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In this supplementary document, we discuss several design choices, introduce ablation studies, and implementation details.
We also provide additional qualitative and quantitative results both on Fashion Videos and RAVDESS datasets. To view a com-
prehensive collection of videos from all our different applications, you can access the website https://cyberiada.github.io/VidStyleODE
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1. Discussions
We now discuss some interesting trends, comparisons, and trade-offs between models, supported by quantitative and

qualitative results.
On inversion vs. quality. HairCLIP [19] manages to consistently obtain high results on manipulation accuracy across both
datasets. However, it is highly dependent on high-quality inversions to obtain good results. On the Fashion dataset, where
the base inversion quality is not good enough, we see very bad results across the other metrics. However, on RAVDESS, the
inversion quality is much higher, due to taking advantage of the models trained on FFHQ. Therefore, we see very good results
across all metrics.
Perceptual quality vs. manipulation capability. STIT [18] performs quite well on consistency and perceptual quality metrics,
primarily due to the fine-tuning of the generator. However, by ensuring high-quality results, it reduces the ability to manipulate
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the videos effectively, and so is consistently behind multiple other models. Additionally, high-frequency details of the videos
(such as shoes, hair, and complex color patterns) are lost due to the focus on reducing distortion.

DiCoMoGAN [6] primarily acts as an autoencoder, with additional steps for manipulation. On RAVDESS, where the videos
are not too complicated to learn, this allows DiCoMoGAN to obtain very high results on all the perceptual quality metrics.
However, this auto-encoding property also restricts the ability to manipulate accurately, leading to poor results for that metric.
Complexity of dynamics vs. generation quality. StyleGAN-V [17] had a lot of challenges learning the correct motion of the
Fashion dataset and frequently suffered from mode collapse. This led to very poor perceptual quality results, as well as a very
high warping error. On the RAVDESS dataset, there were fewer training issues, which contributed to relatively better results.
However, all the perceptual quality metrics are still very poor.

The primary issue with MRAA [16] is the inability to distinguish between what motion should be transferred and what
should not, as well as retaining key structural details of the reference frame. As seen in Fig. 4, MRAA transforms the dress into
pants, following the style of the driving video. Additionally, because the sleeve of the right arm is not visible in the reference
frame, it attempts to copy the sleeve style of the driving video, leading to inconsistencies between the two sleeve lengths.
In Fig. 5, it also attempts to transfer sleeve length, even when the right arm is visible in the reference frame. Not but not least,
MRAA also removes a lot of the fine detail of the clothing. Therefore, despite being able to properly capture the motion of the
people, in both cases, it is unable to create a complete and consistent video.
On trade-offs. Notably, most models were unable to handle all tasks effectively: generation, disentanglement, and manipu-
lation. While some are very good at manipulation, others obtained high perceptual quality. However, VidStyleODE hits a
sweet spot. On the Fashion dataset, it consistently achieves very good results across all metrics, including being the best in
many of them. On RAVDESS, VidStyleODE is able to achieve very good consistency and manipulation accuracy, while still
reporting competitive perceptual quality metrics. Therefore, it does not suffer from the same trade-offs between manipulation,
consistency, and perceptual quality as the other models.

2. Architectural Details

Spatiotemporal encoder fC . We use a pre-trained StyleGAN2 inversion network to obtain the K input frames’ latent
representation in the W+ space Z := {zli ∈ W+}Ki=1. We freeze the inversion network’s weights during training. Then, we
take the expectation of Z to obtain the video’s global latent code zC . During inference, the global latent code can be sampled
or obtained from a single frame. In our experiments, we used pSp inversion network [14] pre-trained on StylishHumans-HQ
Dataset [3] for fashion video experiments, and on FFHQ [7] for face video experiments.
Dynamic representation network fD. We first process the K video frames Xi ∈ RM×N×3 independently using a 2D ResNet
encoder architecture based on the implementation of [11] to extract K feature maps zr ∈ Rmd×nd×dsp . In our experiments
with the fashion videos dataset, we used M = 128, N = 96, md = 8, nd = 6, and dsp = 64. Additionally, for face videos
experiments, we used M = 128, N = 1128, md = 8, nd = 8, and dsp = 64. Subsequently, we adapt ConvGRU from [10]
to extract dynamic latent representation zd ∈ Rmode×node×512 from zR = {zri}Ki=1. For all of our experiments, we set
mode = md and node = nd. We use the dynamic representation to initialize an autonomous latent ODE

