list extension
45 return ps

46 end
47 ps.append(ps l)
48 n← n−len(ps l) # update max # of samples
49 ord← ord+ 1 # increment order
50 end
51 End Function

Algorithm: Boundary-Aware Prototypical Model Inversion (Part 2)

1 Function Invert(F , y, m, α, iter, ε, x0):
2 # F ;y: feature extractor; target feature
3 # m;α: momentum; learning rate
4 # iter; ε: max # of iterations; tolerance threshold
5 # x0: input initialization, can be NULL
6 if x0 == NULL then
7 x← input prediction tensor (zero-initialized)
8 else
9 x← x0

10 end
11 v← gradient update tensor (zero-initialized)
12 for i← 1 : iter do
13 ŷ← F(x) # predict feature
14 L ← ||y − ŷ||2/||y||2 # distance norm
15 if L < ε then
16 break
17 end
18 v← mv +∇xL # gradient tensor update
19 x← x− αv # gradient descent
20 end
21 return x

22 End Function
23 Function GetProtoFeatures(ps,µ, c, αf , δ):
24 # ps: list of principal directions and combinations
25 # c,µ: class index and class prototypical mean
26 # αf , δ: forward learning rate and margin
27 ys← [] # initialize feature list for inversion
28 for i← 1 : len(ps) do
29 f ← µ
30 for k ← 1 : iter do
31 f ← f + αf ps[i]
32 if Classify(f) 6= c then
33 f ← (1− δ) f + δ µ
34 ASSERT Classify (f) == c

35 end
36 end
37 ys.append(f)
38 end
39 return ys

40 End Function
41 Function ClampNumSamples(ps, n):
42 # ps: list of samples to clamp
43 # n: maximum # of samples allowed
44 if n > len(ps) then
45 return FALSE # not clamped
46 end
47 # randomly select n samples in-place
48 ps← RandomSelect(ps)
49 return TRUE # clamped
50 End Function

Table 1: Results with BatchNorm (average of 3 runs with different class order) for DFCIL over six tasks in SHREC-2017.

Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Mean (Task 1 → 6)

Oracle (DGSTA-BN) 90.3

G↑ IFM ↓ G↑ IFM↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM↓ G↑ IFM↓
DeepInversion-BN [6]

92.8

81.4 7.0 62.6 18.2 52.9 29.1 46.3 35.6 34.8 48.1 31.5 51.3 51.6 31.6
ABD-BN [4] 81.7 1.9 72.2 2.0 65.9 10.7 57.3 14.8 51.7 16.3 42.7 25.2 61.9 11.8
R-DFCIL-BN [3] 72.0 5.1 61.5 7.3 53.2 9.6 50.7 5.1 46.6 8.9 39.9 0.6 54.0 6.1
BOAT-MI-BN (Ours) 86.5 7.5 82.2 9.3 74.7 1.2 72.6 2.6 65.5 8.7 62.3 1.7 74.0 5.2

Table 2: Results with BatchNorm (average of 3 runs with different class order) for DFCIL over six task in EgoGesture3D.

Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Mean (Task 1 → 6)

Oracle (DGSTA-BN) 75.0

G↑ IFM ↓ G↑ IFM↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM↓ G↑ IFM↓
DeepInversion-BN [6]

77.4

66.4 16.1 52.3 24.6 35.0 46.5 24.5 59.7 20.5 65.0 15.1 72.8 35.6 47.5
ABD-BN [4] 65.7 17.4 58.1 19.4 49.5 31.1 45.1 35.2 42.7 37.2 39.5 40.4 50.1 30.1
R-DFCIL-BN [3] 68.3 5.9 56.0 11.9 49.0 17.9 44.4 20.1 39.9 29.4 36.8 30.6 49.1 19.3
BOAT-MI-BN (Ours) 73.0 4.6 66.9 7.1 60.8 15.9 57.9 16.3 52.1 22.2 49.0 27.6 60.0 15.6

1. Experimental Details

We follow the original implementations of all DFCIL meth-
ods that we used for benchmarking in this work. However,
these methods were originally designed for the image classi-
fication problem, as we discussed in Section 4.4 of the main
paper. Therefore, we had to adjust them to our keypoint-
based gesture recognition domain and tune their hyperpa-
rameters individually for our setup. All hyperparameter
values and configuration files will be made available along
with the codebase.

Base model training: We use the original DG-STA [1] ar-
chitecture as our backbone to process the 3D keypoint se-
quences. We train the Oracle (upper bound, all classes in
one task) and Task 0 models (base classes for each setup)
with Adam optimizer (learning rate of 1e-3, β1 = 0.9 and
β2 = 0.999) for 150 epochs.

