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Supplementary Material

In this supplementary material, we provide a derivation
on how we initialize superquadrics (Sec. A), additional im-
plementation details (Sec. B), analyses on the effect of the
hyperparameter λ (Sec. C) on our loss function (Eq. 6), and
show how the camera viewpoints impact the performance of
ISCO (Sec. D). We will then report quantitative results us-
ing Chamfer distance as metric (Sec. E), a comparison with
trained abstraction methods (Sec. F), and additional quali-
tative results (Sec. G) on ShapeNet.

A. Superquadric initialization
To instantiate new superquadrics around object parts that

have not been covered yet, we estimate the origin of ren-
dering errors in the 3D space. We use a dense voxel grid
G ∈ RN×N×N with resolution N around the object to
which we propagate rendering errors.

First, we evaluate the superquadrics density at each point
g in the voxel grid

Vg = σ(g; θ) (1)

where V is the the complete grid of density values while
Vg is the density value at g. To simplify notation we omit
θ from V and any further definitions. We then render this
volume grid through ray marching and calculate the loss
Lλ=0
k−1. To do so, the density of each point along the camera

ray r(t) is obtained by applying a sampling kernel locally

Kr(t) =
∑
g∈G

Vgk(r(t)− g; Φ) (2)

where Φ are the parameters of a generic sampling kernel
k(·; Φ) and we evaluate all ray points r(t) from the strati-
fied sampling approach to render the reconstructed image.
In practice, we use trilinear interpolation for the kernel k
which results in

Kr(t) =
∑
g∈G

Vg
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i |

l
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where [x
(p)
1 , x

(p)
2 , x

(p)
3 ] are the three-dimensional coordi-

nates of point p and l is the uniform distance between vox-
els in the grid.

Using the resampled density values from Kr(t) to replace
the true densities of the superquadrics, we can now render
the reconstructed image with

D(r) =
∫ tf

tn

T (t)Kr(t)dt (4)

and calculate the loss Lλ=0
k−1 the same way as described in

the paper for direct rendering of the superquadrics.

Finally, to propagate the rendering errors, we calculate
the gradient of the loss with respect to the densities Vg of
the grid points
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(5)
where ∂L0

k−1

∂Kr(t)
is calculated as is common in ray marching

and the remaining part of the term is a result of the trilinear
sampling that distributes the gradient to each point g (using
Vg as a representative value for its density contribution) in
the voxel grid G.

Intuitively, each point g is a candidate location for initial-
izing a new superquadric. Hence, we estimate how accurate
the density at each location g is. We use λ = 0 in Lλ=0

k−1 to
only consider errors where part of the object is not covered
by a superquadric yet. By propagating the error to each g,
the point with the highest error corresponds to the location
where we have the best potential to improve our reconstruc-
tion loss if we initialize a new superquadric there.

We choose the voxel grid resolution N = 64 such that
there are 643 ≈ 262k candidate locations for new su-
perquadrics in each ISCO iteration. The voxel grid is placed
in the center of the scene (where we expect the object to
be) and the distance l between voxels is chosen such that
the object is completely enclosed by the voxel grid. Since
the exact position and size of the object are unknown, we
choose l based on the distance between the cameras and the
center of the scene.
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B. Implementation details
Learning rate. We found that fitting the superquadrics

to the ground-truth 2D views, can be sensitive to the learn-
ing rate during optimization. Specifically, when the learn-
ing rate is too small, significantly more update steps are re-
quired to fit the superquadric parameters well, before intro-
ducing the next superquadric. We found that a learning rate
of 0.01 helps in optimizing the first superquadrics reliably
within our chosen 250 update steps per iteration. However,
as smaller regions of the shape are being reconstructed later
on, more fine-grained optimization steps are necessary, and
thus we gradually reduce the learning rate to 0.001. Hence,
for all our experiments, we use the Adam [1] optimizer and
a cosine learning rate schedule that starts with a learning
rate of 0.01 and is annealed to 0.001 by the end of the opti-
mization. All the hyperparameters have been selected using
a small subset of object instances in ShapeNet training set
and kept constant across all the experiments.

Ray sampling. Due to computational reasons, it is not
common to render the whole image from all camera angles
during training, but instead subsample rays, i.e. pixels, for
every viewpoint [3]. Since our loss is defined on object sil-
houettes, a large amount of pixels will fall outside both the
target object and the superquadrics rendering, not contribut-
ing to the loss. Hence, we employ an importance sampling
strategy, by sampling rays that contributed to the loss in pre-
vious update steps with higher probability. This improves
sampling efficiency and allows us to use 500 rays per view
point rather than all and 250 update steps per superquadric.

C. Choice of λ
The hyperparameter λ in our loss L(λ) regulates local

vs. global loss terms. For instance, when fitting a single
superquadric to the object, 0 < λ < 0.5 encourages the su-
perquadric to fully enclose the object shape and promoting
global fitting, while λ > 0.5 produces tighter boundaries,
promoting local fitting. As Table 1 shows, performance
rapidly decrease if λ is either too low (e.g. λ = 0.4) or
too high (e.g. λ = 0.8) since either the model cover larger
regions (even beyond the target object) or it focuses on too
fine-grained details, even ignoring other object parts.

Quantitatively, we observed that a larger λ (i.e. higher
focus on locality) lead to a better locality and accuracy in
decomposing objects into meaningful parts, with λ = 0.6
leading to the best overall performance by ∼ 1% IoU on
ShapeNet, cf. Table 1. Based on these observations, we
choose λ = 0.6 throughout the experiments in this work.

