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Qualitative Results. We highly encourage readers to see
the supplementary video submitted with this paper, contain-
ing multiple examples that show the output of HMD-NeMo
given the HMD signal in hand tracking scenario.

1. Implementation Details

To train HMD-NeMo, we utilize the Adam optimizer [3]
with a batch size of 256 and a learning rate of 1e−3. We
follow [2] and train HMD-NeMo with sequences of length
40 frames, however, our approach can be used to generate
sequences of arbitrary length at inference time. To optimize
HMD-NeMo’s prediction, we use limited-memory BFGS
optimizer [4], with a history size of 10, learning rate of 1,
and Strong-Wolfe line search function [5]. We only opti-
mize the upper body pose parameters as well as the global
root trajectory as the observations (head and hands) repre-
sent upper body only. In the rest of this section, we describe
the detailed design of each component of HMD-NeMo.

Head and hand embedding module. This module com-
prises four shallow MLPs per each 6-DoF of the input:
a MLP to compute the rotation representation, a MLP to
compute the translation representation, a MLP to compute
the rotational velocity representation, and finally a MLP to
compute the positional velocity representation. Each MLP
is a single Linear layer followed by LeakyReLU non-
linearity. Each MLP maps its input (either rotation in 6D or
translation in 3D) to a vector of size 32 in the latent space.
For each 6-DoF representation (i.e., head, left hand, right
hand, left hand in the head space, and right hand in the head
space), the result of the four MLPs are then concatenated
together to form a vector of size 128.

SpatioTemporal encoder (STAE). This module com-
prises two sub-modules: a GRU-based module to encode
temporal information and a transformer-based module to
encode spatial information. Given the embedding repre-
sentation of each input 6-DoF (of size 128), we consider a
single-layer GRUwith the hidden size of 256 to process each
input signal temporally. The hidden state of each GRU cell

is updated given its input and the previous hidden state. For
each GRU, we initialize the hidden state at time t = 0 with
a MLP (a Linear layer followed by Tanh non-linearity)
that gets as input the head embedding at time t = 0 (head is
considered the reference joint and it is always visible) and
computes the initial hidden state. For each input represen-
tation, we have a separate GRU layer and a separate hid-
den state initialization MLP. Since we have five 6-DoFs in
the input signal, thus we compute and update five separate
hidden states of the GRU. Such hidden states encompass
the temporal information about each component of the in-
put separately. At each time-step, these hidden states are
then used as the input to a transformer encoder to learn
how these temporal features are spatially correlated to each
other. Specifically, we use 4 layers of transformer encoder,
each with 4 attention heads and a feed-forward hidden di-
mension of 512.

Temporally adaptable mask tokens (TAMT). In order
to take care of missing observations for hands, where com-
puting the hand embedding representations is not feasible,
we introduce TAMT, as described in the main paper. For
each hand, TAMT contains a base MLP (two layers of
Linear-LeakyReLU) which gets as input the concate-
nation of the head representation and the corresponding
hand representation, computed by the transformer encoder
at time t. The output of the base MLP is then passed as in-
put to two separate MLPs: a MLP (a single Linear layer
followed by LeakyReLU non-linearity), called ToToken,
that computes a vector of size 128 (same size as the output
of head and hand embedding module) that produces TAMT
features for time t + 1, and a MLP (a Linear layer, fol-
lowed by LeakyReLU non-linearity, followed by another
Linear layer), called Forecaster, that computes/forecasts
the 6-DoF of the corresponding hand in time t + 1. The
base MLP produces a feature vector of size 256 and Fore-
caster module’s intermediate hidden dimension is also 256.
For the very initial time-step, if a hand observation is miss-
ing, we use a learned parameters for TAMT (learned via
nn.Parameters).



2. Additional Ablation Studies

2.1. Robust energy term

Why we need a robust energy term? As described in
the main paper, once trained, HMD-NeMo is capable of
generating high fidelity and plausible human motion given
only the HMD signal. However, as is typical of learning-
based approaches, the direct prediction of the neural net-
work does not precisely match the observations i.e., the
head and hands, even if it is perceptually quite close. To
close this gap between the prediction and the observation,
optimization can be used. This adjusts the pose param-
eters to minimize an energy function of the form E =
Edata + Ereg , where Edata is the energy term that mini-
mizes the distance between the predicted head and hands
to the observed ones, and Ereg is additional regularization
term(s). To define the data energy term, we define the resid-
ual R =

∑
j∈{h,l,r}(xj − x̂j), i.e., the difference between

the predicted head/hand joint to that of the observation.
Given R, a typical, non-robust data energy term could be
written as Enr = R2, i.e., the L2 loss. This suits the MC
scenario perfectly, where head, left hand, and right hand are
always available. But this energy term may be misleading
in HT scenario where hands are going into and out of FoV
often, and thus leading to abrupt pose changes when hands
appear back in the FoV. Specifically, consider that the right
hand was out of FoV for a relatively long period of time up
to time t and the model has predicted what the right arm
motion could be like for this period. Then, at time t, the
right hand comes back to the FoV and thus we have an ob-
served right hand signal. While the motion generated by
the model is plausible, the predicted right hand may end up
in a completely different location from the newly observed
right hand. If we use the data energy term Enr to mini-
mize the total energy during optimization, we end up in an
abrupt jump in the right arm pose from time t− 1 to time t.
While this guarantees high fidelity, i.e., hands in the correct
position once observed, it adversely affects the perceptual
experience of generating temporally smooth and coherent
motion.