zdT = ϕT (zd0) = zd0 +

∫ T

0

fθ(zdt, t) dt, (1)

Where zd0 = zd. We parameterize fθ as a convolutional network obtained from [10]. For every training batch, we sample
n frames from each video and solve the ODE at their corresponding timestamps to obtain their spatiotemporal feature
representation zdT = {zdti

}ni=1.
Obtaining style code.. To guide the manipulation, we condition the video reconstruction on an external style code zStyle. We
represent this style code in the CLIP [13] embedding space by encoding the content frame Xc, source description DSRC of the
appearance of the video, and a target description DTGT. To obtain the content frame, we decode the latent global code using a
pre-trained StyleGAN2 generator G(·).

zStyle = CLIPI(G(zC)) + α(CLIPT (DTGT)− CLIPT (DSRC)) (2)

where CLIPI and CLIPT are the CLIP image and text encoder, respectively. α is a user-defined parameter that controls the
level of manipulation during inference time. For all of our quantitative experiments, we used α = 1.
Conditional generator model. Once the video global code zc, the frames dynamic representation zd, and the video style
zStyle have been collected, we apply N layers of self-attention onto the different spatial components of zd. Then, we perform



cross-attention between the outputs of the self-attention and the style vector zStyle. At each layer of cross-attention, we predict
and apply an offset to the style code in the CLIP space. We then take the final output style vector and modulate it over the
global code zc. This produces our direction, which is then added to the original code:

zt = zc +∆z (3)

The output frame at time t is then generated as
Xt = G (zt) (4)

Hyper-parameters. The appearance and structural losses both have λS = 10, λA = 10. The latent loss has λL = 1.0. For the
directional clip loss, we have λD = 2.0. For the consistency loss, we use a scheduler to go from 0.01 to 1 over 40000 steps.
For the trade-off between the structural and appearance loss, we use λ = 0.5, so that both are equally important.

In our self-attention network, we use 12 layers, each with 8 heads, as well as a hidden dimension size of 512. Both the
coarse and medium layers receive the dynamics, while the fine layers do not.

3. Details on the Datasets & Evaluations

Datasets. All our results were evaluated on the Fashion dataset [6] and the RAVDESS dataset [9]. The Fashion dataset contains
descriptions already, which we used for our manipulations. On RAVDESS, we hand-crafted descriptions for each of the 24
actors, which we used during training and testing for manipulation.
Evaluation metrics. We evaluate our model in terms of perception, temporal smoothness, and editing consistency of the
generated videos as well as the accuracy of the applied manipulation. The Frechet Video Distance (FVD) [?] score measures
the difference in the distribution between ground truth (GT) videos and generated ones, evaluating both the motion and visual
quality of the video. To compute the metric, we used 12 frames sampled at 10 frames per second. Inception Score (IS) [15]
measures the diversity and perceptual quality of the generated frames. To eliminate any gain in IS from the diversity resulting in
inconsistency in the video frames, we use only a single frame from each generated video. Frechet Inception Distance (FID) [4]
measures the difference in distribution between GT and generated videos. Similar to IS, we use only a single frame from
each generated video to calculate FID. Warping Error predicts subsequent frames of a video using an optical flow network,
and compares this with the generated frames, to measure consistency. The network we used is [5]. Manipulation Accuracy
measures the accuracy of the manipulation in the generated video according to the target textual description, and relative to the
GT description of the video. We used CLIP [13] as a zero-shot classifier for this task.
Baselines. We trained HairCLIP [19] on the Fashion Videos dataset by omitting the attribute preservation losses concerning
face images. For Latent Transformer, we followed the authors’ instructions and trained the classifier for 20 epochs and
the models for 10 epochs each. For HairCLIP, Latent Transformer, and STIT [18] on the Fashion dataset, we used the
StyleGAN-Human [3] pre-trained generator. For RAVDESS, we used the FFHQ pre-trained generator for all 3 models. For
DiCoMoGAN [6], we trained the official code until convergence.