Learning rate for incremental tasks: All the methods start
from the same Task 0 weights for Task 1. We modify the
initial learning rate for the incremental tasks depending on
the method since a stronger regularization requires a higher
learning rate to learn the new classes. In this regard, we
select the optimal learning rate for each method with a grid
search in the range {1e-5 : 1e-3}.
Synthetic data generation: Following ABD [4], for a fair
comparison among the model inversion-based approaches
(DeepInversion [6], ABD [4] and R-DFCIL [3]), we use the
same model inversion strategy for the synthetic data genera-
tion. However, we optimize the randomly initialized inputs
directly instead of training a model to generate the sam-
ples. After a grid search we find {αlr, αcon, αstat, αtemp}
as {1e-1, 1, 2e2, 1e1}.
R-DFCIL hyperparameters: R-DFCIL [3] includes three
hyperparameters to weight each of the loss terms, the local

classification loss (λlce), the hard knowledge distillation
loss (λhkd) and the relational knowledge distillation loss
(λrkd). For our experiments, we found {λlce, λhkd, λrkd} as
{1, 1.5e-1, 7.5e-1} as the optimal values for SHREC-2017
and {1, 1e-1, 1e-1} for EgoGesture3D.

BOAT-MI implementation: The complete Python-style
pseudocode is provided in Algorithm 1 and 2. In Algorithm
1 Line 1, Function Main is the driver for our proposed
model inversion mechanism for a single class c. Similar to
the other baselines, we employ DG-STA [1] backbone as our
feature extractor F here. We use the radial basis function
as the kernel for our SVM classifier (H) here. To generate
proto-SVs for model inversion, it uses the principal direc-
tions of the prototypical variance Σ (Line 29, Algorithm
1). Ray casting from the class-prototypical mean µ is done
iteratively with a learning rate αf (Line 29-36, Algorithm
2) until the ray hits the boundary. Also, a margin δ, normal-
ized with respect to the distance between the mean µ and
the boundary vector, is used to avoid noise inherent in the
boundary estimation process (Figure 2 main paper, Line 33,
Algorithm 2). In other words, the proto-SV feature is taken
to be the on the margin, which is δ inside the boundary.
Note that the number of principal directions (PDs) is pretty
low compared to the dimensionality of the feature vector.
Along with these raw PDs, we consider upto third-order
interactions, i.e. simple unweighted linear combination of
PDs (p[i]+p[j] and p[i]+p[j]+p[k], Line 37-40, Algorithm
1, p[·] is the list of PDs) ignoring duplicates, which we found
to be empirically sufficient for all our studies. Thus, our
augmentations are deterministic (not random), conditioned
on the set of PDs.
The feature inversion procedure (feature→ input, Line 1-22,
Algorithm 2) deviates from the vanilla implementation [2]
in three aspects. First, we initialize the input tensor with

the inverted class-prototypical mean (Line 9, Algorithm 2).
Second, we employ the normalized L2 function as the dis-
tance metric (Line 14, Algorithm 2). Third, we replace the
vanilla gradient descent with its momentum-based counter-
part [5] (Line 18-19, Algorithm 2). All these modifications
are empirically found to expedite the convergence.
The forward learning rate (αf), momentum (m), and reverse
learning rate (α) are set to 0.05, 0.9, and 1.0 respectively.
We use the value of 0.2 as our normalized margin (δ) based
upon the ablation study presented in Table 4 of the main
paper. The rest of the parameters are set similarly to the
baselines. All these configurations will be open-sourced
with the codebase.

2. Additional Experiments

The effect of stat alignment loss during model inversion:
Model inversion-based methods like DeepInversion, ABD
and R-DFCIL use the BatchNorm (BN) statistics to compute
a regularization loss that aligns the synthetic and real data
distributions during model inversion. This loss is based on
the KL divergence between the synthetic data distribution
and the BatchNorm distribution of the previous task model,
which reflects the real data statistics from the previous train-
ing. However, our backbone architecture, DG-STA [1], does
not have BatchNorm layers and thus this loss term is not
included. To investigate how the stat alignment loss affects
model inversion for these baselines, we replace the Layer-
Norm layers with BatchNorm layers in DG-STA and run
additional experiments.
Table 1 and 2 show the results for SHREC-2017 and EgoGes-
ture3D setups, respectively. As can be seen, the incorpora-
tion of the BN layer does not change the overall ranking
of the methods. With BN, our proposed approach achieves
significantly higher global accuracy in each stage there with
12.1% and 9.9% improvements on average for SHREC-2017
(Table 1) and EgoGesture3D (Table 2), respectively, over the
next best methods. Such improvements are also accompa-
nied by the lower mean instantaneous forgetting in general
– 0.9% and 3.7% lower IFM than the second best method
for SHREC-2017 (Table 1) and EgoGesture3D (Table 2),
respectively. Therefore, regardless of the choice of normal-
ization layers, BOAT-MI excels the SOTA methods by a
large margin.
Performance degradation/comparison to when all data
is available, with large number of incremental stages:
We first clarify that the upper bound of performance when all
data is available – 75.8% – is reported on the “Oracle” row
of Table 3 in our paper. To study this further with large num-
ber of incremental stages, we experimented with an extreme
incremental learning setting on EgoGesture3D, where we
added one class at a time to a model trained on the 59 base
classes. Concretely, instead of adding 4 classes at a time over

