
Self-Supervised Object Detection from Egocentric Videos Supplementary
Material

Peri Akiva1,2 Jing Huang2 Kevin J Liang2 Rama Kovvuri2 Xingyu Chen2

Matt Feiszli2 Kristin Dana1 Tal Hassner2

1Rutgers University 2Meta AI

1. Implementation details

For the patch feature extractor and patch matching
network, we use a ResNet-50 (random initialization) and
a deformable transformer encoder to generate multi-scale
patch features (see Figure 1 for example of patch indexing
notation). For the object residual module, the number
of clusters is K = 16 and feature dimension D =
64. For the random affine transformation T, we sample
random rotation and translation parameters from the ranges
(−10, 10) degrees and (−15, 15) pixels respectively. For
training, we use a batch size of 16, learning rate of 0.0001,
momentum of 0.9, weight decay of 0.05, and number of
negative samples of 200 patches per anchor patch. We first
train the patch matching network for 8 epochs (everything
else is frozen), after which the patch matching network is
frozen (everything else is un-frozen) and used to predict
multi-temporal patch matches for the main task objective.
The patch feature extractor uses sine positional encoding,
multi-scale self and deformable attention modules with 8
heads and 4 scales. The patch feature extractor is trained
for 100 epochs or until convergence. During inference, we
use η = 50, γ = 0.25, β = 10, and ψ = 0.05.

1.1. Pseudo-code

The implementation for the object residual module can
be found in Pseudo Code 1, and the implementation for the
patch matching module can be found in Pseudo Code 2.

2. Additional Qualitative Results

Figure 2 presents additional qualitative examples of
viewing angle and illumination condition variation on the
pre-smoothed cluster maps. Fig. 3, 4, and 5 present
additional qualitative results for the Ego4D [1], EgoObjects
[3], and COCO [2] validation sets. Figure 6 and Figure 7
present qualitative results of challenging cases and batch-
wise smoothing outputs.

References
[1] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary

Chavis, Antonino Furnari, Rohit Girdhar, Jackson Hamburger,
Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the
world in 3,000 hours of egocentric video. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18995–19012, 2022. 1

[2] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[3] Lorenzo Pellegrini, Chenchen Zhu, Fanyi Xiao, Zhicheng
Yan, Antonio Carta, Matthias De Lange, Vincenzo Lomonaco,
Roshan Sumbaly, Pau Rodriguez, and David Vazquez. 3rd
continual learning workshop challenge on egocentric category
and instance level object understanding. arXiv preprint
arXiv:2212.06833, 2022. 1



Figure 1: Patch indexing notation example. Anchor zτ2,1 is matched with 2 positive patches highlighted in green, zτ
′

6,0 and
zτ

′

1,1, and 4 negative patches highlighted in red, zτ
′

8,0, zτ
′

12,0, zτ
′

15,0, and zτ
′

3,1.



1 class ObjectResidualModule(nn.Module):
2 def __init__(self, D: int, K: int) -> None:
3 """Object Residual Module.
4 Args:
5 D (int): number of channels to encode
6 K (int): number of clusters
7 """
8 self.D, self.K = D, K
9 self.clusters = nn.Parameter(K, D, requires_grad=True))

10 self.scale = nn.Parameter(K, requires_grad=True)
11

12 def normalize(self, x):
13 """find weights of cluster centers using l2 distance
14 Args:
15 x (torch.Tensor): input features
16 Returns:
17 torch.Tensor: cluster-wise weights
18 """
19 num_clusters, in_channels = self.clusters.size()
20 batch_size = x.size(0)
21 scale = self.scale.view((1, 1, K))
22

23 x = x.expand((batch_size, x.size(1), K, D))
24 clusters = self.clusters.view((1, 1, K, D))
25

26 norm = scale*(x - clusters).pow(2).sum(dim=3)
27 return norm
28

29 def accumelate(self, theta, x):
30 """accumelation of weighted residuals
31 Args:
32 theta (torch.Tensor): learned cluster weights
33 x (torch.Tensor): input features
34 Returns:
35 torch.Tensor: accumelated residuals
36 """
37 clusters = self.clusters.view((1, 1, self.K, self.D))
38 batch_size = x.size(0)
39

40 x = x.expand((batch_size, x.size(1), self.K, self.D))
41 out = (theta*(x - clusters)).sum(dim=1)
42 return out
43

44 def forward(self, x):
45 """forward function for Surface Encoder with
46 Args:
47 x (torch.Tensor): input features
48 Returns:
49 torch.Tensor: residual features
50 """
51 theta = F.softmax(self.l2_norm(x, self.clusters, self.scale), dim=2)
52 residuals = self.accumelate(theta, x, self.clusters)
53 return residuals

Listing 1: Object Residual Module Pseudo-Code



1

2 # x: input image
3

4 def patch_matching_train(x):
5

6 rand_affine_params = affine_transformation_param_generator()
7 x_transformed = affine_transformation(x, rand_affine_params)
8

9 z1 = patch_matching_network(x)
10 z2 = patch_matching_network(x_transformed)
11

12 z1_transformed = affine_transformation(z1, rand_affine_params)
13

14

15 # Both sets of patches are spatially aligned
16 z1 = rearrange_as_patchs(z1)
17 z2 = rearrange_as_patchs(z2)
18

19 loss = InfoNCE(z1, z2)
20

21 return loss

Listing 2: Patch Matching Pseudo-Code

Im
ag

e
C

lu
st

er
M

ap
Im

ag
e

C
lu

st
er

M
ap

Im
ag

e
C

lu
st

er
M

ap

t0 t1 t2 t3 t4 t5 t6

Figure 2: Additional qualitative examples of viewing angle and illumination conditions variation on the pre-smoothed
cluster maps. Best viewed in color and zoomed.



Image Prediction Image Prediction

Figure 3: Additional qualitative results on Ego4D validation sets.



Image Prediction Image Prediction

Figure 4: Additional qualitative results on EgoObjects validation sets.

Image Prediction Image Prediction

Figure 5: Additional qualitative results on the COCO validation sets.



Image Cluster Map Prediction

Figure 6: Qualitative examples of the challenging examples.

Image Pre-smoothing Post-smoothing Prediction Image pre-smoothing Post-smoothing Prediction

Figure 7: Qualitative examples of the smoothing operation.