For MRAA [16] on the Fashion dataset, we followed the training procedure provided by the authors for the tai-chi dataset.
On the RAVDESS dataset, we used the training procedure provided for the VoxCeleb dataset.

We trained StyleGAN-V 3 times on each dataset for 1 week, using 2 V100 gpus. We picked the best model according to
FVD (fvd2048 16f), and used this for all metric calculations and figures. On both datasets, we noticed that later iterations
suffered from significant mode collapse. Therefore, we also picked the epoch with the best FVD. For manipulation, we
projected real videos using 1000 iterations.

4. Further Quantitative Results
4.1. Fine-tuning pre-trained networks

A key motivation for this work is to develop a method that can generate and manipulate high-resolution videos (e.g.
1024× 512) even when trained on low-resolution ones (e.g. 128× 96 for Fashion Videos). This impacted our choices for the
architecture design and training objectives. For instance, fine-tuning the pre-trained image generator on the low-resolution
training video dataset defies our original motivation to generate high-resolution videos. Additionally, while reconstruction
loss between the generated and ground truth frames has been used in prior work [1, 2, 12] to reconstruct local dynamics, it
often trades the lower distortion with the worse perceptual quality. However, in certain scenarios where a high-resolution
training dataset is available, fine-tuning the generator and inversion networks is possible. We report in Tab. 1 the performances
of VidStyleODE on Fashion Videos, where a generator and an inversion network pre-trained on Stylish-Humans-HQ



Method Fashion Videos RAVDESS
FVD ↓ IS ↑ FID ↓ Acc. ↑ Werror ↓ FVD ↓ IS ↑ FID ↓ Acc. ↑ Werror ↓

Ours 157.48 3.25 26.28 0.87 0.0075 273.10 1.33 34.92 0.83 0.0076
Ours w/ FT 139.69 3.27 31.69 0.87 0.0096 160.90 1.32 36.48 0.79 0.0049