6 incremental stages (as in paper), we added 1 new class at
a time over 24 incremental stages. These results are shown
in Figure 2 for both global accuracy and IFM. Our (BOAT-
MI’s) performance drops by about half after 24 incremental
stages – much lower compared to SOTA methods.

Figure 2: Global accuracy (%) and IFM (%) for 59 + 1× 24 setup on EgoGes-
ture3D dataset. Like other setups, our BOAT-MI excels the SOTA approaches here as
well. Best viewed in digital format.

3. EgoGesture3D Processing
The new 3D skeleton dataset used in this paper is the deriva-
tive of the EgoGesture [8] comprising RGB-D images. Fol-
lowing the nomenclature of the parent dataset, we call it
EgoGesture3D. Thanks to the MediaPipe [7] API that we
use for 3D skeleton extraction from the images. The tem-
poral association is turned on during the detection process
with minimum detection and tracking confidences of 0.8 and
0.5, respectively. These numbers are chosen empirically for
better extraction results.

However, merely using the extracted output from the tempo-
rally segmented gesture sequences is problematic for several
reasons. First, the MediaPipe API fails to detect all the key-
points in all frames successfully. Next, it detects additional
spurious hands (more than 2) in some of the frames. Also, in
a few cases, for two hands detection, we find the handedness
prediction to be the same (both left or both right hands).
These issues are resolved with proper heuristics for each
frame independently following the temporal detection with
MediaPipe. Moreover, the baseline DG-STA model provides
the optimal performance with 8 frames generally equally
distant along the time dimension. Therefore, we save the
samples with at least 8 frames of successful detections. In
this regard, we experimented with interpolating with the less
number of original frames. We find the oracle accuracy com-
paratively much lower that prevents us from saving samples
with less than 8 frames. For the single-handed gestures, the
values for the keypoints representing the absent hand are set
to zeros. Very occasionally hand swapping occurs for just a
few frames (i.e. 1-2 frames detect right hands with all others
left). We keep these detections unchanged as some gestures
may contain one hand mostly with the other in a cameo.
Figure 3 and 4 show sample gestures in each column with
the 2D projection of the skeleton on top of the corresponding
RGB images.

Figure 3: 2D projection of the EgoGesture3D skeletons on EgoGesture RGB images. (Top to bottom) Each column shows the
temporal sequence for a single gesture (8 successfully detected frames selected in temporal order at random). (Left to right)
[1] wave palm towards right; [12] zoom in with two fingers; [16] click with index finger; [39] wave hand; [48] grab.

Figure 4: 2D projection of the EgoGesture3D skeletons on EgoGesture RGB images. (Top to bottom) Each column shows the
temporal sequence for a single gesture (8 successfully detected frames selected in temporal order at random). (Left to right)
[8] zoom in with two fingers; [21] static fist; [28] number 4; [49] walk; [66] thumb towards left.

References
[1] Yuxiao Chen, Long Zhao, Xi Peng, Jianbo Yuan, and Dimitris

Metaxas. Construct dynamic graphs for hand gesture recogni-
tion via spatial-temporal attention. In BMVC, 2019.

[2] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model
inversion attacks that exploit confidence information and ba-
sic countermeasures. In ACM Conference on Computer and
Communications Security, 2015.

[3] Qiankun Gao, Chen Zhao, Bernard Ghanem, and Jian Zhang.
R-dfcil: Relation-guided representation learning for data-free
class incremental learning. In ECCV. Springer, 2022.

[4] James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen,
Hongxia Jin, and Zsolt Kira. Always be dreaming: A new
approach for data-free class-incremental learning. In ICCV,
2021.

[5] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum in
deep learning. In ICML, 2013.

[6] Hongxu Yin, Pavlo Molchanov, Jose M. Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K. Jha, and Jan Kautz.
Dreaming to distill: Data-free knowledge transfer via deepin-
version. In CVPR, 2020.

[7] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei
Tkachenka, George Sung, Chuo-Ling Chang, and Matthias
Grundmann. Mediapipe hands: On-device real-time hand
tracking. arXiv preprint arXiv:2006.10214, 2020.

[8] Yifan Zhang, Congqi Cao, Jian Cheng, and Hanqing Lu.
Egogesture: A new dataset and benchmark for egocentric hand
gesture recognition. IEEE TMM, 2018.