D. Dependence on camera viewpoints
In the main paper, camera views are sampled randomly

around the object. If, in practice, this is not feasible, infor-
mation about the object from certain angles might be miss-

λ
# views 0.4 0.5 0.6 0.7 0.8

4 0.547 0.560 0.569 0.551 0.541
8 0.606 0.629 0.630 0.615 0.593

16 0.629 0.643 0.650 0.631 0.613
Table 1. Volumetric IoU on ShapeNet of ISCO for different val-
ues of λ and different number of views. We measure the results
as mean Intersection over Union (IoU) of the object volume on
ShapeNet (higher is better).

Input Point Cloud 2D Views
Method EMS [2] NBP [6] ISCO

airplane 0.1201 0.0590 0.0508
bench 0.2105 0.0725 0.0611
cabinet 0.1327 0.0990 0.1097
car 0.0743 0.0730 0.0530
chair 0.2225 0.1303 0.1259
display 0.1353 0.1009 0.0978
lamp 0.2012 0.1338 0.1259
speaker 0.2098 0.1775 0.1428
rifle 0.1050 0.0577 0.0191
sofa 0.1684 0.0952 0.0807
table 0.2467 0.1649 0.1418
phone 0.0634 0.0406 0.0350
vessel 0.0987 0.0468 0.0393

mean 0.1530 0.0962 0.0833
Table 2. Chamfer-L1 Distance on ShapeNet. We report
Chamfer-L1 distance on ShapeNet (lower is better). EMS and
NBP use point cloud as input, ours uses 16 random views.

ing. We investigate how such a constraint could limit the
reconstruction accuracy on the ShapeNet dataset where we
can control the choice of camera views best. If we constrain
the 16 random views to be inside a spherical cap with po-
lar angle 90◦(top hemisphere), 45◦and 22.5◦(where 0◦is the
top-view), the reconstruction mIoU decreases from 0.656 to
0.634, 0.592 and 0.528, respectively. Despite the limited
drop, these results show that ISCO depends on the choice
of camera views.

E. Chamfer-L1 evaluation on ShapeNet
In addition to the IoU reconstruction results in the main

paper, here we report the Chamfer-L1 distance between the
reconstructed superquadrics shapes of EMS [2], NBP [6]
and ISCO to the ground-truth shapes in Table 2. We sam-
ple 100k points on the surface of both the ground truth and
predicted shape to calculate the Chamfer-L1 distance. Note
that in Table 2 ISCO uses multi-view inputs, while EMS and
NBP points clouds are extracted from the target 3D object.

In all but one category, the superquadric reconstructions
of ISCO are closer to the original shapes than both EMS
and NBP. This result follows the same trend as the IoU (Ta-



ble 1 of the main paper), providing further evidence that
ISCO can better recompose objects with superquadrics than
its competitors, despite relying on cheaper multiple-view
inputs rather than ground-truth 3D representations.

F. Comparison with unsupervised abstraction
methods using a training set

Shape abstraction has been studied by performing single-
view reconstruction with a neural network. These meth-
ods typically use a single view as input and dense 3D point
clouds at targets. By performing training on a large dataset,
these networks learn shape priors such that they can recon-
struct an object with simple shapes from an image. Re-
lated works include SQ [5] and HSQ [4] which also use
superquadrics as primitive shapes. However, since ISCO
takes a different instance-based perspective without requir-
ing a training set, it is difficult to make a comparison on the
same ground. For instance, SQ and HSQ, both single-view
but with a training set, achieve 0.277 and 0.580 mIoU on
ShapeNet, respectively, while ours 0.656 mIoU, not trained
but with multi-views. We tried to perform a fair assessment,
training HSQ with 16 views as input on all ShapeNet classes
and also evaluating it with the same 16 views as ISCO. In
this case, the mIoU of HSQ improves slightly by 0.029, with
ISCO still outperforming it. Note that, unlike our instance-
based method, SQ and HSQ suffer from distribution shifts
as they cannot generalize beyond the training set.

G. Additional qualitative examples

In Figure 1, we show additional qualitative results of
the classes from ShapeNet where we randomly sample in-
stances from the test set. We use the same hyper-parameters
described in the main paper, using 10 superquadrics to rep-
resent the instances. From the results, we can see some fail-
ure cases of our model. For instance, thin parts may not be
well decomposed, especially if they are hard to model with
2D views only, such as the body/tube of lamps (4th row) or
legs of benches (2nd row).

At the same time, the figure also shows the ability of
ISCO to capture the structure of the underlying object. For
instance, objects with distinct parts consistently have these
decomposed by ISCO such as the wings and engines of air-
planes (top row), body of vessels (last row), and legs, seats,
and back rests of chairs. For simpler shapes (e.g. phones,
2nd from bottom), superquadrics are used in later stages to
fill inaccuracies in corners of the object and smaller details.
Note that if higher abstraction is desired, one could reduce
the number of superquadrics, or prune small superquadrics
post-hoc.
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Figure 1. Additional qualitative results for ShapeNet classes. We show additional qualitative examples for random instances of ShapeNet
classes. Each row is a different class, from top to bottom: airplane, bench, cabinet , car, chair, display, lamp, speaker, sofa, table, phone,
vessel. On each column, the left parts shows the result of our model while the right part the ground-truth shape.
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