Table 1. Effect of fine-tuning the pre-trained generator and inversion network. Fine-tuning StyleGAN-2 image generator and inversion
network (Ours w/ FT) significantly improves the FVD score, with a minimum effect on the perceptual quality and manipulation capabilities
of our model.

```````````̀Inference
Training

First Frame Mean Frame

First Frame 169.62 181.64

Random Frame 206.98 182.39

Mean Frame 229.92 150.59

Table 2. A comparison of different methods to obtain the global content representation for the Fashion dataset, in terms of FVD over
same-identity image animation. Each row represents a different method of training, while each column represents inference using the stated
global representation. Encoding video content with the mean W+ latent code of the input frames during training provides a better FVD
score with less sensitivity to the content frame position during inference.

Dataset [3] were fine-tuned on Fashion Videos at a resolution of 1024× 512 for 200k iterations. We also present results of
VidStyleODE with a pre-trained generator and inversion networks trained on FFHQ [8] and fine-tuned on RAVDESS [9]
at a resolution of 1024× 1024 for 250k iterations. For both experiments, we trained VidStyleODE at a low resolution, i.e.
128× 96 for Fashion Videos and 128× 128 for RAVDESS.

4.2. Further Ablation Studies
In Sec. 4.1 of the main paper, we analyzed the contribution of each component of our model to the final FVD and

Werror scores on the Fashion Videos, showing the superiority of our proposed CLIP temporal consistency loss LC over the
MoCoGAN-HD temporal discriminator or the StyleGAN-V discriminator, as well as the validity of our architecture choices.
We further analyze the effect of different strategies for obtaining the video global latent code. Specifically, we consider using
the W+ latent code of the first frame, a random frame, or the mean latent code. Tab. 2 shows that encoding the video content
as the mean W+ latent code (i.e. zC = E [Z]) provides an overall better FVD, with less sensitivity to the frame order during
inference (e.g. First vs Last Frame).

5. Further Qualitative Results
In this section, we provide additional qualitative results obtained with our proposed VidStyleODE and further comparisons

against the state-of-the-art.

5.1. Latent motion representation
Our model is able to learn a meaningful latent space for motion, which enables multiple applications. As seen in Fig. 1,

interpolating between two motion representations produces a smooth combination of the two motions. Additionally, our motion
representation contains spatial dimensions as well as a time dimension. By having access to local representations as well as
a global representation for motion, we are able to manipulate only certain spatial parts of a video, or optionally the entire
video. Fig. 2 shows the swapping of the upper right quarter of the motion representation while keeping the rest of it untouched.
This is able to affect only the upper right quarter of the video, corresponding to the arm movement. Meanwhile, the other parts
of the body follow the original motion path. We are also able to swap the global motion representation between two videos,
resulting directly in the swap of the dynamics of the videos. This immediately allows for image animation, when combined
with the global content representation, which can be obtained from a single frame if necessary. This is done by using the
global motion representation from the driving video while extracting the global content representation from the source frame.
Examples and comparisons with a popular image animation model [16] are found in Figs. 4 and 5.



5.2. Fashion Videos dataset
• Fig. 1 shows the results of interpolating between two dynamic representations. Note especially the decrease in right arm

movement, which happens smoothly as λ moves from 0.0 to 1.0. Also, the legs spread out less at t = 25 as we increase λ.
• In Fig. 2, we provide an additional example of controlling local motion dynamics of a figure. In particular, we show that our

model is able to transfer the right arm movements of another figure to the target figure.
• Fig. 3 provides qualitative comparisons for our VidStyleODE model to the existing methods.
• Fig. 4 shows a comparison of our VidStyleODE model to multiple image animation methods. It can be seen that our method

is the only one to transfer motion while maintaining the structure and perceptual quality of the reference frame.
• Fig. 5 provides a second comparison of image animation methods.
• Fig. 6 supports the quantitative ablations provided in the main paper with qualitative results, showing that the quality of the

video does indeed improve as we add more components to the model.
• Figs. 7 and 8 show text-guided editing examples on two sample videos from the Fashion Video dataset for two distinct target

texts for each source video. As clearly seen, our method, VidStyleODE , performs the necessary edits as suggested by the
target descriptions successfully.

• Fig. 9 shows the ability of our method in generating realistic and consistent frames via interpolation. Our method accurately
estimates the latent codes of the frames with the missing timestamps and generates the frames in an accurate manner.

• In Fig. 10, we demonstrate that our VidStyleODE method animates still frames via extrapolation. As seen, it generates a
video depicting visually plausible and temporally consistent movements, showing the effectiveness of our method.

5.3. RAVDESS dataset
• In Fig. 11, we present sample text-guided editing examples on a sample video from the RAVDESS dataset for three