Parameters of robust energy term. Inspired by the gen-
eral form a robust loss function [1], in this paper we use
such technique to define our robust energy term for the op-
timization in the hand tracking scenario. In hand tracking
scenario, where hands may appear outside of the field of
view of the HMD, a non-robust energy term, e.g., L2, is
ideal for the fidelity (hand poses appearing accurately when
there is a hand observation), while may not be ideal for plau-
sibility, as a result of abrupt jumps when a new hand signal

Figure 1. Effect of each hyper-parameter in determining the shape
of the robust energy term, Eq. 1.

is observed. This is why a robust alternative
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is used when plausibility in the generated motions is a pri-
ority. As described in the main paper, the values of the
hyper-parameters a, b, and c affect the shape and thus the
behaviour of the energy term. Particularly, such hyper-
parameters determine (1) what range of values of R should
be considered outlier, and thus not being penalized strongly,
and (2) what is the penalty strength for the inliers and out-
liers. The effect of each parameter is visualized in Fig. 1.
Particularly, parameter a determines the strength of the



Figure 2. Illustration of the effect of optimizing HMD-NeMo predictions (predictions are shown in teal and GT in orange, overlaid). The
initial model prediction is relatively accurate, but just a single optimization iteration improves the head and hands prediction substantially.

Motion Hand
Setting Metric Controllers Tracking

Full body
MPJPE ↓ 2.07 2.48
MPJVE ↓ 26.07 31.30

Upper body
UB-MPJPE ↓ 1.87 2.28
UB-MPJVE ↓ 24.26 29.76

Lower body
LB-MPJPE ↓ 2.56 2.80
LB-MPJVE ↓ 30.77 33.03

Head & Hands
HH-MPJPE ↓ 0.88 1.72
HH-MPJVE ↓ 13.83 28.74

Table 1. Per body part evaluation. Note these results represent the
HMD-NeMo prediction prior to optimization.

penalty as outliers go further from inlier region. Parame-
ter b determines the value of the loss at which it considers
outlier. Parameter c determines width at which we consider
R as inlier. In our experiments, a = −10, b = 2e−4, and
c = 2e−3. Numbers on the plots of Fig. 1 are best seen
when zoomed in. Fig. 2 illustrates multiple examples be-
fore and after only 1 iteration of optimization.

2.2. Evaluation on various body parts

In Table 1 we compare the MC and HT scenarios, and
break down the errors for various body parts. Since the
HMD signal represents the upper body, the contribution
of lower body joints towards the error (both MPJPE and
MPJVE) is larger than that of the upper body joints. As ex-
pected, head and hand errors are relatively low since HMD
signals represent head and hands. Also, as expected, the re-
sults in Table 1 demonstrate that the motion prediction task
in HT scenario is more difficult than in MC. Despite being
user-friendly, HT scenario has not been well-explored by
the community yet due to the technical difficulty of motion
prediction in this setting.

3. Additional Qualitative Results
In this section, we first provider results of HMD-NeMo

(see Fig. 3 to Fig. 6) and then provide more qualitative com-
parisons to the state-of-the-art approach [2] (see Fig. 7 to
Fig. 28). Note that none of the results are cherry picked.

Note that all results are color-coded based on the distance
between the predicted vertices and that of the ground truth.
Dark blue vertices represent predictions that are very close
to the ground truth and yellow vertices are further away
from ground truth.

In comparison to [2], both our approach and the base-
line performs reasonably well in predicting the upper-body
mainly due to the fact that HMD signal is a strong signal
about the upper body pose. Typically, HMD-NeMo does a
relatively better job at predicting more plausible lower body
motion.
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Figure 3. Qualitative results of HMD-NeMo in HT scenario.

Figure 4. Qualitative results of HMD-NeMo in HT scenario.



Figure 5. Qualitative results of HMD-NeMo in HT scenario.

Figure 6. Qualitative results of HMD-NeMo in HT scenario.



Figure 7. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 8. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 9. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 10. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 11. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 12. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 13. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 14. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 15. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 16. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 17. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 18. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 19. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 20. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 21. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 22. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 23. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 24. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 25. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 26. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].



Figure 27. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].

Figure 28. Qualitative comparison to the state of the part method [2] in MC scenario. Top: Ground truth in orange, Middle: HMD-NeMo,
Bottom: Jiang et al. [2].