different target texts. Our proposed VidStyleODE method accurately manipulates the provided source videos in a temporally-
consistent way according to the provided target text. It successfully changes the eye color, the hair color, and the gender of
the person of interest.

• Fig. 12 provides example frame interpolation results over the provided face frames. As seen, our VidStyleODE method
accurately predicts what the frames from the missing timestamps look like.

• In Fig. 13, we show that our VidStyleODE method can also animate still frames via extrapolation.
• Finally, in Fig. 14, we give qualitative comparisons against state-of-the-art editing techniques on a sample video having the

source description “A woman with blond hair, and green eyes” and with the target description being specified as “A woman
with brown hair and blue eyes”. As seen, compared to the state-of-the-art methods, VidStyleODE generates a temporally
coherent output depicting all the proper edits done on the source video.
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Figure 3. Here, we perform additional manipulations using the baselines. We exclude the latent transformer results since it is unable to
perform complex manipulations without multiple steps. The source text is “a photo of a woman wearing a crop top”, and the target text is “a
photo of a woman wearing a blouse”.
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Figure 4. We perform image animation using our model and multiple baselines. We obtain the dynamics from the driving video in the first
row and apply it to the reference frame to generate the videos. Our results obtain the highest perceptual quality, while also matching the
dynamics of the driving video, and structure of the reference frame. MRAA modifies the structure according to the driving video, instead of
just transferring motion, while StyleGAN-V has some motion transferred, but has a very low perceptual quality.
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Figure 5. Another example on image animation. Our model produces the result with the highest perceptual quality while being consistent
with the driving video and reference frame. MRAA has some inconsistencies in the arm, and StyleGAN-V is unable to capture the motion in
any meaningful way.
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Figure 6. We provide examples to support our ablation study. The first row is the model without the conditional generative model fG,
structural loss, appearance loss, or consistency loss. The second row is without structural loss, appearance loss, or consistency loss. The third
row is without consistency loss, and without using directions. The fourth row is just without consistency loss. Finally, the fifth row is our
best model, with everything.



Input Video

Desc 2: Blue 
blouse and 
gray pants

Desc 1: Blue 
blouse and 
pink short

t = 0 t = 2 t = 4 t = 6 t = 8

Figure 7. We perform two different manipulations to a sample video (the source video) from the Fashion Videos dataset and display the
corresponding results here. Target 1 uses the target text “A photo of a woman wearing blue blouse and pink short”. Target 2 uses the target
text “A photo of a woman wearing blue blouse and gray pants”.



Input Video

Desc 2: gray
T-shirt and
brown skirt

Desc 1: 
purple dress 

t = 0 t = 2 t = 4 t = 6 t = 8
Figure 8. We perform two different manipulations to a sample video (the source video) from the Fashion Videos dataset and display the
corresponding results here. Target 1 uses the target text “A photo of a woman wearing a purple dress”. Target 2 uses the target text “A photo
of a woman wearing gray T-shirt and brown skirt.”.



Source Frame Interpolated Frames Target Frame
t = 0 t = 3 t = 6 t = 9 t = 12

Figure 9. To perform interpolation, we provide the first and last frames (shown in blue) to the model and then generate the whole video. We
display 3 evenly-spaced interpolated frames for each video (shown in red).



t = 0 t = 1 t = 2 t = 3 t = 4
Input Frames Extrapolated Frames

Figure 10. To perform extrapolation from a single frame, we provide just the initial frame (shown in blue), and then generate the next 4
frames (shown in red).



Input 
Video

Desc 2: A man 
with brown
hair and 
green eyes

Desc 1: A 
man with 
black hair and 
blue eyes

t = 0 t = 2 t = 4 t = 6 t = 8

Desc 3: A 
woman with 
black hair and 
brown eyes

Figure 11. We perform three different manipulations to a sample video (the source video) from the RAVDESS dataset, and display the
corresponding results here. Target 1 uses the target text “A man with black hair and blue eyes”. Target 2 employs the target text “A man with
brown hair and green eyes.”. Target 3 uses the target text “A woman with black hair and brown eyes.”.
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Figure 12. To perform interpolation, we provide four distinct frames with different timestamps (t = 0, t = 2, t = 4, and t = 6) (shown in
blue) to the model, and then generate the unobserved frames for timestamps t = 1, t = 3, and t = 5 (shown in red).
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Figure 13. Extrapolation from a single frame: we provide just the initial frame (shown in blue), and then generate the next 4 frames (shown
in red).
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Figure 14. Qualitative results of our approach and the competing editing methods. The description of the source image is “A woman with
blond hair, and green eyes”, while the target description is specified as “A woman with brown hair and blue eyes”.
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